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Abstract: Single-stranded RNA viruses of both positive and negative polarity have been used
as vectors for vaccine development. In this context, alphaviruses, flaviviruses, measles virus
and rhabdoviruses have been engineered for expression of surface protein genes and antigens.
Administration of replicon RNA vectors has resulted in strong immune responses and generation
of neutralizing antibodies in various animal models. Immunization of mice, chicken, pigs and
primates with virus-like particles, naked RNA or layered DNA/RNA plasmids has provided
protection against challenges with lethal doses of infectious agents and administered tumor cells.
Both prophylactic and therapeutic efficacy has been achieved in cancer immunotherapy. Moreover,
recombinant particles and replicon RNAs have been encapsulated by liposomes to improve delivery
and targeting. Replicon RNA vectors have also been subjected to clinical trials. Overall, immunization
with self-replicating RNA viruses provides high transient expression levels of antigens resulting
in generation of neutralizing antibody responses and protection against lethal challenges under
safe conditions.

Keywords: alphaviruses; flaviviruses; measles viruses; rhabdoviruses; antibodies; infectious diseases;
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1. Introduction

Vaccine development against infectious diseases has classically been based on live attenuated or
inactivated infectious agents [1]. Recently, the approach of vaccination with recombinantly expressed
antigens and immunogens from viral and non-viral delivery systems has been introduced to the
repertoire [2,3]. In this context, immunization with surface proteins and antigens has elicited strong
humoral and cellular immune responses and vaccinated animals showed protection against challenges
with lethal doses of infectious agents or tumor cells [4].

The types of non-viral vectors applied include liposomes [5], immunostimulatory complexes
(ISCOMs) composed of adjuvant Quil A and peptides [6], and multiple antigen peptides (MAPs)
also known as dendrimers [7]. A number of viral vectors based on adenoviruses, alphaviruses,
avipoxiviruses, enteroviruses, flaviviruses, measles viruses (MV), rhabdoviruses, and vaccinia viruses
have been engineered for vaccine development [3,8]. In this context, self-replicating RNA virus vectors
have proven highly efficient for immunization studies in various animal models [9]. Among RNA
viruses, rabies virus (RABV) and vesicular stomatitis virus (VSV) belonging to the rhabdovirus family
carry a single-stranded RNA (ssRNA) genome of a negative polarity [10]. Likewise, MV possess
a negative-sense ssRNA genome [11]. In contrast, flaviviruses and alphaviruses are of positive polarity.
West Nile virus [12] and Kunjin virus [13] are the most common flaviviruses applied for immunization
studies. Similarly, expression vectors have been engineered for alphaviruses such as Semliki Forest
virus (SFV) [14], Sindbis virus (SIN) [15] and Venezuelan equine encephalitis virus (VEE) [16].

In this review, various self-replicating RNA virus vectors are described and their applications
as recombinant virus particles, RNA replicons and layered DNA plasmids are compared. Moreover,
examples are given of utilization of self-replicating RNA virus systems for immunization studies in
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various animal models to elicit humoral and cellular immune responses and to generate neutralizing
antibodies, as well as protection against challenges with pathogens and tumor cells. Finally, a summary
of clinical trials already conducted or in progress that apply self-replicating RNA viruses is presented.
However, due to the large number of publications available, it is only possible to present key findings
and examples of vaccine development for self-replicating viral vectors.

2. Self-Replicating RNA Expression Systems

Expression systems have been engineered for RNA viruses as described below. All ssRNA viruses
share the feature of high level of RNA replication in the cytoplasm, which provides the basis for
extreme transient expression of heterologous genes. However, the different polarities of the ssRNA
genomes of self-replicating RNA viruses have required the design of vectors with specific features.
Moreover, the viral vectors can be utilized in different forms as indicated for the individual types of
viruses below.

2.1. Alphaviruses

Alphavirus-based expression systems have been developed in different formats for SFV [14],
SIN [15] and VEE [16], here illustrated for SFV (Figure 1). In all cases, the basic component is
represented by the alphavirus non-structural genes (nsP1-4), responsible for rapid and high quantity
cytoplasmic RNA replication [17]. The replication-deficient system carries the gene of interest
(GoI) downstream of the nsP1-4 genes in the alphavirus expression vector to be driven by the
26S subgenomic promoter. RNA replicon vectors can be generated by in vitro transcription for
direct RNA immunization. In case of production of recombinant particles, in vitro transcribed RNA
from an alphavirus helper vector is co-transfected or co-electroporated into baby hamster kidney
(BHK) cells. The replication-proficient system utilizes a full-length vector, where the GoI can be
introduced either downstream of the nsP1-4 genes or the structural genes. In vitro transcribed RNA
can be applied for immunization, but due to the presence of full-length alphavirus genomic RNA,
replication-proficient particles are generated. The DNA layered system applies plasmids carrying
alternatively the nonstructural genes or the full-length genome and the GoI for direct immunization
with DNA. All vector system approaches described above have proven efficient in immunization
studies as presented below [4].

2.2. Flaviviruses

Among flaviviruses, Kunjin virus [18], West Nile virus [19,20], yellow fever virus [21,22],
dengue virus [23,24] and tick-borne encephalitis virus [25,26] have been engineered for the
development of vectors for DNA, RNA and recombinant particle delivery. In Kunjin virus vectors,
the GoI is inserted between the first 20 codons of the core protein (C20) and the last 22 codons of the
envelope gene (E22) in frame with the rest of the viral polyprotein (Figure 2) [27]. The GoI is expressed
initially as a fusion with the Kunjin virus polyprotein, which is then processed into individual proteins.
Introduction of flanking FMDV-2A protease sequences allows the cleavage of Kunjin virus sequences
from the expressed recombinant protein [28]. To facilitate vector production, a system has been
engineered for transfection of Kunjin virus replicon RNA into the tetKUNCprMEC packaging cell line.

