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Abstract: Although different types of therapeutic vaccines against established cancerous lesions in
various indications have been developed since the 1990s, their clinical benefit is still very limited.
This observed lack of effectiveness in cancer eradication may be partially due to the often deficient
immunocompetent status of cancer patients, which may facilitate tumor development by different
mechanisms, including immune evasion. The most frequently used cellular vehicle in clinical trials
are dendritic cells (DCs), thanks to their crucial role in initiating and directing immune responses.
Viable vaccination options using DCs are available, with a positive toxicity profile. For these reasons,
despite their limited therapeutic outcomes, DC vaccination is currently considered an additional
immunotherapeutic option that still needs to be further explored. In this review, we propose potential
actions aimed at improving DC vaccine efficacy by counteracting the detrimental mechanisms
recognized to date and implicated in establishing a poor immunocompetent status in cancer patients.
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1. Therapeutic DC Vaccines in Cancer Patients: Context and Current Situation

Dendritic cells (DCs) are frequently used in clinical trials as they are considered an ideal vehicle for
antigen delivery [1]. Discovered in 1973 by Ralph Steinman and Zanvil A. Cohn [2], DCs are sentinels
of the immune system that initiate and direct immune responses [3]. Dendritic cells are activated by
the sensing of danger in the form of pathogen or damage-associated molecular patterns (PAMPs or
DAMPS, respectively), which they uptake, process, and present as antigenic peptides to naïve T-cells
in peripheral tissues. Dendritic cells therefore constitute the most important antigen-presenting cell
(APC) population for activating antitumor T-cell responses; they play a critical role in the interface
between innate and adaptive immunity [4]. The aim of vaccination is to increase tumor-associated
antigen (TAA) presentation to the immune system, and hence increase the activation of tumor-specific
T and B cells. Human DCs can be generated ex vivo from CD34+ hematopoietic progenitors or
from peripheral blood-derived monocytes [5]. Several vaccination procedures are currently available
and have been successfully tested in the clinic [6]. Most frequently, DCs are loaded ex vivo with
different antigens, such as whole tumor lysate, peptides, proteins, or genetic material of the desired
antigen (e.g., transfected/electroporated DNA, RNA or transduced virus), prior to reinfusion into
the patient [7]. Alternatively, DCs can be given alone after cytotoxic therapy (such as chemo- or
radiotherapy), whereby increased antigen availability could be induced in vivo. One important
observation is that DC vaccination as a monotherapy is generally considered safe as grade 3 or 4
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treatment-related toxicities are rare [8,9]. These data were confirmed by several phase III trials where
DC vaccination had been compared with placebo [10–13]. Furthermore, DC vaccination is associated
with preserved quality of life of cancer patients [14].

Currently, DC vaccines are being revisited as a potential tool in the immunotherapeutic
arsenal [15]. Interestingly, DC therapy has been shown to produce a similar objective response
rate (ORR) than standard therapy in melanoma, prostate cancer, malignant glioma, and renal cell
carcinoma according to a meta-analysis of all the published DC vaccine clinical trials [16]:

1. In melanoma, DC therapy had 8.5% ORR, similar to dacarbazine (standard of care), or
ipilimumab (5–15%)

2. In prostate cancer patients, ORR was 7.1% after DC vaccination, compared to 10% with
conventional chemotherapeutic drugs

3. In patients with malignant glioma, ORR after DC therapy was 15.6%
4. In advanced renal cell cancer (RCC), ORR was 11.5%

Of note, an increase of at least 20% in overall survival (OS) has been documented in most studies
using DC therapies [16]. However, survival was not the main endpoint in many of these studies as
they were early phase. Nevertheless, clinical efficacy for DC vaccination is still far from optimal and
this might probably be associated with their inability to elicit a rapid and strong T cell response.
Consequently, this has generated a great deal of criticism towards therapeutic vaccination [17],
including DC vaccination. The lack of therapeutic vaccination efficacy is probably associated with
a dampened immunocompetent status in cancer patients, and the presence of immunosuppressive
mechanisms in different indications that allow tumor development. This could be due to some
common phenomena shared by all tumor types, independent of the specific characteristics of each
one. These potential obstacles could be overcome by implementing procedures to improve patients’
immunocompetent status and optimizing vaccination design, although differential responses are
probably expected in different genetic backgrounds, requiring then a tailored approach (further
discussed in Section 3.3.1.2). Therefore, novel strategies that increase DC vaccination efficacy while
maintaining its safety profile are warranted.

2. Determinant Factors Impinging on the Efficacy of Therapeutic Vaccination

In a recent clinical trial in melanoma patients, it was observed that tumor-specific immunologic
response rates obtained after DC vaccination in the adjuvant setting were approximately two to three
times higher than in the metastatic setting [18]. This suggested that using DC-based immunotherapy
earlier in the course of the disease when tumor burden is still minimal might positively influence
the vaccination efficacy. In a meta-analysis of 54 trials using DC vaccination on 967 melanoma
patients, the observed ORR was similar between stage III and IV diseases but the clinical response was
statistically different between the two groups (P = 0.03). Furthermore, progressing disease (PD) cases
were significantly different between stages II (18.8%) and IV (52.6%), and between stages III (23.1%) and
IV (both P = 0.0001) [19]. These observations supported the notion that reduced immunocompetence
was associated with tumor progression.

Similarly, our own literature review of clinical trials using DCs as a vehicle (for all types of
antigenic sources) in gynecological and breast cancers from the year 2000 to date, showed that most of
these trials were performed in patients with advanced diseases. This factor could potentially contribute
to the limited success of vaccination in these patients (Figure 1).
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therapeutic efficacy in the advanced disease setting as well. 
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Figure 1. Number of reports in literature (source: PubMed) using dendritic cell (DC) vaccination
in patients with the indicated gynecological and breast cancers (not exhaustive; according to data
summarized in Supplementary Materials Table S1). Adv: advanced; BrCa: breast cancer; CervCa:
cervical cancer; Mets: metastatic; OvCa: ovarian cancer; Rec: recurrent.

