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Abstract: Most commercial vaccines offered to the aquaculture industry include 

inactivated antigens (Ag) formulated in oil adjuvants. Safety concerns are related to the use 

of oil adjuvants in multivalent vaccines for fish, since adverse side effects (e.g., adhesions) 

can appear. Therefore, there is a request for vaccine formulations for which protection  

will be maintained or improved, while the risk of side effects is reduced. Here, by using an 

inactivated salmonid alphavirus (SAV) as the test Ag, the combined use of two Toll-like 

receptor (TLR) ligand adjuvants, CpG oligonucleotides (ODNs) and poly I:C, as well as a 

genetic adjuvant consisting of a DNA plasmid vector expressing the viral haemorrhagic 

septicaemia virus (VHSV) glycoprotein (G) was explored. VHSV-G DNA vaccine was 

intramuscularly injected in combination with intraperitoneal injection of either SAV Ag 
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alone or combined with the oil adjuvant, Montanide ISA763, or the CpG/polyI:C combo. 

Adjuvant formulations were evaluated for their ability to boost immune responses and 

induce protection against SAV in Atlantic salmon, following cohabitation challenge. It was 

observed that CpG/polyI:C-based formulations generated the highest neutralizing antibody 

titres (nAbs) before challenge, which endured post challenge. nAb responses for VHSV  

G-DNA- and oil-adjuvanted formulations were marginal compared to the CpG/poly I:C 

treatment. Interestingly, heat-inactivated sera showed reduced nAb titres compared to their 

non-heated counterparts, which suggests a role of complement-mediated neutralization 

against SAV. Consistently elevated levels of innate antiviral immune genes in the 

CpG/polyI:C injected groups suggested a role of IFN-mediated responses. Co-delivery of 

the VHSV-G DNA construct with either CpG/polyI:C or oil-adjuvanted SAV vaccine 

generated higher CD4 responses in head kidney at 48 h compared to injection of this vector 

or SAV Ag alone. The results demonstrate that a combination of pattern recognizing 

receptor (PRR) ligands, such as CpG/polyI:C, increases both adaptive and innate responses 

and represents a promising adjuvant strategy for enhancing the protection of future  

viral vaccines. 

Keywords: salmonid alphavirus; VHSV; vaccination; adjuvant; DNA vaccine; CpG; 

polyI:C; complement; neutralizing antibodies 

 

1. Introduction 

Viral diseases present a huge problem for the global aquaculture industry, where infectious diseases 

are estimated to be responsible for a production loss of ten to twenty percent each year [1]. Among 

these, pancreas disease (PD) caused by salmon pancreas disease virus, now more commonly referred 

to as salmonid alphavirus (SAV), is responsible for big economic losses throughout the Norwegian, 

Scottish and Irish aquaculture industry. 

SAV strains are grouped into six different subtypes (SAV1-6), based on sequencing and 

phylogenetic analysis [2]. SAV1 isolates are found in Ireland and the U.K., while SAV3 isolates are 

exclusively found in Norway and affects both Atlantic salmon and rainbow trout [3,4]. PD 

histopathological signs are characterized by lesions in pancreatic acinar tissue, heart and, later, also in 

skeletal muscle [5,6]. Several studies have demonstrated protective immune responses against SAV in 

salmonids, both experimentally and in the field [7,8], and the protection has been shown to be 

associated with antibody (Ab)-mediated immunity and neutralizing Ab (nAbs) [7,9,10]. Following 

passive immunization of salmon parr and post smolts with SAV antisera, the fish are reported to be 

protected upon re-challenge, which indicates that protective immunity is conferred by NAbs [11]. 

Since then, various vaccination strategies against SAV have been tested both in Atlantic salmon and in 

rainbow trout, such as an inactivated SAV vaccine based on a Subtype 1 isolate [12], a recombinant 

live attenuated SAV vaccine (Subtype 2 isolate) [13] and subunit and DNA vaccines based on an SAV 

Subtype 3 isolate [14]. An inactivated whole-virus vaccine based on an Irish SAV Subtype 1 isolate 

has been used in Norway, Ireland and the U.K. since 2007 [15]. 



Vaccines 2014, 2 230 

 

 

Most of the commercial finfish vaccines against viruses are, like the above-mentioned SAV vaccine, 

based on inactivated antigens (Ag) or recombinant subunit proteins formulated in oil emulsions.  

Oil-based adjuvants are based on creating a depot of Ag, which improves Ag delivery to Ag-presenting 

cells (APC) or by attracting effector cells to the site of injection. However, side effects due to oil 

adjuvants have been reported and are expressed both physiologically and morphologically [16–18]. 

Administration of these oil-based vaccines is performed by intraperitoneal (i.p.) injection, and 

relatively high doses are needed to achieve protection [19]. Hence, more potent adjuvants enabling the 

use of a lower Ag dose and reducing side effects would advantageously be used for fish vaccines. 