2.3. Measles Viruses

Expression systems have been engineered, whereby replicating MV is rescued from cloned DNA
expression constructs [29] (Figure 3). Reverse genetics has allowed the rescue of recombinant measles
virus in an HEK293 helper cell line, where foreign genes were introduced between the phosphoprotein
(P) and the matrix protein (M) or between the hemagglutinin (H) and the large protein (L), respectively,
in the measles virus genome [30]. Transfection of the helper cell line with recombinant MV constructs
and a plasmid expressing the MV polymerase L gene is followed by transfer of syncytia to Vero
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cell cultures after 3 days, and recombinant MV particles are harvested when reaching 80%–90%
cytopathic effects.
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Figure 1. SFV-Based Expression Systems. (A) Replication-deficient system. In vitro transcribed
RNA from expression and helper vectors are transfected into BHK-21 cells for generation of
replication-deficient particles; (B) Replication-proficient system. In vitro transcribed RNA from
full-length vector is transfected into BHK-21 cells for generation of replication-proficient particles;
(C) DNA layered system. Plasmid DNA is transfected into host cells. 26S, SFV26S subgenomic
promoter; CMV, cytomegalovirus promoter; pA, polyadenylation signal; SP6, SP6 phage RNA
polymerase promoter.
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Figure 2. Kunjin Virus-Based Expression Systems. Expression vector based on Kunjin virus RNA
and DNA expression systems. 3′ UTR, 3′ untranslated region; 5′ UTR, 5′ untranslated region;
C20, first 20 amino acids of KUN C protein; CMV, cytomegalovirus promoter; E22, 22 last amino acids of
KUN E protein; F, FMDV (foot-and-mouse disease virus) 2A autoprotease; HDVr, hepatitis delta virus
ribozyme; ns1-5, nonstructural proteins; pA, polyadenylation signal; SP6, SP6 phage RNA polymerase
promoter; U, mouse ubiquitin sequence.
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Figure 3. Measles Virus-Based Expression system. The measles virus structural proteins are flanked
by T7 RNA polymerase promoter and the T7 RNA polymerase terminator. Foreign genes can
be inserted between the P and M or H and L genes. H, MV hemagglutinin; L, MV L protein;
M, MV matrix protein; N, MV nucleocapsid protein; T7, T7 RNA polymerase promoter; T7 term,
T7 RNA polymerase terminator.
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2.4. Rhabdoviruses

Both RABV [10,31] and VSV [32,33] have been subjected to expression vector engineering
(Figure 4). Similar to MV, reverse genetics has been applied for efficient recovery of VSV based
on recombinant vaccinia virus, where the VSV N, P and L genes were inserted downstream of a T7
promoter and an internal ribosome entry site (IRES) [33]. The role of vaccinia virus has been to provide
T7 RNA polymerase. However, vaccinia virus causes strong cytopathic effects in transfected cells,
the vaccinia virus DNA polymerase contributes to homologous recombination between full-length
genome and helper plasmids, and vaccinia virus may also contaminate recombinant virus stocks.
For this reason, a BHK cell line stably expressing the T7 RNA polymerase was engineered as a vaccinia
virus-free system for RABV [31]. In addition to rhabdovirus vectors, chimeric virus-like particles
(VLPs) have been generated by expressing the VSV glycoprotein (VSV-G) in trans with the SFV replicon
by introduction of a mutated SFV 26S promoter for packaging of infectious SFV pseudoparticles [34].
This system provides high biosafety standards as VSV-G shares no homology with the SFV genome.
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Figure 4. Rabies Virus-Based Expression Systems. The structural genes are from the HEP-Flury strain
except the G protein from the CVS strain. Foreign genes can be inserted between the N and P or G
and L genes, respectively. CMV, cytomegalovirus promoter; G, rabies G protein; L, rabies L protein;
M, rabies matrix protein; N, rabies nucleocapsid protein.

3. Self-Replicating RNA Virus-Based Vaccines

Self-replicating RNA virus vectors have been frequently used for vaccine development against
infectious diseases and various types of cancers [9]. Both vectors based on ssRNA viruses of
positive (Kunjin virus, SFV, SIN, VEE) and negative (MV, RABV, VSV) polarity have been utilized
for the expression of viral surface proteins and tumor antigens followed by immunization studies
in animal models. Moreover, for vaccination, different approaches including recombinant particles,
RNA replicons and layered DNA plasmids have been applied.

3.1. Vaccines against Infectious Diseases

The targets for vaccine development for infectious diseases comprise mainly surface antigens
of pathogenic viruses (Table 1) and other infectious agents (Table 2). Obvious targets for vaccine
development have been antigens of influenza virus and HIV. In this context, recombinant SFV particles
expressing influenza nucleoprotein (NP) have demonstrated strong immune responses [35]. Similarly,
VEE-based expression of hemagglutinin (HA) elicited strong immune responses and even provided
protection against challenges with H5N1 virus in chicken [36]. Likewise, expression of the swine
influenza virus HA H3N2 gene from VEE vectors protected swine from influenza virus challenges [37].
In another study, the swine influenza HA gene was expressed from replication-deficient alphavirus
particles showing no spread of vaccine or reversion to virulence in the intended host (pig) or non-host
(mouse) species [38]. Specific humoral and interferon-γ (IFN-γ) responses were observed in pigs,
which were also protected against influenza virus challenges. Recombinant MV vectors carrying the
HA gene have also been applied for vaccination studies [39]. Also VSV vectors have been utilized
for vaccine development against influenza virus [40]. Instead of using full-length HA, expression of
the stalk domain of HA generated chimeric HA (cHA) antigens. Both intramuscular and intranasal
immunization of mice resulted in HA stalk-specific, cross-reactive antibodies. Prime-boost vaccination
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provided protection against lethal challenges with both homologous and heterologous influenza
strains, which was significantly superior with intranasal administration.

Table 1. Self-replicating RNA viral vector-based immunizations against viral diseases.

Virus Target Vector Immunization Response Reference

Influenza

NP SFV VLPs mouse systemic NP immune response [35]

HA VEE VLPs chicken protection against
influenza virus [36]

HA VEE VLPs swine protection against
influenza virus [37]

HA VEE VLPs swine protection against
influenza virus [38]

HA rMV mouse neutralizing Abs [39]

cHA VSV mouse protection against
influenza virus [40]

HIV

Gag Kunjin VLPs mouse protection against HIV [41]

Env SFV VLPs mouse neutralizing Abs,
humoral response [42]

gp41 SFV-VLPs mouse generation of mAbs [43]

Env SFV DNA mouse T cell and IgG
immune responses [44]

SIV

Gag-Pol Kunjin VLPs macaques protection against SIV [45]
Env VSV VLPs macaques neutralizing Abs [46]

Gag-Env VSV VLPs macaques protection against SIV [47]
Gag-Env RABV VLPs macaques protection against SIV [48]

Ebola

GP Kunjin VLPs guinea pig protection against Ebola [49]
GP Kunjin VLPs primate protection against Ebola [50]
GP VSV VLPs macaques protection against Ebola [51,52]

GP, NP VEE VLPs mouse protection against Ebola [53]
NP VEE VLPs mouse protection against Ebola [54]

Lassa
G VSV VLPs guinea pig protection against Lassa [55]
G VEE VLPs guinea pig protection against Lassa [56]

SARS-CoV G VEE VLPs mouse protection against SARS-CoV [57]