In the studies we have summarized above (Figure 1 and Supplementary Materials Table S1), patients
with gynecological cancers (i.e., ovarian, cervical) or breast cancer were vaccinated with: i) native
DCs [20]; ii) DCs loaded either with antigen-specific peptides [21–28], a viral protein [29,30], or with
autologous tumor lysate [31–39]; or iii) DCs fused with autologous tumor cells [40]. In some cases,
DCs were activated with interferon (IFN)-γ alone [32], lipopolysaccharides (LPS), and IFN-γ [34–36,39],
or IFN-γ in combination with other compounds [26]. In other cases, tumor necrosis factor (TNF)-α
was used either alone [28,31,38] or in combination with either interleukin (IL)-1β [37], or IL-1β
plus IL-6 and prostaglandin-E2 (PGE2) [29,30,33]. In numerous early studies, no DC maturation
stimulus was used [20–25,40]. As indicated in Figure 1, most patients in these studies had advanced
metastatic or recurrent diseases. In most of these studies, patients presented a somewhat increased
immunogenicity upon vaccination, including peptide-specific CD8+ T-cells [21,22,24,26,28–30,36,39,40],
IFN-α production by injected DCs [20], tumor antigen-specific lymphoproliferative response [31],
increased IFN-γ secreting cells [32,33,38], increased frequency of CD4+ CD25 high T cells [25], potent Th1
polarization [34,35], or delayed-type hypersensitivity (DTH) responses [29,33]. However, the observed
increased immunogenicity only rarely correlated with some clinical benefits such as temporary tumor
regression [20,40], partial responses [21,27,36], disease stabilization [22,24,27,31,32,36,40], or extended
progression-free survival (PFS)/time to recurrence (TTR) [26,29,33,34,37,38].

As therapeutic vaccination has so far shown limited efficacy in advanced diseases, this supports
the notion of vaccinating cancer patients with early-stage diseases or after debulking procedures
whenever possible. It is also important to elucidate the mechanisms that contribute to a reduced
immunocompetent status in patients with advanced diseases. This would help in designing
appropriate vaccination strategies for boosting the patient’s immune system and improving overall
therapeutic efficacy in the advanced disease setting as well.

2.1. Tolerance Mechanisms Exerted by Tumors and Their Microevironment to Evade Immune Recognition

Tumor progression is generally associated with an immunosuppressive tumor microenvironment
(TME), as tumor cells develop tolerance mechanisms to inhibit relevant T cell repertoires leading to
immune escape [41]. Tumors have evolved different evasion mechanisms including: i) downregulation
of major histocompatibility complex (MHC) Class I via the inhibition of NLRC5, which is a key
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transcription cofactor, to avoid T cell recognition [42,43]; ii) expression of surface molecules for T cell
suppression, such as programmed-death ligand 1 (PD-L1) [44,45], galectin-9 [46,47], and galectin-3 [48];
iii) production of immunosuppressive molecules (e.g., indoleamine 2,3-dioxygenase [IDO] [49,50]),
and cytokines (e.g., IL-6 [51], IL-10, and transforming growth factor [TGF]-β); iv) promoting T
regulatory (Treg) cell proliferation [52–55]); and v) an increased presence of immature myeloid cells [56].

Concerning gynecological and breast cancers, in cervical carcinoma, TNF-α (a potent activator
of Langerhans cells [LCs]), was constitutively expressed by basal keratinocytes in the normal cervix
in an early study. However, it was absent in the majority (32 out of 41) of low- and high-grade
cervical intraepithelial neoplasia (CIN) [57]. In addition, IL-10 was upregulated in 20 out of 41 CIN
lesions and was absent in normal epithelial. Moreover, LCs in the CIN lesions did not express
adhesion/costimulation molecules for T cell activation, suggesting that the aberrant expressions of
TNF-α and IL-10 played a role in inhibiting the anti-tumor functions of LCs.

In ovarian carcinoma, the ascites often constitute a highly immunosuppressive network of
immune cells, cytokines, chemokines, tumor cells, and non-immune cells (e.g., fibroblasts, adipocytes,
and mesothelial cells) that help to shape the immune response. For example, ascites-derived vascular
endothelial growth factor (VEGF) [58,59], IL-6, IL-10, TGF-β, and arachidonic acid played a prominent
role in the polarization of immunosuppressive tumor-associated macrophages (TAMs) in ovarian
cancer ascites [60–63]. Such polarized TAMs participate in numerous pathological processes including
assisting tumor cell invasion, angiogenesis, and metastasis [64]. Moreover, the presence of the CD163
activation marker on TAMs in ovarian cancer ascites strongly correlates with early relapse of serous
ovarian carcinoma after first-line therapy [60].

Similarly, the TME of solid tumors such as breast carcinoma is composed of stromal fibroblasts,
vasculature, inflammatory immune cells, and extracellular matrix that interact with the tumor cells
via cytokines, growth factors, proteases, and other molecules. These interactions also regulate the
anti-tumor responses within the TME, ensuring the survival of the tumor. In breast carcinoma,
the tumor cells were shown to produce TGF-β and IDO. They also repressed the expression of
activating receptors such as natural killer (NK)p30 and NKG2D on NK cells, hence reducing the ability
of NK cells to directly lyse tumors [65].

Treg cells are frequently recruited into the TME, and this phenomenon has been well-characterised
in different cancer types. Their increased presence has been correlated with advanced cancer stage in
hepatocellular carcinoma [66] and reduced survival in ovarian cancer patients [54]. It has been shown
that tumor cells and DCs in the TME produced TGF-β [67,68] and expressed B7-H1 [69] to support the
differentiation of these Treg cells. Consequently, the Treg cells could inhibit effector T-cells through
the secretions of IL-10 and TGF-β, and via cell–cell contact with the latter [70]. Myeloid-derived
suppressor cells (MDSCs) could also be recruited into the TME and release T cell inhibitors such as
arginase and nitric oxide synthase [71]. Myeloid-derived suppressor cells are capable of suppressing
T cell and NK cell activities [72], as well as enhancing cancer progression and metastasis [73]. Finally,
it has been shown that the critical soluble mediators of type-1 immune effector cells, IFNγ and TNFα,
could synergize in the induction of COX-2 which is a key enzyme in PGE2 synthesis. As PGE2 could
participate in T cell immunosuppression, we could potentially prevent that with COX-2 blockade [74].

2.2. Reduced DC Fitness in Cancer Patients vs. Healthy Subjects

2.2.1. Peripheral Blood DC Defects in Cancer Patients

Several studies have highlighted quantitative and functional impairments of blood-circulating
DCs in many different types of cancer [75], including melanoma [76], colorectal cancer (CRC) [77,78],
prostate adenocarcinoma [79], head and neck cancer (HNCSC) [80], breast cancer [81,82], pancreatic
cancer [83], and hepatocellular carcinoma [84]. Despite using different methodologies and patient
cohorts leading to few minor discrepancies, these studies have collectively demonstrated that the DC
cell compartment is defective in cancer patients, compared to healthy subjects.
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In particular, a statistically significant and marked reduction in the total number of DCs
circulating in the peripheral blood (PB-DCs) has been observed in cells belonging to either the myeloid
lineage (e.g., in HNCSC [80], breast cancer [81], and hepatocellular carcinoma [84]), the lymphoid
lineage (e.g., localized prostate cancer (close to statistical significance, p = 0.055) [79], and stage III
melanoma [76]), or both (e.g., stage IV melanoma [76], and advanced metastatic prostate cancer [79]).