Many adjuvants are derived from pathogens and act via cell-associated germ line-encoded pattern 

recognition receptors (PRR) on APCs to provide a danger signal. Such adjuvants induce maturation of 

the APCs and enhance Ag presentation and associated co-stimulation [20]. Among the best studied 

PRRs is the Toll-like receptor (TLR) family, of which 17 types have been described in different fish 

species [21]. The piscine TLRs includes TLR9 recognizing bacterial and viral DNA [22,23] and TLR3 

and TLR22, which both recognize double-stranded (ds) RNA [24,25]. Studies by us and other groups 

have demonstrated that ligands for these receptors, such as synthetic CpG oligonucleotides (ODNs; 

TLR9 ligand) and polyI:C (TLR3/22 ligand) can stimulate the production of pro-inflammatory 

cytokines/chemokines and Type I IFNs, which increase the host’s ability to eliminate viral  

pathogens [26,27]. Further, our group has, in accordance with mammalian studies [28], shown that a 

combined treatment of CpG/polyI:C induces synergistic upregulation of a wide array of immune genes 

in Atlantic salmon [26] and significantly enhances protection on its own against SAV [29]. When 

formulated in an SAV whole-virus Ag formulation [30], the combo significantly increased  

antibody-mediated clearance of SAV from blood, thus preventing the development of SAV-specific 

heart lesions. This strongly indicates that a humoral Ab response is important for protection against 

SAV and that CpG/polyI:C boost this protection. 

The Novirhabdovirus VHSV (viral haemorrhagic septicaemia virus) glycoprotein (G) DNA-vaccine 

is an intra-muscularly (i.m.) injected vaccine that has been shown to induce early non-specific, as well  

as long-lasting specific protection against VHSV in trout [31,32] and seems to act as a genetic  

adjuvant [33]. Several studies have suggested that the effects of DNA-vaccines are regulated by innate 

responses through PRR-signalling cascades [34], and although the mechanisms that induce early 

protective responses by the VHSV-G DNA construct are still unclear, innate signalling are most  

likely involved. The VHSV-G DNA vaccine has been shown to create a local immune-competent 

environment at the i.m. injection site [35], and an interesting question addressed here was whether i.m. 

co-injection of this DNA vaccine simultaneously with an i.p. administered TLR-agonist-adjuvanted 

vaccine based on an inactivated SAV Ag could provide improved protective responses. Combining 

several PRR agonists has previously shown synergistic effects when intended as adjuvants, resulting in 

enhanced and more durable responses to Ag, as well as dose sparing effects [36,37]. To our 

knowledge, this is the first report of immunity associated with inactivated virus Ag vaccines 

formulated with mixed TLR agonists and with VHSV-G (vhsG) DNA vaccine as a genetic adjuvant. In 

the current study, the protective effects between an i.p. injection of SAV Ag with CpG/polyI:C were 

compared to the same treatment combined with a simultaneous i.m. injection of the vhsG DNA 

vaccine to see whether additive or synergistic effects were induced. To evaluate vhsG adjuvant effects, 

several controls were included, whose effects have been investigated earlier [29,30]; SAV Ag was i.p. 
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injected alone or with an oil adjuvant (Montanide ISA763A), formulations of which were co-injected 

i.m. with vhsG to thoroughly examine the possible effects these adjuvant combinations could have on 

protection and immune responses against an SAV Subtype 3 challenge.  

2. Experimental 

2.1. Reagents and Constructs 

DNA plasmid pcDNA3-vhsG [38] was kindly provided by Dr. Niels Lorenzen and diluted in 1× PBS 

to a concentration of 0.2 mg/mL. The synthetic dsRNA (poly I:C; Merck, Nottingham, UK) and the 

phosphorothioate-modified class B CpG oligonucleotide (2006T: TCGTCGTTTTGTCGTTGTCGTT, 

Thermo Scientific, Ulm, Germany) were dissolved in TE buffer (10 mM Tris, 1 nM EDTA, pH 8) at  

5 mg/mL and further diluted 10-fold in the final vaccine formulations (50 µg/dose). SAV Ag was 

prepared by propagating the SPDV/SAV strain F93-125 in cell culture, which then was formalin 

inactivated. To demonstrate the potential additive or synergistic effects of the adjuvants tested, the 

same suboptimal dose of inactivated SAV Ag was used for all formulations. Montanide ISA 763 

(Seppic, France) was used to prepare the water-in-oil formulations, by dispersing the water phase 

(containing the formalin inactivated SAV Ag) into the vegetable oil phase (containing emulsifiers  

and stabilizers) and emulsified using a homogenizer with an emulsification rotor. All SAV Ag 

formulations were provided by MSD Animal Health (Bergen, Norway).  

2.2. Fish 

The experimental challenge study was performed at ILAB’s challenge lab facility at the University 

of Bergen (Høyteknologisenteret, Bergen, Norway), which fulfil the confinement conditions required 

for working with GMOs and DNA vaccines. Atlantic salmon, pre-smolt (Fister) with a mean weight of 

approximately 29 g at time of vaccination were kept in tanks supplied with running fresh water at  

11–12 °C and fed with commercial dry feed (Skretting, Stavanger, Norway) based on appetite. The 

fish were starved for a minimum of 48 h and anaesthetized with metacainum (0.1 mg/mL bath 

treatment) prior to all handling. 