MERS-CoV G MV mouse protection against SARS-CoV [58]

RSV
F MV rat protection against RSV [39]
F VEE LNPs mouse protection against RSV [59]
F VEE VLPs primate protection against RSV [60]

MPV F VEE VLPs primate protection against MPV [60]

Dengue

DV2-HBsAg MV mouse neutralizing Abs [61]
DV2 MV mouse protection against dengue virus [62]

prME-E85 VEE VLPs macaques protection against dengue virus [63]
prME-E85 VEE VLPs mouse protection against dengue virus [64]

HBV
MHB SFV-VSV G mouse protection against HBV [65]

DV2-HBsAg MV mouse protection against HBV [62]
HBsAg MV macaques protection against HBV [66]

CMV gB-pp65/IE1 VEE VLPs human neutralizing Abs [67]

Abs, antibodies; cHA, chimeric hemagglutinin; CMV, cytomegalovirus; DV2, dengue virus 2; G, glycoprotein;
HA, hemagglutinin; HBV, hepatitis B virus; HBsAg, HBV surface antigen; LNPs, lipid nanoparticles;
mAbs, monoclonal antibodies; MERS-CoV, Middle East respiratory syndrome coronavirus; MV, measles virus;
MPV, metapneumonia virus; NP, nucleoprotein; RABV, rabies virus; RSV, respiratory syncytial virus; SARS-CoV,
severe acute respiratory syndrome coronavirus; SFV, Semliki Forest virus; VEE, Venezuelan equine encephalitis
virus; VLPs, virus-like particles.
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Table 2. Self-Replicating RNA Viral Vector-Based Immunizations against Infectious Diseases.

Agent Target Vector Immunization Response Reference

P. falciparum Ag Pf332 SFV
VLPs/RNA mouse immunological memory [68]

M. tuberculosis Ag 85A SIN DNA mouse protection against
M. tuberculosis [69]

C. botulinum BoNTA-Hc SFV DNA mouse Ab and
lymphoproliferative response [70]

B. abortus IF3 SFV VLPs mouse protection against Brucella [71]
B. antracis PA SIN VLPs mouse protection against B. antracis [72]
Malaria CS SIN VLPs mouse protection against malaria [73]

L. monocytogenes OVA VSV-GP mouse protection against Listeria [74]
Prion PRNP SFV VLPs mouse monoclonal Abs [75]

Staphylococcus SEB VEE VLPs mouse protection against enterotoxin [76]

Abs, antibodies; CS, circumsporozoite protein; IF3, translation initiation factor 3; MV, measles virus;
MPV, metapneumonia virus; OVA, ovalbumin; PRNP, prion protein; SEB, staphylococcus enterotoxin B;
SFV, Semliki Forest virus; SIN, Sindbis virus; VEE, Venezuelan equine encephalitis virus; VLPs, virus-like
particles; VSV-GP, vesicular stomatitis virus pseudotyped with lymphocytic choriomeningitis glycoprotein.

For obvious reasons HIV has been a popular target for vaccine development. For instance,
administration of Kunjin replicons expressing the HIV-1 gag antigen to BALB/c mice elicited
gag-specific antibodies and protective gag-specific CD8+ T cell responses [41]. Interestingly, a single
immunization with Kunjin virus particles induced 4.5-fold higher CD8+ T-cell responses and protection
agains HIV challenges was obtained after two injections. Furthermore, RNA optimized Kunjin virus
constructs for SIV Gag-Pol demonstrated improved effector memory and central memory responses
as well as protection in primates [45]. Alphavirus vectors have also been employed for HIV vaccine
development. Immunization with SFV particles expressing the Env [42] and gp41 [43] genes elicited
humoral and cytotoxic T-lymphocyte (CTL) responses in mice. Interestingly, priming with a low
dose (0.2 µg) DNA-based SFV replicon expressing the HIV Env and a Gag-Pol-Nef fusion prior to
a heterologous boost with poxvirus (MVA) and/or HIV gp140 protein formulated in glycopyranosyl
lipid A resulted in significantly enhanced immune responses [44]. Moreover, when macaques were
immunized with a VSV vector carrying the SIV Env (smE660) gene neutralizing antibodies were
obtained [46]. However, when challenged with SIVsmE660, all animals were infected. In contrast,
vaccination with a combination of gag and Env resulted in immunity [47]. RABV vectors have
also been employed for the expression of SIV Env and gag in macaques [48]. Although immune
responses were detected for RABV glycoprotein G, no cellular responses were obtained against SIV
antigens. However, replacing the RABV G with VSV G resulted in SIV-specific immune responses and
immunized macaques were protected against SIV challenges.

A number of immunization studies have targeted such lethal viruses as Ebola and Lassa viruses.
For instance, dose-dependent protection against Ebola virus was achieved in guinea pigs when
immunized with Kunjin virus particles expressing the Ebola virus wild-type glycoprotein GP or
a mutant GP (D637L) [49]. Similarly, African green monkeys were subcutaneously immunized with
Kunjin particles carrying the Ebola GP D673L mutant [50]. Protection of three out of four primates
was obtained against challenges with Zaire Ebola virus. Application of VSV vectors expressing the
Ebola GP gene has also provided protection of macaques after challenges with the West African
EBOV-Makuna strain [51]. Likewise, protection against three different Ebola strains was achieved by
expression of Ebola GP from VSV vectors [52]. Alphavirus vectors have also been utilized for vaccine
development against Ebola virus. In this context, RNA replicons derived from an attenuated VEE
strain were applied for the expression of Ebola GP and nucleoprotein (NP) [53]. Immunization studies
showed that VEE-GP alone or in combination with VEE-NP provided protection of both BALB/c
mice and guinea pigs. In contrast, VEE-NP alone did not confer protection in guinea pigs, but did
in mice. In another study, C57BL/6 mice were immunized with VEE particles expressing Ebola NP,
which protected animals from Ebola virus challenges [54].
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VSV vectors have been subjected to immunization studies for expression of the Lassa virus
glycoprotein (strain Josiah, Sierra Leone), which generated protection in guinea pigs after a single
prophylactic injection [55]. It was also shown that macaques were protected against challenges with
the genetically distinct Liberian Lassa virus isolate. Importantly, previous VSV-based Lassa virus
vaccination did not have an impact on immunization with VSV-Ebola GP particles [77]. Furthermore,
alphaviruses have been used for vaccine development against Lassa virus [56]. Guinea pigs immunized
with VEE particles expressing Lassa virus glycoprotein or nucleoprotein showed protection against
lethal challenges with Lassa virus. Furthermore, a dual expression approach for Ebola and Lassa virus
glycoproteins was engineered, which led to protection against both Ebola and Lassa virus challenges.