Importantly, in studies analyzing different disease stages, the observed decrease in PB-DCs
correlated well with cancer progression, with an attenuated or undetectable effect at early stages (I-II),
but a significant and more pronounced decline in patients presenting a more advanced disease (stage
III-IV) [76,85]. Furthermore, analyses of PB-DCs in patients before and after tumor surgical removal
showed a reverse trend towards normalization in terms of DC numbers [80,81,86–88], highlighting
the fact that the observed numerical deficiencies were tumor-induced and indeed reversible upon
tumor debulking.

In addition to this, important DC functional impairments have also been reported in several types of
cancer. Della Bella and colleagues for example reported that while the maturation response of PB-DCs
to LPS did not differ between healthy subjects and patients, the percentage of PB-DCs expressing IL-12
was significantly lower in the latter [81]. An analogous decrease in IFN-α production by tissue-resident
plasmacytoid DCs (pDCs) in cancer patients was reported by Hartmann et al. in the context of HNCSC [89].
Importantly, in three other studies the PB-DCs stimulatory capacity, as measured by standard mixed
leukocyte reactions (MLRs), was significantly impaired in PB-DCs isolated from breast [82], pancreatic [88],
and colorectal [87] cancer patients compared to healthy subjects. In particular, in the latter study this
aspect correlated well with a significantly lower expression of human leukocyte antigen (HLA)-DR,
CD83, CD86, and mannose receptor, all indicative of a more DC immature state [87], and thus potentially
more tolerogenic [90,91].

Some studies have also given a few interesting mechanistic insights on how these deficiencies may
emerge, a notion that is obviously particularly valuable in the attempt to advance current anticancer
immunotherapies. Since the earlier studies, a crucial role has been attributed to soluble factors released
by tumor cells, particularly to VEGF [92]. This signalling molecule is in fact not only essential to ensure
neo-angiogenesis and subsequent tumor growth and progression [93], but it has also important, proven
immunoregulatory effects, such as: i) hampering DC development from CD34+ cell precursors [94], ii)
impairment of DC maturation [95], and iii) induction of reduced in vitro T cell stimulation capability
by DCs [96]. Interestingly, in line with these data, it has been shown that VEGF serum levels in CRC
patients inversely correlates with PB-DC circulating levels [87], hence reinforcing the view that VEGF
plays a dual role in tumor progression, contributing to both tumor angiogenesis and immune escape.

IL-6 and IL-10 are two other growth factors released by cancer cells able to induce immune system
deficiencies. Beckebaum and colleagues showed in patients with hepatocellular carcinoma that in vitro
exposure of peripheral blood mononuclear cells (PBMCs) to IL-10 led to a significant decrease in
cell occurrence, and decreased expression of co-stimulatory molecules, in both myeloid and pDC
subsets [97]. Importantly, the same study also evidenced a clear correlation between increased IL-10
serum levels, and numerical and mature phenotype deficiencies in patients’ PB-DCs [97]. Regarding
IL-6, this cytokine has been shown to arrest the development of DCs from CD34+ cell precursors [98],
whereas suppressing DC maturation [99], and T cell activation capability [99,100].

In the context of ovarian cancer, no previous work investigated the phenotype and occurrence of
blood circulating DCs in cancer patients to our knowledge; however, several studies reported important
dysfunctions of DCs present in the ovarian tumor microenvironment (TME) [101]. The ovarian cancer
TME is particularly immunosuppressive with high levels of immunoregulatory mediators such as
PGE2, IL-10, VEGF and others, all correlating with tumor progression and poor prognosis [102].
These different stimuli are able to shape and induce tumor-infiltrating DCs (TIDCs) towards
an immunosuppressive and regulatory phenotype [103–105]. Work done in mouse models that closely
recapitulate human ovarian cancer interestingly showed that malignant progression was triggered by
tumor-induced phenotypical changes in TIDCs, an effect that was reversed upon DC depletion [106].
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Beneficial effects of DC depletion towards slowing down ovarian tumor progression were also reported
in another previous study [107]. These results have been linked to both the tolerogenic role played by
TIDCs in supporting immune surveillance escape [106], and to their ability to promote angiogenesis
and maintainance of tumor vasculature [107,108], thus suggesting novel opportunities for therapeutic
intervention, specifically against ovarian cancer (see also further Section 3.3.2.4).

In conclusion, many studies reported important dysfunctions in the number and immunogenic
phenotype of blood circulating DCs in cancer patients. While no data has been reported so far in the
case of ovarian cancer, the evidence of major dysfunction in TIDCs and the known ability of factors
present in the ovarian TME (such as VEGF) to systemically inhibit DC generation from hematopoetic
cell precursors [95] suggests that impairments similar to those found in other cancer types should also
be present in ovarian cancer patients. Future analyses should address this point to further advance
vaccination therapies against ovarian cancer.

2.2.2. Defects of Monocyte-Derived DCs in Cancer Patients

In the case of monocyte-derived DCs (mo-DCs) cultured ex-vivo for therapeutic vaccination,
important defects have been reported when compared to mo-DCs derived from healthy subjects,
although with some discrepancies among different studies. A comparison between mature mo-DCs
from CRC and non-small cell lung cancer (NSCLC) patients, and healthy subjects showed, for example
that: i) mo-DCs from healthy donors had a more mature phenotype (higher CD83 and CCR7; lower
CD14) than DCs from cancer patients; ii) mo-DCs from CRC patients had a more mature phenotype
(higher CD83 and CCR7) than mo-DCs from NSCLC patients; and iii) maturation status of DCs
correlated positively with the patients’ clinical status [109]. Maybe not surprisingly, the authors in
this study also observed that in clinical responders, DCs generated from monocytes isolated after the
4th vaccine had a more mature phenotype (higher CD83 and CCR7) than DCs obtained from monocytes
isolated prior to treatment [109], thus suggesting that DC vaccination also had a positive influence on
the immunocompetence status of responders. Similarly, a second study reported deficiencies in the
maturation status, immunogenic cytokine profile, and T-cell stimulation capacity of mo-DCs derived
from CRC patients compared to healthy controls, which inversely correlated with disease progression,
and which were partially restored to normal levels after surgery [110].

Concerning gynecological and breast cancers, another study compared mo-DCs phenotypes
between breast cancer patients and healthy donors using three different maturation stimuli [111].
In this work, the yield of mo-DCs from breast cancer patients was much lower than that from healthy
controls. Phenotypic assessment of CD80, CD83, and CD86 status showed that patients’ mo-DCs
always reached a weaker maturation status compared to healthy donors’ mo-DCs, although different
markers were affected according to the maturation stimulus in use. In addition to this, in vitro
DC-mediated T cell stimulation was also impaired in patients, leading to subsequent lower T cell
cytolytic activity and IFN-γ production [111]. Interestingly, a similar lower maturation status (lower
CD80, CD83, CD86, CD40, and HLA), and functional impairment in allogenic T cell stimulation
capability was also reported in mo-DCs derived from cervical cancer patients compared to healthy
controls [112]. Finally, in the context of ovarian cancer, a recent study compared mo-DCs generated
ex vivo from healthy subjects and ovarian cancer patients showing that, despite presenting similar
levels of expression of co-stimulatory molecules, the immunogenicity of the latter was significantly
impaired, as measured by MLRs [113].

In contrast with the studies reported above, Failli and colleagues, while reporting similar
numerical deficiencies in levels of circulating DCs, did not observe any significant deviations from
healthy donors in mo-DCs derived from melanoma patients in terms of maturation status and T-cell
stimulatory capacity [76],. Instead they surprisingly noticed an increased antigen uptake in patients’
DCs compared to donors.

Therefore, despite the few discrepancies among the cited studies, which could be easily attributed
to small sample size, as well as differences in disease stage, protocols, and reagents used to generate
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and mature mo-DCs, the evidence summarized here shows that tumors are able to negatively influence
the immune fitness and immunogenicity of ex-vivo generated mo-DCs, an aspect that should be
carefully considered and addressed in future DC vaccination approaches (see Section 3).

2.3. Other Potential Factors Implicated in Reduced Immunocompetence

It should also be underlined that most patients enrolled in clinical trials testing therapeutic
cancer vaccines are elderly patients. This population of patients already have a significantly
compromised immune system, due to immunosenescence [114–116]. Indeed, it has been proposed
that immunosenescence could be an additional factor contributing to the decreased ability to control
infectious disease in the elderly, as well as their generally poor response to vaccination and the
increased incidence of cancer with age.

All these observations strongly support the rational of DC-based vaccines as potential anti-cancer
therapies to restore functional DCs, thus promoting tumor clearance. However, on the other hand,
they also point out that the immunocompromised status of cancer patients may constitute a significant
barrier to this action, and concurrent further intervention should be considered to fully ensure
therapeutic success.

3. Proposed Actions to Counteract Decreased Immunocompetent Status in Cancer Patients

Several factors could be modified when planning DC vaccination strategies to improve their
clinical efficacy [117]: i) screening and assessing patients to define their immunocompetent status
prior to vaccination; ii) improving vaccine formulation and defining the best route of administration
(e.g., subcutaneous, intradermal, intranodal, intraperitoneal, or intravenous) to enhance efficacy;
iii) optimizing vaccination schedule [118,119]; iv) and finally combining DC vaccine with different
adjuvants, such as cytokines or other stimulatory factors [120]. In this section, we reviewed the current
available options.

3.1. Patients’ Screening and Assessment

Several actions can be employed to counteract the above-mentioned cancer patients’ immune
deficiencies in the context of cancer vaccine immunotherapy. First of all, a careful assessment
of the patient immune status should be carried out to highlight possible chronic deficiencies,
for example in the levels of circulating immune cells. As previously mentioned, the immune system
deteriorates over time, and older subjects are usually characterized by decreased T-cell activity
and naïve T-cell compartment [121], reduced B cell production of high-affinity antibodies [122],
and, particularly important in the context of DC vaccination, a decreased number of PB-DCs in both
myeloid and plasmacytoid subsets [123]. Based on these parameters, patient’s eligibility and potential
responsiveness to DC vaccination should be carefully assessed before proceeding to treatment.

3.2. Improving DC Vaccine Formulation and Delivery Route

In recent years, the antigen source used to pulse ex vivo generated autologous mo-DCs has been
recognized as a crucial function. Synthetic peptides that correspond to defined CD8+ epitopes have long
been used in the clinic [124–126], however their application is only limited to patients expressing the
corresponding HLA haplotypes of those epitopes. On the other hand, a more universal approach relies
on autologous or allogeneic (c.f. tumor cell lines) whole tumor lysate (WTL) preparations as an antigen
source [118,127]. In fact, since WTLs contain numerous specific TAAs that are characterized and
un-characterized, this approach obviates the need to define specific TAAs and to select patients based
on their HLA haplotypes. Furthermore, the presence of multiple epitopes restricts the chance of tumor
escape by antigen loss while promoting a polyclonal CD4+ and CD8+-dependent T cell responses.

Several groups, including ours, have shown that treating tumor cells with either heat shock [128,129],
hypochlorus acid (HOCl) [34,130], squaric acid [131], UV irradiation [132,133], or hydrostatic pressure [134]
(among others) before DC-pulsing greatly increased their immunogenicity and improved downstream
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immune responses. Some of these approaches are employed in the clinical setting [135]. The enhanced
tumor immunogencity could be explained in part by the induction of immunogenic cell death (ICD) [136]
via these different methods mentioned above. The ICD could lead to the release of “danger signals” that
activate DCs, increasing DC antigen uptake and stimulating their maturation, and ultimately improving
T cell priming (see also Section 3.3.2.2). ICD might be advantageous when compared to necrotic cell death
induced by more canonical free/thaw cycles [137,138]. Despite these important achievements, mechanistic
insights of ICD remains unclear. A detailed elucidation of such mechanisms would further advance the DC
vaccination field and potentially lead to the identification of even more immunogenic modalities.

A second central aspect in DC-based vaccines is the maturation cocktail used to fully mature
DCs prior to patient’s infusion. It has been recognized that mature DCs were far superior in eliciting
downstream T-cell immune responses than their immature counterparts [139,140]. This was due to the
higher co-stimulatory molecules expression [141] and enhanced migratory capacity [139] of the mature
DCs. The use of insufficiently matured DCs might be one of the main reasons for the failure of early DC
vaccine trials [140]. Importantly, it is still unclear up-to-date what is the optimal maturation cocktail
that ensures the most immunogenic DC formulation. The optimal maturation stimuli should induce
high expression of MHC-I and MHC-II molecules, co-stimulatory molecules (e.g., CD40, CD80, CD86),
and high secretion of Th1 inflammatory cytokines (e.g., IFN-γ, IL-12). The current standard maturation
mix contains TNF-α, IL-1β, IL-6, and PGE2 [142]. Although this mix could efficiently upregulate
DC surface maturation markers, it fails to induce IL-12 production [142]. Nonetheless, this cytokine
cocktail is able to induce uniform DC maturation, as well as high levels of T cell proliferation and
priming [142], and has thus been selected as a gold standard for maturation in many studies. Our group
demonstrated that simulating WTL-pulsed DCs with LPS and IFN-γ led to strong IL-12p70 and IP-10
productions, as well as highly efficient MLRs by these activated DCs [143].