A number of other viral antigens have been subjected to vaccine development. Currently,
relevant targets comprise dengue virus, severe acute respiratory syndrome coronavirus (SARS-CoV)
and Middle East respiratory syndrome corona virus (MERS-CoV). For instance, mice immunized with
VEE particles expressing the SARS-CoV glycoprotein provided protection against lethal SARS-CoV
challenges [57]. Furthermore, mice were immunized with MV vectors expressing the MERS-CoV
glycoprotein, which resulted in induction of T-cell and antibody responses and protection against
lethal doses of MERS-CoV [58]. Respiratory syncytial virus (RSV) has also been targeted with
recombinant MV vectors by expression of the RSV fusion protein (RSV-F) [39]. Immunization of
cotton rats induced neutralizing antibodies against RSV and protected against RSV infection in
the lungs. In another application, lipid nanoparticle (LNP) formulations were engineered for VEE
RNA replicons, which demonstrated protection against RSV challenges in vaccinated mice [59].
Furthermore, immunization of African green monkeys with VEE particles expressing human RSV-F
and metapneumovirus F (hMPV-F) proteins generated RSV-F and MPV-F-specific antibodies resulting
in protection against RSV and MPV challenges [60]. In the context of dengue virus vaccines, a hybrid
MV vector expressing the hepatitis B surface antigen (HBsAg) and the dengue virus 2 envelope
protein (DV2) elicited neutralizing antibodies against MV, HBsAg and DV2 [61]. In another study,
MV-DV2 vaccination of mice generated IFN-γ and DV2 antibody responses and protection against
four DV serotypes [62]. Alphavirus vectors have also been evaluated for dengue vaccine development.
Expression of two configurations of dengue virus E antigen (prME and E85) provided protection in
macaques [63]. Moreover, a single immunization of BALB/c mice was sufficient to induce neutralizing
antibodies and T-cell responses [64]. The neonatal immunization was durable, could be boosted later in
life and provided protection against challenges with dengue virus. Additional viral targets evaluated
for vaccine development are listed in Table 1.

Vaccine development has also been extended to other infectious diseases than caused by viral
infections (Table 2). In this context, mice vaccinated with SFV vectors expressing the Plasmodium
falciparum Pf332 antigen elicited immunological memory [68]. Similarly, strong immunity and long-term
protection against Mycobacterium tuberculosis was obtained in mice immunized with SIN plasmid DNA
vectors carrying the M. tuberculosis 85A antigen (Ag85A) [69]. Furthermore, expression of the botulinum
neurotoxin A from layered SFV DNA plasmids elicited antibody and lymphoproliferative responses
in immunized BALB/c mice [70]. Co-expression of granulocyte-macrophage colony-stimulating
factor (GM-CSF) enhanced the immune response. Replication-deficient SFV particles carrying the
Brucella abortus translation initiation factor 3 (IF3) were subjected to immunization studies in BALB/c
mice, which resulted in protection against challenges with the virulent B. abortus strain 2308 [71].
In another study, SIN vectors were utilized for the expression of the protective antigen (PA) for
Bacillus antracis in Swiss Webster mice leading to the generation of specific and neutralizing antibodies
and partial protection against challenges with pathogenic bacteria [72].

Recombinant SIN vectors were applied for the expression of a class I major histocompatibility
complex-restricted 9-mer epitope of the Plasmodium yoelii circumsporozoite protein (CS), which induced
a strong epitope-specific CD8+ T-cell response and a high degree of protection against malaria infection
in mice [73]. Another approach to develop malaria vaccines involves the application of a live attenuated
MV vaccine expressing recombinant antigens against malaria [78]. A modified replication-competent
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VSV vector pseudotyped with the glycoprotein of the lymphocytic choriomeningitis virus (VSV-GP)
expressing ovalbumin (OVA) induced humoral and cellular immune responses after a single
administration in mice [74]. Due to the generation of neutralizing antibodies against VSV,
immunization boosters were only possible for VSV-GP-OVA. CTL responses of similar potency
as obtained for state-of-the-art adenovirus administration were observed and complete protection
against challenges with Listeria monocytogenes was obtained in mice. In the context of prion disease,
SFV DNA, RNA and recombinant particles were employed for the expression of prion protein
(PRNP), which allowed generation of monoclonal antibodies against PRNP in immunized mice [75].
Although not directly applied for vaccine development, the generated monoclonal antibodies will
be useful for basic research and diagnostics for prions. Alphavirus vectors have also been applied
for the development of vaccines against Staphylococcus enterotoxin B (SEB) [76]. Subcutaneous
administration of VEE particles expressing SEB resulted in protection against challenge of wild-type
SEB in mice.

3.2. Vaccines against Cancer

A number of immunization studies have been carried out with self-replicating RNA virus vectors
in the area of oncology (Table 3). For instance, attenuated oncolytic MV strains such as the Edmonston-B
(MV-Edm) strain demonstrated anti-tumor activity [79]. The MV-Edm strain does not cause any
significant cytopathic effect in normal tissue, but can selectively infect and replicate in tumor cells
based on evaluations in cell lines, primary cancer cells and xenograft and syngeneic models for
B-cell Non-Hodgkin lymphoma [80], ovarian cancer [81], glioblastoma multiforme [82], breast [83]
and prostate [79] cancers. In this context, tumor regression was obtained in SCID mice with human
lymphoma xenografts after intratumoral injection of MV-Edm [80]. Moreover, co-administration of
MV vectors expressing carcinoembryonic antigen (CEA) and thyroidal sodium iodide symporter
(NIS) in mice with SKOV3ip.1 ovarian xenografts showed superior tumor regression in comparison
to treatment with either MV-CEA or MV-NIS alone [81]. To improve delivery and enhance efficacy,
CD46 and signaling lymphocytic activation molecule (SLAM) ablating mutations in the hemagglutinin
protein in combination with the display of a single-chain antibody against the epidermal growth factor
receptor (EGFR) were incorporated into MV vectors for tumor targeting [82]. Tumor regression and
significantly extended survival were observed after intratumoral administration of MV. Evaluation
of MV-CEA delivery in an MDA-MB-231 mammary tumor model revealed a significant delay in
tumor growth and prolonged survival [83]. Moreover, intratumoral administration of MV-CEA vectors
showed tumor growth delay and improved survival in a subcutaneous PC-3 xenograft model [79].