More recently, other DC maturation stimuli including CD40 ligand and IFN-γ [144], toll-like
receptor ligands [145], and electroporated protein-encoding mRNA [146,147] (see Supplementary
Materials Table S1) have been successfully tested. Importantly, few studies have compared the
effectiveness of these different maturation cocktail on the phenotype and immunogenicity of
patient-derived mo-DCs. In particular, Kvistborg and colleagues showed that mo-DCs from CRC
patients matured with the gold standard mix achieved significantly higher CD83, CD86, and CCR7 than
mo-DCs matured with TNF-α alone [109]. This was also observed for healthy donors. Another study
used three different maturation cocktails (TNF-α/LPS, gold standard, or a mix of Ribomunyl/Imukin)
to mature mo-DCs from breast cancer patients and healthy controls [111]. While the study did not
specifically comment on the comparison within the cancer patient group, CD80 expression on DCs
was found to be lower in the gold standard case compared to the other two. In any case, the study
interestingly reported an increased IL-12 production in patients compared to the healthy controls in the
case of mo-DCs matured in the presence of Ribomunyl/Imukin [111]. While these studies underlined
the influence of the chosen maturation stimulus on the immunogenicity of DC vaccines, more detailed
studies are clearly needed to define the optimal maturation cocktail to use.

In addition, Radice and colleagues showed that mo-DCs from non-metastatic CRC patients
incubated with sequential-kinetic-activated (SKA) IL-4 and IL-12 displayed increased T cell stimulatory
capacity by MLR, and an increased Th1 polarization compared to untreated mo-DCs [148]. Even if
these effects were less pronounced than IL-4 and IL-12 supplemented at higher doses (ng/mL range),
the authors suggest that SKA concentrations (fg/mL range) may be more clinically relevant and
beneficial, leading to a more prolonged and sustained stimulation, whilst avoiding DC exhaustion [148].
Another study showed that reducing the number of injected cells improved DC migration and
lymphoid homing [149], suggesting that sometimes “less is more”.

A third central aspect that needs further elucidation is the optimal route for vaccine administration.
Different options have been investigated, however an optimal route has yet to emerge. Intravenous
administration enables the rapid dissemination of DCs in multiple organs and lymphatic tissues,
although it may lead to partial cell loss and lacks target specificity. Intranodal injection potentially



Vaccines 2018, 6, 79 9 of 28

constitutes an optimal route for DC delivery at their active site to promote T cell encounters, yet it
is technically challenging and if improperly performed may lead to serious lymph node damage.
Mouse studies have shown that intratumoral administration is able to reverse the immune suppressive
TME, increasing T cell penetration and leading to tumor control [150]. However this route is not
applicable to all tumors, and the TME may also negatively affect DC function and viability [151],
as discussed in Section 2.1. Moreover, novel approaches based on simultaneous multiple routes of
administration [6], and reported discrepancies between human and mouse models [91] have further
complicated the field. Future studies aimed at correlating routes of administration with objective
clinical responses would shed some light and provide future guidelines.

Finally, biomaterials such as nanoparticles have been used to deliver TAAs to naturally occurring DCs
in vivo. This method has a major advantage, as it could circumvent the need to generate ex vivo mo-DCs [152].

3.3. Combinatorial Approaches with Additional Therapeutic Agents

3.3.1. Immune Checkpoint Inhibitors

In order to maintain self-tolerance (therefore preventing autoimmunity), and to protect tissue
from damage after immune activation in response to pathogens, the immune system relies on
different mechanisms, collectively called “immune checkpoints”. Molecules implicated in immune
checkpoints include CTLA-4 (Cytotoxic T Lymphocyte Antigen-4), PD-1 (Programmed Death-1), LAG-3
(Lymphocyte Activation Gene-3), TIM-3 (T-cell Immunoglobulin and Mucin protein-3), and several
others (reviewed elsewhere; [153]). These molecules modulate T cell responses to self-proteins, as well
as to chronic infections and tumor antigens. Among these molecules, CTLA-4 was the first shown to
augment antitumor immune responses [154]. Following their success in melanoma and some other
types of immunogenic tumors, immunomodulatory agents are currently being tested in most cancer
indications, and it has been reported that therapies blocking the immune checkpoints show significant
clinical efficacy in advanced tumors [155], attributed to potent activation of T-cells. Considering that
lack of efficacy of DC vaccination has been associated to their inability to elicit a rapid and strong
T-cell response, it is clear that combination strategies using DC vaccines with checkpoint inhibitors
should generate an additive effect to overcome cancer patient’s immunosuppressive status, therefore
potentially enhancing therapeutic benefit.

More specifically, this approach could be clearly advantageous for patients with gynecological and
breast cancers, as most of them have been recognized as immunogenic: the host immune system can
recognize and target EOC [4]; cervical cancer is mostly virally induced, and epitopes of oncoproteins
E6 and E7 can be presented in the context of HLA class I molecules [156,157]; considering endometrial
cancer, there is evidence suggesting that it is sufficiently immunogenic to be a reasonable candidate
for immunotherapy [158]; and finally, for breast cancer (BC), the notion of immunogenic tumors is
relevant for highly proliferating tumors [159], most notably for the HER2 positive and TN subtypes.

3.3.1.1. Anti-CTLA-4 Treatment

The first anecdotic report indicating that anti–CTLA-4 treatment after DC vaccination might
enhance DC vaccine–induced T-cell responses was published in 2005, in a dose-finding Phase I trial
testing an anti-CTLA-4 monoclonal antibody [160]. There is also some evidence indicating that
DC vaccination might enhance clinical efficacy of treatment with anti–CTLA-4 [161]. Additionally,
DC-based immunotherapy combined with anti–CTLA-4 treatment has been shown to be more effective
than the use of these agents alone in two small trials, showing a best ORR of 38% in melanoma
patients [162,163]. Furthermore, in another pilot study [164], ipilimumab alone (Arm 1) or in
combination with GVAX (Arm 2) was evaluated in 30 patients with previously treated, advanced
pancreatic ductal adenocarcinoma (PDA) in a Phase 1b study. Of note, GVAX is a cancer vaccine
composed of whole tumor cells genetically modified to secrete the immune stimulatory cytokine,
granulocyte-macrophage colony-stimulating factor (GM-CSF), and then irradiated to prevent further
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cell division. In Arm 2, GVAX was given prior to ipilimumab to patients. Objective responses
were observed in 20% of patients receiving the combination of ipilimumab and GVAX in Arm 2,
whereas none of the 15 patients in Arm 1 responded to single agent ipilimumab. The median overall
survival for patients in Arm 1 was 3.6 months compared to 5.7 months in Arm 2, further supporting the
combination strategy. However, considering that anti-CTLA-4 monotherapy comes with higher toxicity
and lower response rates than anti-PD-(L)1 (according to comparative clinical trials in melanoma
patients [165,166]), increasing number of studies have focused on targeting the PD-1/PD-L1 pathway.

3.3.1.2. Anti-PD-1 and Anti-PD-L1 Treatment

Initial studies with anti-PD-(L)1 were performed in patients with melanoma (a highly immunogenic
tumor ), yielding impressive results [167,168], which support the current use of PD-(L)1 inhibitors as standard
of care in advanced melanoma. However, immune cell interactions in the tumor microenvironment are
different among tumor types, among patients, and even among tumor samples within the same patient,
although some trends are commonly found. Thus, a recent systematic pan-cancer analysis has confirmed the
involvement of CD8+ T cells in the protective anti-tumor immune response [169], in agreement with several
reports over a wide range of cancer types [170–173]. In this pan-cancer analysis, infiltration from other cell
types, including representative B cells, NK cells, and macrophages, was also studied: thus, infiltration from
representative B cell lineage was positively associated with survival in 4 tumor types, while negatively
associated with breast cancer survival; NK cell infiltration proved to be protective or showed protective
trends in every cancer type examined; whereas macrophage infiltration was associated with poor patient
prognosis in nine cancer types and showed trends toward negative survival associations in several other
cancer types [169]. These results may explain the differential efficacy observed with anti-PD-(L)1 agents,
which are currently approved by the FDA in several indications [174] (although therapy is only effective
in a subset of patients for each indication), thus supporting the concept of previous patients’ assessment
before immunotherapy. This is currently being implemented in the ongoing ADVISE trial (NCT03335540),
as an initial clinical foray into personalized immuno-oncology therapy, aiming to analyze translational data
to identify potentially actionable biomarkers across different indications (melanoma, NSCLC, RCC, UC,
SCCHN, GEJ) [175].

In patients with gynecological tumors, KEYNOTE-100 (NCT02674061) showed that pembrolizumab
has clinical activity in patients with advanced ovarian cancer, and PD-L1 expression (combined positive
score [CPS] ≥10) was associated with response [176,177]. Recently, other Phase 1/2 trials using anti-PD-(L)1
antibodies in different combinations have shown clinical benefit in ovarian cancer: either with antiangiogenic
therapy [178] (showing promising results), with poly ADP ribose polymerase (PARP) inhibitors [179]
(showing responses only in a subset of patients), with pegylated liposomal doxorubicine in platinum-resistant
recurrent ovarian cancer [180] (showing PFS6 = 30% [12/40 pts]), or with a folate receptor alpha (FR-α) drug
conjugate [181] (showing encouraging signals of clinical activity). Similarly, clinical activity of anti-PD-1
antibodies has been also shown in patients with recurrent or advanced microsatellite instability-high (MSI-H)
endometrial cancer [182], as well as in patients with recurrent or metastatic cervical cancer [183].

In triple negative BC (TNBC), ORR was 18.5% in a phase 1b study of 28 metastatic TNBC patients with
pembrolizumab monotherapy [184]. In 21 metastatic TNBC bearing PD-L1-positive tumors, atelizolizumab
has shown an ORR of 24% [185]. Currently, there are two ongoing studies of monotherapy with checkpoint
inhibitors (KEYNOTE-086 (NCT02447003) (phase 2) and KEYNOTE-119 (NCT02555657) (randomized
phase 3) [186]. There are also some ongoing studies testing anti-PD-(L)1 antibodies in combination with
other therapies, such as chemotherapy: ORR of 42% has been observed in a phase IB trial of atezolizumab
and nab-paclitaxel in the same setting [187], and other studies are currently ongoing, such as IMpassion130
(NCT02425891), KEYNOTE-355 (NCT02819518) (both phase 3) [186], or B-IMMUNE (NTC03356860; Phase 2,
also for patients with luminal B HER2(−) tumors) [188].

Furthermore, some clinical trials are now available testing the combination of DC vaccination
with anti–PD-(L)1 antibodies. For instance, in a pilot study , seven patients with metastatic pancreatic
cancer received treatment with DC-based vaccine and nivolumab, given one day before the vaccine.
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Using response evaluation criteria in solid tumours (RECIST) , two partial responses were observed
with OS after onset of therapy of 13 months and 5 months, respectively [189]. Efforts have been made
to improve the anti-PD-1 antibody efficacy by extending the systemic antibody-blocking function
with antibody-dependent T-cellular cytotoxicity (ADCC) properties. For example, the Fc portion
of the monoclonal antibody could be kept non-mutated (e.g., avelumab anti-PD-L1) to allow it to
engage the FcγRIIIa on NK cells for ADCC-mediated clearance of the large T cells [190]. Similarly,
systemic blockade with anti-PD-1 [191,192] or anti-PD-L1 [193,194] in combination with DC vaccination
in preclinical studies resulted in a reduction in Treg cells and an increment in the activation and
activity of CTL CD8+ T-cells [191]. Prolonged survival was also observed in breast carcinoma [193],
melanoma [194], and glioblastoma-bearing mice [192] that were treated with the combination therapy
(PD-(L)1 blockade and DCs) and not with either monotherapy. Hence, the results from these preclinical
studies would be useful for future clinical trial design.

Therefore, combining therapeutic vaccines with anti-PD-(L)1 antibodies (rather than anti-CTLA-4)
could be safer and more feasible in the treatment of cancer. Numerous clinical trials have been
initiated to test anti-PD-1 antibody in combination with DCs loaded different antigens including
NY-ESO-1 (i.e., New York esophageal squamous cell carcinoma) peptides (NCT02775292), autologous
whole tumor lysate (NCT03014804), and DC/tumor cell fusion vaccine against multiple myeloma
(NCT01067287). Interestingly, for gynecological cancers, there is currently one Phase I trial testing the
combination of Orego (an anti-CA 125 monoclonal antibody) with nivolumab (anti-PD-L1) in recurrent
EOC, and further evaluation of safety and efficacy of this novel combination is ongoing in a dose
expansion cohort [195]. Yet no DC vaccine in combination with anti-PD-(L)1 is currently reported in
ovarian, cervical, endometrial, or breast cancer.

3.3.1.3. Concomitant Blockade of CTLA-4 and PD-1/PD-L1

In preclinical models using mice with preimplanted B16 melanomas, it has been shown that
concomitant blockade of both pathways can modulate Treg cell functions and enhance antitumor
responses, as compared to single immune checkpoint blockade [196]. Several studies in tumor mouse
models including ovarian carcinoma proved activity of the combination [196–198].

Consistently, nivolumab (anti-PD-L1) and ipilimumab (anti-CTLA-4) have been shown to have
complementary activity in metastatic melanoma. This combination is already a standard treatment
for advanced melanoma, although the combined treatment is also associated with increased toxicity:
in a recent study, clinically significant immune-related adverse events (irAEs) leading to frequent
emergency department visits, hospitalizations, and systemic immunosuppression were observed with
91% incidence [199].

In gynecological and breast cancers, the combination nivolumab/ipilimumab is currently being tested
in one clinical trial combining different gynecological cancers (NCT03508570), as well as in other studies
treating specifically breast cancer patients, either using ipi/nivo alone (NCT02892734, NCT03342417), or in
combination with other therapies, such as chemotherapy (NCT03409198), cryoablation (NCT03546686,
NCT02833233), or other compounds (NCT03650894, NCT02453620, NCT02983045), but not with
DC vaccination. In ovarian cancer, ipi/nivo combination is also being tested alone (NCT03342417,
NCT02498600, NCT03355976), as well as in endometrial cancer (NCT02982486). None of these studies use
DC vaccination combined with double immune checkpoint blockade.