Rhabdoviruses have also been applied in cancer therapy [84]. VSV vectors lack pre-existing
immunity in humans and have demonstrated high susceptibility of cancer cells. Particularly,
VSV vectors have been subjected to aggressive pancreatic ductal adenocarcinoma (PDAC) showing
superiority to Sendai virus and RSV in 13 clinically relevant human pancreatic cell lines, although
the response varied from one cell line to another [85]. Moreover, evaluation in ten PDAC cell lines of
three VSV vectors expressing the wild-type matrix protein or ∆M51 showed activation of VSV-mediated
apoptosis [86]. However, high constitutive expression of IFN-stimulated genes (ISGs) was discovered
in three cell lines, which also contributed to resistance to apoptosis.

Kunjin virus replicons expressing the granulocyte colony-stimulating factor (GM-CSF) have
been subjected to intratumoral administration, which resulted in cure in less than 50% of mice with
established CT26 colon carcinoma and B16-OVA melanomas [87]. Subcutaneous injection led to
regression in CT26 lung metastasis. Moreover, Kunjin vectors were engineered to express a CTL
epitope of HPV16 E7 protein, which induced E7-directed T-cell responses and provided protection
against challenges with an E7-expressing epithelial tumor in mice [88]. In this study, the Kunjin VLPs
were more effective than RNA replicons or DNA vectors.
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Table 3. Self-Replicating RNA Viral Vector-Based Immunizations against Cancers.

Cancer Target Vector Response Reference

Brain

GFP, SLAM, EGFR MV replication in/lysis of cancer cells [79]
Endostatin SFV VLPs tumor inhibition [89]

miR-124 SFV-miR-124 prolonged survival [90]
IL-12 SFV-IL-12 prolonged survival [91–93]

Breast

CEA MV tumor growth delay, better survival [83]
Neu SIN DNA immune responses, tumor protection [94]
Neu VEE VLPs + DCs tumor regression by transduced DCs [95]

VEGFR-2 SFV VLPs tumor inhibition [96]

Cervical
HPV E6, 7 SFV VLPs tumor eradication [97,98]
HPV E7 VEE VLPs eradication of existing tumors [99]

HPV E7 Epitope Kunjin VLPs/RNA/DNA tumor protection in mice [88]

Colon

GM-CSF Kunjin VLPs regression of tumors and metastasis [87]
VEGFR-2 SFV VLPs reduced tumor and metastasis growth [96]

LacZ SFV RNA tumor protection in mice [100]
Lac Z SIN VLPs anti-tumor CD8+ T-cell immunity [101]
IL-12 SFV VLPs tumor elimination [102]
SFV SFV VLPs tumor growth inhibition [103]
IL-18 SFV VLPs tumor regression in mice [104]

Liver IL-12 SFV VLPs anti-tumor responses in woodchucks [105,106]

Lung
HPV E6/E7 SFV + Sun + Rad tumor-free survival [107]

HPV E7-CRT SIN VLPs long-term anti-tumor effect [108]
EGFP SFV VLPs apoptosis, tumor regression in mice [109]

Melanoma

GM-CSF Kunjin VLPs tumor regression [87]
VEGF-2-IL-12

+ Sur + β-hCG SFV VLPs tumor inhibition [110]

TRP-2 VEE VLPs humoral and cellular immunity [111]
Tyr VEE VLPs T-cell responses, tumor protection in mice [112]

Ovarian

CEA, NIS MV superior dual therapy [81]
IL-12 SIN VLPs tumor targeting, eradication [113]
IL-18 SFV VLPs therapeutic anti-tumor response [91]

GM-CSF SFV VLPs tumor growth inhibition [114]

Pancreatic Matrix protein VSV VLPs killing of tumor cells in vitro and in vivo [85]

Prostate

CEA MV replication in/lysis of cancer cells [79]
PSMA VEE VLPs cellular and humoral immunity in mice [115]
STEAP VEE VLPs CD8+ T-cell response, tumor growth delay [116]
PSCA DNA + VEE VLPs long-term protective immune response [117]

Sarcoma PSA VEE VLPs PSA-cell clearance, tumor growth delay [118]

Skin
SFV SFV VLPs tumor growth inhibition [103]
P1A SFV VLPs strong CTL-response, tumor protection [119]

CEA, carcinoembryonic antigen; CRT, calreticulin; CTL, cytotoxic T lymphocyte; EGFP, enhanced
green fluorescent protein; EGFR, epidermal growth factor receptor; GFP, green fluorescent protein;
GM-CSF, granulocyte macrophage colony-stimulating factor; HPV, human papilloma virus; MV, measles
virus; NIS, sodium iodide symporter; PSMA, prostate-specific membrane antigen; PSCA, prostate stem cell
antigen; RABV, rabies virus; SFV, Semliki Forest virus; SIN, Sindbis virus; SLAM, signaling lymphocytic
activation molecule; STEAP, six-transmembrane epithelial antigen of the prostate; Sun, sunitab; Sur, survivin;
TRP, tyrosine-related protein; Tyr, melanoma antigen tyrosinase; VEE, Venezuelan equine encephalitis virus;
VEGFR, vascular endothelial growth factor receptor; VLPs, virus-like particles; VSV, vesicular stomatitis virus.

Alphavirus vectors have been applied in many studies on cancer vaccines [4,8]. In principle,
tumor-associated antigens (TAAs), immunomodulating cytokines and combination therapies of TAAs
and cytokines, TAAs and antibodies, cytokines and antibodies and even microRNAs (miRNAs) have
been evaluated. In this context, intratumoral injection of SFV particles expressing enhanced green
fluorescent protein (EGFP) showed apoptosis induction in mice implanted with human non-small cell
lung carcinoma H353a cells in mice [109]. Furthermore, intratumoral administration of SFV particles
into BALB/c mice with implanted sarcoma K-BALB sarcoma and CT26 colon tumors resulted in
significant tumor growth inhibition [103]. Also, vaccination of mice with SFV RNA replicons expressing
β-galactosidase showed protection against challenges with colon tumor cells [100]. Only a single
intratumoral injection of 1 µg of SFV-LacZ RNA resulted in 10–20 days of survival extension in mice
with existing tumors. Similarly, SIN-LacZ vectors demonstrated therapeutic efficacy in a mouse
CT26 colon carcinoma model [101]. Despite not targeting specifically CT26 cells, SIN vectors showed
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susceptibility to mediastinal lymph nodes (MLNs), which induced effector and memory CD8+ T-cells
displaying robust cytotoxicity. The well-characterized human carcinoembryonic antigen (CEA) elicited
neutralizing antibodies after VEE VLP immunization [120]. Moreover, melanoma antigens such as
tyrosine-related proteins TRP-1 and TRP-2, gp100 and melanoma antigen tyrosinase (Tyr) have been
expressed from VEE vectors [94,112]. For instance, immunization of mice with VEE-TRP-2 particles
resulted in growth inhibition of B16 transplantable melanoma and strong therapeutic potency [111].
Vaccination with VEE-TRP-2 VLPs was more efficient than the combination of VEE-gp100 and VEE-Tyr
particles. Furthermore, VEE particles carrying the Tyr gene induced immune responses and tumor
protection in mice after administration of VEE VLPs alone or an initial vaccination with plasmid DNA
followed by boosting with VEE VLPs [112].