Hence, the efficacy of DC vaccination could be enhanced with immune checkpoint inhibitors.
From a theoretical point of view, DC vaccination should be initiated first, to enhance tumor-specific
immune responses, whereas subsequent immune checkpoint inhibitors should boost the initial effect,
allowing induction of higher numbers of circulating T-cells.
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3.3.2. Other Potential Combinations to Enhance DC Vaccination

3.3.2.1. Inhibiting Tumor Angiogenesis and Improving Intratumor T-cell Infiltration

Dendritic cell vaccination efficacy could also be increased when combined with therapies that
break the immunosuppressive tumor microenvironment. For instance, our team recently described
that the infiltration of T cells into the tumor endothelial barrier was mediated by the death mediator
Fas ligand (FasL/CD95L) in the tumor vasculature of human and mouse solid tumors [200]. It was
shown that FasL expression in endothelial cells was cooperatively induced by tumor-derived VEGF-A,
IL-10 and PGE2, which allowed endothelial cells to selectively kill effector CD8+ T-cells. Yet Treg
cells, which express higher levels of c-FLIP, still survived. In our study, a significant effect in tumor
regression was obtained by dual inhibition of VEGF and PGE using combined anti-VEGF and aspirin.
Dual VEGF and PGE inhibition lead to attenuated FasL expression, therefore allowing a marked
increase in the influx of tumor-rejecting CD8+ over FOXP3+ T-cells. Hence, modulating the tumor
endothelial barrier with aspirin and bevacizumab could be a promising approach to enhance antitumor
responses in DC-based immunotherapy. We investigated this strategy in a pilot clinical study involving
recurrent ovarian cancer patients, exploring the combination of bevacizumab, cyclophosphamide,
and DC vaccine [36]. We observed a significantly higher (78%) overall survival (OS) at two years in
study cohort three (vaccine plus bevacizumab/cyclophosphamide) than the corresponding 44% in the
control group (a historic group of matched patients who received bevacizumab/cyclophosphamide
but no DC vaccine; log-rank P = 0.046), the latter being similar to the reported survival for this
population [201–203]. These observations further support the combination of DC vaccination with
low-dose cyclophosphamide, which was not confirmed for bevacizumab alone.

Additionally, in several mouse tumor models it has been shown that the administration of
acetylsalicylic acid (ASA) irreversibly inhibited the constitutively expressed COX1 as well as the
inducible COX2. In these preclinical models, ASA combined with anti-VEGF antibody resulted in
reduced tumor growth, which was associated and mediated by increased T cell infiltration [200]. Thus,
PGE2 blockade in cancers can reverse the endothelial barrier and potentially synergize with T cell
activation by immune-checkpoint blockade. Currently, there are a few clinical studies evaluating the
effect of aspirin in combination with immunotherapy (e.g., NCT01132014).

Similarly, recent evidence in mouse models suggests that a single fraction of low-dose irradiation
(LDI, i.e., 0.5-2 Gy) can reprogram the TME, inducing macrophage M1 polarization. Radiation-induced
iNOS-positive M1 macrophages have been shown to produce the appropriate chemokines to recruit
effector T cells, inducing tumor vasculature normalization and inflammation, therefore allowing T cell
infiltration [204]. Thus, in tumors lacking T cells, LDI may be very useful as a preparatory step to
induce T cell homing, previous to treatment with checkpoint inhibitors, adding minimal side effects as
compared to high-dose irradiation [205].

3.3.2.2. Inhibiting STAT-3 activity of tumors

STAT-3 This important transcription factor (STAT-3) controls tumor cell proliferation, angiogenesis,
and immune tolerance, thereby constituting a bridge between oncogenesis and immunosuppression [206].
In cancer cells STAT-3 is often constitutively active [207], leading to the upregulation of VEGF and IL-10
and concomitant inhibition of DC maturation and function [206,208]. In particular, experiments in mice
have shown that blocking STAT-3 activity in tumor cells abrogated the tumor-induced inhibition of
DC maturation [208]. Therefore, combining STAT-3 inhibition with DC vaccines might potentially be
a very fruitful approach. Several strategies and compounds are now clinically available for STAT-3
pathway blockade [209], and future efforts should be employed to combine these treatments with
DC vaccination [210].

Tumor-induced accumulation of MDSCs is associated with tumor progression, immunosuppression,
and immune escape [56,211], as well as affecting in particular the quality of DC vaccines [212]. Several
studies have demonstrated that MDSCs elimination increased the therapeutic efficacy of DC vaccination
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both in mouse models [213] and in the clinic [214]. Several STAT-3 blockade strategies are available
to specifically neutralize MDSCs detrimental functions, including the prevention of MDSCs generation
and migration, MDSCs depletion and expansion blockade, and inhibition of MDSC immunosuppression
functions [56,211,215]. Of note, MDSCs are also inhibited by STAT blockade by several drugs used for
non-cancerous indications (e.g., amiloride, which is a diuretic drug used to treat high blood pressure),
and natural compounds (such as icariin, the active ingredient of a herb used in Chinese medicine), having
fewer side effects than anticancer drugs. These drugs could potentially be tested in the cancer setting in
combination with DC vaccines.

3.3.2.3. Increasing Tumor Immunogenicity with Chemotherapeutic Drugs and Radiotherapy

Interestingly, several chemotherapeutic agents have been shown to enhance the immunogenicity
of tumor cells by inducing ICD, as documented by many experiments in immunocompetent mice
vaccinated with tumor cells succumbing to ICD [138,216,217]. Upon exposure to chemotherapeutic
agents inducing ICD, ATP release is required for the generation of an effective chemotherapy-elicited
anticancer immune response [218].

In this respect, several chemotherapy agents (cyclophosphamide, oxaliplatin, or gemcitabine)
have been shown to increase major histocompatibility complex (MHC) class 1 expression in tumor
cells [219]. Paclitaxel, methotrexate, vincristine, and gemcitabine have a documented positive effect on
DC-mediated antigen presentation [216]. In this direction, between 2001 and 2016, there have been
35 clinical trials initiated to evaluate the safety and efficacy of treatments with the combination of DC
vaccines and chemotherapeutic agents activating DC directly or inducing bona fide ICD (as reported
in [220]). Only limited numbers of studies have been completed and even fewer included a control
group consisting of patients treated either by chemotherapeutic agents or DC-based vaccine only.
However, the induction of specific antitumor immune response was observed after the administration
of combinatorial therapy in most of the completed studies [221–224].

Similarly, a benefit of radiation treatment during immunotherapy has been observed, as radiation
also induces immunogenic cell death [225], which has been recently reviewed elsewhere [226].
Consequently, more efforts are warranted to combine cytotoxic chemotherapy and/or radiotherapy
with DC vaccines.

3.3.2.4. Additional Adjuvants Specific for Therapeutic Vaccination Against Ovarian Cancer

Contrary to other solid tumors, the ovarian cancer TME is characterized by high levels of
TIDCs [101–103]. While these DCs retain an immunogenic phenotype and activity during the early
stages of cancer development, in time tumor-induced factors promote a phenotypic switch towards
expansion of DCs with tolerogenic [106] and angiogenic properties [107,108], which ultimately support
and accelerate malignant progression. This phenomenon is further supported by evidence in mouse
models showing that early DC depletion is detrimental towards disease control, while depletion in later
or metastatic stages strongly inhibits tumor growth [106]. Hence, it has been proposed that dendritic
cell depletion performed in combination to administration of DC vaccines in the context of advanced
ovarian cancer can potentially improve therapeutic otucomes [108]. Notably, this is also the context
were most therapeutic intervention is done, due to the rather asymptomatic features of early stage
ovarian cancer and hence rare diagnoses [227,228]. In alternative, thanks to their highly occurrence
in the ovarian TME, local reprogramming and re-activation of TIDCs towards an immunogenic
phenotype may also hold important therapeutical benefits. To this aim, through the administration of
siRNA encapsulating nanoparticles, Cubillos–Ruiz and colleagues were able to directly induce a TIDC
phenotypic switch from tolerogenic to immunogenic phenotype, leading to T cell activation, tumor
shrinkage, and increased animal survival in an ovarian cancer mouse model [229]. A similar in situ
reprogramming of ovarian cancer TIDCs was also reported by Scarlett and colleagues through CD40
and TLR3 stimulation [230]. Importantly, in addition to the reported beneficial effects, this approach
presents also the further advange of overcoming the need for generating moDCs ex vivo, an expensive
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and cumbersome process, and is therefore worthy of further efforts towards its clinical translation.
Finally, while previous reports demonstrated the presence of an immunosuppressive TME also in other
gynecological cancers such as cervical [231] and uterine/endometrial cancers [158], the occurence and
contribution of TIDCs has not been investigated so far, at least to our knowledge. Future work should
be carried out to address this point and evaluate the applicability of the above mentioned therapeutic
approaches to re-educate the immunosuppressive and pro-tumor TME towards an immunogenic one.

3.4. Potential Supporting Actions that Could Add Therapeutic Benefit

As previously indicated (refer to Section 2.3) immunosenescence in elderly cancer patients can be
another factor hampering vaccination efficacy. Therefore, additional interventions might be required in
elderly patients to boost T cell immunity. Although different options are currently under investigation [232],
some of the proposal are: i) provide IL-7 (a T cell survival factor) as an immune rejuvenating agent, which has
been explored in the mouse [233]; ii) modify the rate of thymic involution by therapeutic modulation of the
neuroimmunoendocrine axis [234]; iii) transfusion of autologous leukocytes after prolonged storage [235];
iv) nutritional interventions aiming to improve T cell function in elderly patients, such as supplemented
diet with an energy source and trace elements [236], with vitamin E [237], or conjugated linoleic acid [238],
as well as controlling cholesterol levels [239].

4. Discussion

Dendritic cell vaccination is currently considered an interesting immunotherapeutic option, due to
low immune-related toxicity [8,9], and preserved quality of life of cancer patients [14]. The observed
low clinical benefit form DC vaccines is probably associated with a deficicient immunocompetent
status in cancer patients, translated as reduced capacity to activate antitumoral T cells. The potential
factors that could negatively affect DC vaccination are summarized below, together with proposed
counteracting factors.

According to current data, we can conclude that tumor cells, partly by releasing specific
cell growth and signalling factors, are able to induce immune system deficiencies, in particular
DC defects promoting tumor immune escape and disease progression, such as a decreased total
number of DCs circulating in the peripheral blood (PB-DCs) [76,79–81,84], with an observed
reverse trend towards normalization in terms of DC numbers before and after tumor surgical
removal [80,81,86–88], indicating that these numerical deficiencies were tumor-induced, and reversible
upon debulking procedures. Additionally, important DC functional impairments have also been
reported in several types of cancer [82,87–89], as compared to healthy subjects. The rational of
DC-based vaccines as potential anti-cancer therapies to restore functional DCs in order to enhance
tumor clearance are thus strongly supported by these observations. Additionally, important defects
have been reported in monocyte-derived DCs (mo-DCs) cultured ex vivo for therapeutic vaccination,
as compared to mo-DCs derived from healthy subjects [76,109–112]. This observation suggests that
the immunocompetence status of responders was positively influenced by the therapeutic effects
of DC vaccination. Therefore, as the immunocompromised status of cancer patients may constitute
a significant barrier to vaccination, concurrent further intervention should be considered to enhance
therapeutic success. These observations are generally applicable across all cancer types, as well as
specifically to gynecological and breast cancers.

Firstly, patient eligibility and potential responsiveness to DC vaccination should be carefully
assessed before proceeding to treatment. Additionally, selecting patients with either minimal burden
disease, or after debulking strategies (whenever possible) may significantly improve the efficacy
of DC vaccination. Another factor contributing to the reduced efficacy of therapeutic vaccination
is immunosenescence [114–116], as most patients enrolled in clinical trials involving therapeutic
cancer vaccines are elderly patients, requiring additional interventions to boost T cell immunity [232],
including both interventional [233–235], or nutritional measures [236–239].
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Considering potential actions on DC vaccines themselves, in recent years WTLs have been
recognized as an excellent antigen source to pulse ex vivo generated autologous mo-DCs, as they
present several advantages. The immunogenicity of this approach has been further increased due to
recent developments in the context of WTL vaccination. The identification of even more immunogenic
modalities in the future could lead to a detailed elucidation of such mechanisms, allowing the selection
of one or few among them. We can also conclude that several parameters including antigen source,
maturation stimulus, and route of administration play a crucial role in the overall success of DC-based
cancer vaccines. Future careful and systematic comparison studies should clarify which conditions are
optimal and most immunogenic to achieve the besT-cellular product, although several advancements
have been recently made in these areas.

Finally, it is important to note that combinatorial approaches using DC vaccines may significantly
increase efficacy, taking advantage of their positive safety profile. Several different options are
currently under investigation, using different agents in combination with DC vaccines, aiming to trigger
concurrent T cell activation (using checkpoint inhibitors), break immunosuppression (using agents
such as anti-VEGF, COX inhibition, STAT-blockade, or LDI), and/or increase immunogenicity (using
standard chemotherapy agents, or radiotherapy). Future results from ongoing studies should indicate
the most appropriate combination in each indication.
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