Breast cancer has been targeted in several therapeutic and prophylactic vaccine studies.
SIN plasmid DNA carrying the neu gene were subjected to immunization of mice resulting in inhibition
of growth of challenged A2L2 tumor cells [94]. Interestingly, vaccination two days after tumor challenge
was inefficient. In contrast, immunization in a prime-boost protocol with SIN-neu DNA followed by
adenovirus vectors carrying the neu gene prolonged the survival of mice. Due to their potency of
stimulation of antigen-specific T-cells, dendritic cells (DCs) were transduced by VEE-neu particles,
which resulted in high-level transgene expression, DC maturation and secretion of pro-inflammatory
cytokines [95]. Robust neu-specific CD8+ T-cell and anti-neu IgG responses were observed after
a single immunization. Moreover, regression of large established tumors was obtained. Another TAA
attractive for immunotherapy is the six-transmembrane epithelial antigen of the prostate (STEAP),
which has demonstrated up-regulation in multiple cancer cell lines [121]. Transgenic adenocarcinoma
of mouse prostate (TRAMPC-2) tumor-bearing mice pre-immunized with VEE VLPs expressing
STEAP demonstrated a strong immune response and a significantly prolonged overall survival [116].
The therapeutic affect was assessed for mice with 31-day-old tumors, which resulted in a modest
but significant delay in tumor growth. Furthermore, VEE VLPs have been applied for expression of
the prostate stem cell antigen (PSCA) in TRAMP mice, where the initial immunization with a PSCA
DNA plasmid was followed by VEE-PSCA VLP delivery [117]. The outcome was a specific immune
response and protection against tumor challenges in 90% of TRAMP mice. Also, the prostate-specific
membrane antigen (PSMA) has been expressed from VEE vectors demonstrating strong humoral
and cellular immune responses in subcutaneously immunized mice [115]. VEE VLPs expressing the
prostate-specific antigen (PSA) were used for immunization of mice followed by a challenge with
TRAMP cells [118]. The VEE VLPs were capable of infecting DCs in vitro and induced a robust
PSA-specific response in vivo. Tumors in vaccinated animals showed low PSA expression levels and
tumor growth was significantly delayed.

The P815A antigen is expressed in P815 mastocytoma tumors, which triggered an immunization
study on the P1A gene coding for the PP815A antigen [119]. SFV particles expressing the P1A gene
elicited strong CTL responses and protected immunized mice from challenges with P815 tumors.
Other interesting TAA vaccine targets have been the E6 and E7 proteins of the human papilloma virus
(HPV). Immunization with SFV particles expressing HPV type 16 E6,7 showed strong HPV-specific
CTL activity and eradicated HPV-transformed tumors [97]. Similarly, immunization of mice with
VEE particles carrying the HPV16 E7 gene prevented tumor development and eliminated established
tumors in 67% of vaccinated animals [99]. In another study, tattoo injection [122] of SFV-HPV E6,7
particles resulted in antigen expression in both the skin and draining lymph nodes leading to ten-fold
lower antigen levels in comparison to intramuscular administration [98]. However, tattoo injection
provided higher or equal levels of immune responses.

Cytokines have played an important role in immunotherapy and vaccine development [8].
For instance, interleukin-12 (IL-12) has been expressed from both SFV and SIN vectors. In this context,
SFV vectors expressing IL-12 induced tumor regression with long-term tumor-free survival in the
MC38 colon carcinoma model [102]. Repeated intratumoral administration increased the anti-tumor
response. In another study, immunization with SFV-luciferase and SFV-IL-12 particles was evaluated
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in a woodchuck model in which hepatocellular carcinoma (HCC) is induced by the infection by
woodchuck hepatitis virus (WHV) [105]. High luciferase expression levels were observed in tumors
and IL-12 secretion was measured in the serum after intratumoral injections. In tumor-bearing
woodchucks, partial tumor remission was seen. Tumor volumes were reduced by 80%, but tumor
growth was restored with time. The plasmid vector pTonL2(T)-mIL12, which provides liver-specific
and inducible IL-12 expression, has been compared to SFV-IL-12 particle delivery in a L-PK/c-myc
transgenic mouse model of HCC [106]. Overexpression of the c-myc gene in the liver of the transgenic
animals induces spontaneous hepatic tumors with characteristics similar to human HCCs. Intratumoral
administration of SFV-IL-12 resulted in tumor growth arrest and 100% survival rates. Mice treated with
plasmid DNA showed a slightly lower survival rate despite higher IL-12 and IFN-γ levels in serum.
The strong anti-tumor response in SFV-IL-12-treated mice was most likely due to the apoptosis and
type 1 IFN response induced by SFV particles. Recombinant SIN particles were demonstrated to target
tumor cells in SCID mice, which encouraged intraperitoneal injection of SIN-IL-12 particles in mice
with established ovarian tumors [113]. The treatment resulted in systemic targeting and eradication
of tumor cells without any adverse effects observed. Glioma-bearing mice were immunized with
SFV-IL-12 particles, which induced apoptosis of glioma cells and facilitated the uptake of apoptotic
cells by DCs and provided prolonged survival of vaccinated animals [91]. Moreover, DCs isolated
from bone marrow were transduced with SFV vectors expressing IL-12 for the treatment of brain
tumor-bearing mice [92]. The outcome was prolonged survival of immunized animals. In another study,
SFV-IL-12 particles were tested in rat RG2 gliomas [93]. Low dose (5 × 107 VLPs) treatment resulted
in a 70% reduction in tumor volume, whereas high-dose (5 × 108 VLPs) showed an 87% reduction
in tumor volume. Moreover, intratumoral administration of 106 oncolytic SFV particles expressing
EGFP generated significant tumor regression in melanoma-bearing SCID mice [123]. Other cytokines
such as Il-18 have also been evaluated for alphavirus-based expression in ovarian and colon cancer
models [104]. The enhanced SFV10E vector, which provides ten-fold higher levels of expression than
the conventional SFV vector [124], was applied for immunization of BALB/c mice [114]. After in vitro
verification of secretion of active IL-18, mice with subcutaneous K-BALB and CT26 tumors were
injected with SFV-IL-18 particles, which led to tumor regression and disappearance of tumors in
some treated animals. Moreover, GM-CSF, an immunostimulatory cytokine, has been expressed
from SFV vectors [114]. Intraperitoneal administration of SFV-GM-CSF particles was evaluated in
an ovarian mouse tumor model, which resulted in activation of macrophages to tumor cytotoxicity.
Although no prolongation in survival of tumor-bearing mice was achieved, tumor growth was inhibited
for two weeks.

Among the growth factors targeted for vaccine development, the vascular endothelial growth
factor receptor 2 (VEGFR-2) was introduced into the SFV vector [96]. Immunization of mice with
SFV-VEGFR-2 particles resulted in substantial inhibition of both tumor growth and spread of
pulmonary metastases. Furthermore, vaccination led to tumor inhibition in mice with established CT26
colon tumors and metastatic 4T1 mammary tumors. In another approach, SFV particles carrying the
endostatin gene were administered to mice bearing B16 brain tumors [89]. The treatment resulted in
a substantial reduction in intratumoral vascularization in tumor sections and a significant inhibition of
tumor growth. Endostatin serum levels were three-fold higher 7 days after intravenous administration
of SFV-endostatin in comparison to administration of the retrovirus-based GCsap-Endostatin
promoting inhibition of angiogenesis in established tumors. In another approach, SIN vectors have
been employed for the expression of a fusion protein of HPV16 E7 protein and calreticulin (CRT),
an ER Ca2+-binding transporter participating in antigen processing and presentation with major
histocompatibility complex (MHC) class I [108]. Immunization of mice bearing E7-expressing tumors
with SIN-E7-CRT particles significantly increased E7-specific CD8+ T-cell precursors and a strong
anti-tumor response. Furthermore, a significant reduction in lung tumor nodules was observed in
immuno-compromised BALB/c mice.
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Combination therapy has been evaluated for alphavirus-based gene delivery. For instance,
SFV layered DNA vectors were engineered to express one to four domains of VEGFR-2 and IL-12 [110].
Co-immunization with SFV replicon DNA expressing survivin and β-hCG antigens was verified
in mice resulting in efficient humoral and cellular immune responses against survivin, β-hCG and
VEGFR-2. Moreover, tumor growth was inhibited and the survival rate in a B16 melanoma mouse
model was improved. Furthermore, immunization with SFV HPV E6/E7 was combined with sunitib
and a single low-dose of irradiation, which enhanced the intratumoral ratio of anti-tumor effector
cells to myeloid-derived suppressor cells [107]. Triple treatment of tumor-bearing mice demonstrated
enhanced anti-tumor efficacy and provided 100% tumor-free survival.

An interesting approach comprises the introduction of micro RNA-124 (miR-124) into an SFV4
vector [90]. As IFN-1 tolerance has been associated with the SFV nsP3-nsP4 genes, conditionally
replicating SFV4-miR-124 virus was able to replicate in neurons and allowed targeting of gliomas
otherwise sensitive to IFN-1. Evaluation of CT-2A mouse astrocytoma cells and IFN-1 pretreated
human glioblastoma cells showed increased oncolytic potency. Moreover, a single intraperitoneal
injection of SFV4-miR-124 into mice with implanted CT-2A orthotopic gliomas showed significant
inhibition of tumor growth and improved survival rates.

3.3. Clinical Trials

Self-replicating RNA virus vectors have been subjected to several clinical studies, albeit at
an inferior level in comparison to adenovirus, AAV and lentivirus vectors. For instance, healthy
volunteers were subjected to low-dose (3 × 105 pfu) immunization with the VSV-based Ebola vaccine
(rVSV-ZEBOV) expressing the Zaire Ebola virus glycoprotein in a double-blinded study in comparison
to a previous study with a high dose (5 × 107 pfu) [125]. No serious adverse events occurred and
the overall safety was good. The low-dose immunization improved early tolerability, but generated
inferior antibody responses and failed to prevent vaccine-induced arthritis, dermatitis or vasculitis.
Furthermore, VSV particles expressing the HIV-1 gag gene were evaluated in a clinical trial on safety
and immunogenicity [126]. In the randomized double-blinded placebo-controlled dose-escalation
study, healthy HIV-negative volunteers received 4.6 × 103 to 3.4 × 107 pfu of rVSV HIV-1 gag vaccine
intramuscularly at months 0 and 2. All vaccinated individuals showed antibody responses against
VSV, and gag-specific T-cell responses were detected in 63%. Overall, the safety profile was good.

Alphaviruses have been subjected to some gene therapy and vaccine studies. In one approach,
replication-deficient SFV particles were encapsulated in liposomes to promote passive targeting of
tumors [127]. Initially, intraperitoneal administration of encapsulated SFV-LacZ particles showed
enhanced accumulation of β-galactosidase in SCID mice implanted with LNCaP prostate tumors.
Liposome-encapsulated SFV particles expressing the p40 and p35 subunits of IL-12 generated active
secreted IL-12 in BHK-21 cells [128]. Next, encapsulated SFV-IL-12 particles were administered
intravenously in terminally ill melanoma and kidney carcinoma patients in a phase I clinical trial.
The patients showed a five to ten-fold increase in IL-12 plasma levels. The maximum tolerated dose was
determined to 3 × 109 infectious particles and the safety profile was good. A phase I dose-escalation
trial was conducted in prostate cancer patients with VEE particles expressing PSMA [129]. Patients with
castration-resistant metastatic prostate cancer (CRPC) received up to five doses of either 0.9 × 107 IU
or 0.36 × 108 IU of VEE-PSMA particles at weeks 1, 4, 7, 10 and 18. The study showed no toxicity
and good toleration of the vaccination. However, only weak PSMA-specific immune responses were
detected and no clinical benefits obtained. In another clinical trial, VEE particles expressing the CEA
tumor antigen were demonstrated to efficiently infect DCs [120]. The VEE particles could be repeatedly
administered and overcame high titers of neutralizing antibodies and elevated regulatory T cells
(Tregs), which allowed induction of clinically relevant CEA-specific T cell and antibody responses.
In another approach, VEE particles expressing the cytomegalovirus (CMV) gB and pp65/IE1 fusion
protein were evaluated in a phase I randomized, double-blinded clinical trial [67]. Intramuscular or
subcutaneous immunization at weeks 0, 8 and 24 of CMV seronegative adult volunteers showed good
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tolerance with only mild to moderate local reactions and no clinically important changes. Neutralizing
and multifunctional T-cell responses against CMV antigens were detected in all vaccinated individuals.

4. Conclusions

Self-replicating RNA viruses represented by ssRNA viruses of both negative and positive polarity
have been subjected to engineering of efficient gene delivery vectors, which can be applied in the
form of recombinant particles, RNA replicons and layered DNA plasmid vectors. In this context,
measles (MV), rhabdoviruses, flaviviruses and alphaviruses expressing surface antigens from viruses
and other infectious agents have been subjected to immunization studies in animal models. Moreover,
similar studies have been conducted with tumor antigens. It seems that MV-, rabies virus (RABV)-,
vesicular stomatitis virus (VSV)-, Kunjin virus-, Semliki Forest virus (SFV)-, Sindbis virus (SIN)- and
Venezuelan equine encephalitis virus (VEE)-based delivery efficiently elicits humoral and cellular
immune responses in immunized animals. Furthermore, numerous cases have demonstrated protection
against challenges with lethal viruses/infectious agents or with tumor cells. Most of the studies have
been conducted with replication-deficient recombinant particles. However, promising results have
also been obtained with layered DNA plasmid vectors. A limited number of studies have applied
administration of RNA replicons, but the results have been quite encouraging. The obvious advantage
to using nucleic acid-based delivery is the elimination of any risk of virus progeny production through
recombination events. On the other hand, superior delivery and prolonged duration of expression
can be achieved with recombinant viral particles, especially applying replication-proficient oncolytic
viruses. For this reason, it is difficult to make any recommendations related to which delivery format
to use, and the choice of target will play an important role in decision making.

Similarly, it is practically impossible to favor one viral vector system over another. Reverse genetics
systems engineered for MV and rhabdoviruses and packaging cell lines for flaviviruses surely facilitate
recombinant particle production and ease of use. Although packaging cell lines have also been
generated for alphaviruses, the straightforward in vitro RNA transcription has provided the means
for sufficient preparation of replicon RNA and particles for immunization studies. Obviously,
plasmid DNA can be directly applied for vaccinations. In comparison to other viral vectors and
also non-viral delivery systems, self-replicating RNA viruses can surely be considered competitive
(Figure 5 and Table 4). An extensive comparison to other delivery systems is not within the scope of
this review, so only a few examples are addressed. Clearly, adenovirus-based vaccine development and
gene therapy has a longer history, which has generated a multitude [130] of vector improvements and
also resulted a number of clinical trials [131,132]. Similarly, herpes simplex virus (HSV) vectors have
been frequently applied and HSV-GM-CSF have, for instance, been subjected to phase I−III human
clinical trials in glioblastoma and melanoma patients [133]. HSV vectors were recently approved by
the FDA for use in standard patient care [134]. Related to non-viral vectors, recently dendrimer-RNA
nanoparticles have demonstrated protective immunity against lethal challenges with Ebola virus,
influenza H1N1 virus and Toxoplasma gondii after a single injection in BALB/c mice [135].

Overall, self-replicating RNA viral vectors possess several attractive features. The presence of
RNA replicons provides the efficient means for rapid generation of a large number of RNA copies for
immediate protein translation in the cytoplasm of host cells. Moreover, the strong subgenomic
promoter utilized by alphaviruses generates extreme levels of heterologous gene expression.
The transient nature of expression is also an advantage for immunization studies. Furthermore,
there is no risk of integration of viral genes in the host genome as the viral RNA is degraded within
3–5 days. In the case of immunization with layered alphavirus DNA vectors, approximately 100- to
1000-fold lower doses are required compared to immunizations with conventional plasmid DNA [136].

Although strong immune responses have been obtained and protection against challenges with
lethal pathogens and tumor cells have been achieved and even tumor regression observed in animals
with established tumors, some further technology development is necessary. Much development
has been invested in vector design including mutant vectors, enhancement signals, targeting DCs
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and fusion constructs. Furthermore, quite an effort has been paid to the evaluation of different
target antigens and immunogens. Several studies, particularly clinical trials, have indicated that
although target-specific immune responses have been obtained, further investment is required in
finding the right dose for the achievement of optimal response. One area which recently has received
much attention is combination therapy. Tumor-associated antigens (TAAs) have been combined
with cytokines and antibodies, as well as drugs and radiation co-administered with cytokines.
Additionally, optimization of adjuvant composition and stability issues in case of RNA delivery
needs to be addressed. Further research in these areas will certainly provide progress and should make
immunotherapy an important approach in both prophylactic and therapeutic applications.
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Figure 5. Schematic Presentation of the Life-Cycle of Self-Replicating RNA Viruses and Their
Advantages. Several cell receptors are recognized providing a broad range of susceptible host
cells. RNA released in the cytoplasm is immediately subjected to RNA replication and translation.
Extreme RNA replication is the basis for highly efficient transgene expression.

Table 4. Comparison of Self-replicating RNA Viral Vectors with other Viral Vectors.

Viral Vector Genome Capacity Special Features

Alphavirus ssRNA 6–8 kb
broad host range, high titer, cytoplasmic RNA, extreme transient
expression, no chromosomal integration, choice of DNA,
RNA replicon and particle delivery

Flavivirus ssRNA 5 kb broad host range, packaging system, choice of DNA,
RNA replicon and particle delivery

Measles virus ssRNA 5 kb packaging cell line, measles virus strains for immunization,
cytoplasmic RNA

Rhabdovirus ssRNA 5 kb reverse genetics systems, broad host range cytoplasmic RNA

Adenovirus dsDNA >8 kb broad host range, packaging cell line, nuclear translocation
necessary, transient expression, potential integration

AAV ssDNA <4 kb multiple AAV serotypes for avoiding immune responses,
nuclear translocation necessary, chromosomal integration

Herpes simplex virus dsDNA 30–40 kb large packaging capacity, nuclear translocation necessary,
latent long-term transgene expression after integration

Lentivirus dsRNA 8 kb transduction of dividing and non-dividing cells,
nuclear translocation necessary, chromosomal integration

Retrovirus dsRNA 4 kb transduction of only dividing cells, nuclear translocation
necessary, chromosomal integration

Vaccinia dsDNA 25 kb large packaging capacity, nuclear translocation necessary

AAV, adeno-associated virus; dsDNA, double-stranded DNA; ssDNA, single-stranded DNA;
ssRNA, single-stranded RNA.
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MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
CEA Carcinoembryonic antigen
CMV Cytomegalovirus
CRPC Castration-resistant metastatic prostate cancer
CRT Calreticulin
CTL Cytotoxic T-lymphocyte
DC Dendritic cell
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GFP Green fluorescent protein
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RABV Rabies virus;
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SFV Semliki Forest virus
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SIN Sindbis virus
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TAA Tumor-associated antigen
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