2.3. Vaccination and SAV Cohabitation Challenge 

Fish were divided into 7 treatment groups (n = 65, 69 or 75, depending on the required sampling 

size) and a saline injected control group (n = 79). As described in detail in Table 1, three treatment 

groups were i.p. injected with 100 μL of the SAV1 whole-inactivated virus Ag formulation, formulated 

with or without oil and/or 50 µg CpG/polyI:C. Moreover, three treatment groups were, in parallel to 

the i.p. injections, injected i.m. with 10 µg of the PcDNA3-vhsG plasmid diluted in 50 µL PBS (1×). 

One group received PcDNA3-vhsG plasmid alone, and the control group was injected with 100 μL of 

PBS. Fish were marked by fin and/or maxilla clipping, and there were no mortalities observed after 

injection. A total of 570 fish were used and divided into 3 tanks; 1 tank for the SAV cohabitation 

challenge (422 fish excluding shedders), and 2 tanks for harvesting organs to monitor early immune 

gene expression (2 × 74 fish). At 6 weeks post vaccination (wpv), 86 Atlantic salmon were injected i.p. 

with 0.2 mL SAV Subtype 3, each receiving a viral dose of about 1 × 10
3
 TCID50 and added to the 
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SAV challenge tank to serve as shedders (n = 86 corresponds to 20% of the final amount of fish in the 

tank). The shedders were marked with a red VIE label under the anal fin one week prior to challenge. 

Table 1. Treatments, dose regime, number of fish and schedule for the sampling of organs and blood.  

Treatment 

Total 

# of 

fish 

Analysis (# of fish) 

Immune gene 

expression  

12 and 48 hpv 

nsP1  

RT-qPCR 

3 wpc 
1
 

Histopathology  

5 and 6 wpc 
2
 

nAb assay 

6 wpv 3 wpc 
1
 6wpc 

2 

SAV Ag 74 + 1 8 + 8 10 15 + 15 13 15 15 

SAV Ag oil 64 + 1 8 + 8 10 15 + 15 8 10 15 

SAV Ag CpG (50 µg)/poly I:C (50 µg) 74 + 1 8 + 8 10 15 + 15 13 15 15 

SAV Ag PcDNA3-vhsG (10 µg) 68 + 1 10 + 10 10 15 + 15 8 10 15 

SAV Ag oil PcDNA3-vhsG (10 µg)  68 + 1 10 + 10 10 15 + 15 8 10 15 

SAV Ag CpG (50µg)/poly I:C (50 µg) 

PcDNA3-vhsG (10 µg) 
68 + 1 10 + 10 10 15 + 15 8 10 15 

PcDNA3-vhsG (10 µg) 68 + 1 10 + 10 10 15 + 15 8 10 15 

Saline 0.9% 78 + 1 10 + 10 10 15 + 15 13 15 15 

The treatment that is underlined, PcDNA3-vhsG, was intra-muscularly (i.m.) injected parallel to intraperitoneal (i.p.) injection 

of SAV Ag treatments. Five extra fish were sampled at 6 wpv and 3 wpc for analyses not included here. hpv; hours post 

vaccination; wpc; weeks post challenge. 1 The same fish sampled for nsP1 RT-qPCR as for the nAb assay; 2 the same fish 

were sampled for heart histopathology and for the nAb assay. SAV, salmonid alphavirus; Ag, antigen; nAb, neutralizing antibody. 

2.4. RT-qPCR of Immune Gene Expression: RNA Isolation, cDNA Synthesis and RT-qPCR 

Spleen and head kidney (HK) were harvested from 8 fish per group at 12 and 48 h post vaccination 

(hpv) and were stored according to the manufacturer’s guidelines on RNAlater (Ambion, Applied 

Biosystems, Foster City, CA, USA). RNA isolation, cDNA synthesis and RT-qPCR were executed as 

described previously [26] with minor changes. Four hundred nanograms of total RNA were reverse 

transcribed (TaqMan Reverse Transcription Reagents kit; Applied Biosystems) into cDNA using 

random hexamer primers in 30-μL reaction volumes following the manufacturer’s guidelines. Primer 

and probe sequences and the efficiencies of the assays used in this study are presented in  

Table 2. cDNA samples (2.5 µL) were analysed in duplicates (target genes) or triplicates (endogenous 

control) in 20-µL reactions on a 7500 Fast Real-Time PCR system. The Cq-threshold was 

automatically set to 0.2 for analysis of both endogenous and target genes. Relative expression and 

statistics were calculated using Relative Expression Software Tool (REST) 2009 [39], which is based 

on Pfaffl’s mathematical model [40], where individual Cq-values were compared between saline-injected 

fish (control) and vaccine injected fish (test) and correlated to the endogenous control gene, EF1αβ, 

and PCR-efficiency.  

2.5. SAV Neutralizing Ab Responses 

Serum samples from 8 to 15 individuals per group and time point (see Table 1 for details) were 

collected at 6 wpv and 3 and 6 wpc (weeks post challenge) and examined for SAV-neutralizing activity. 

To do so, virus initially incubated with diluted sera was left to adhere to Chinook salmon embryo-214 

(CHSE) cells, and after 8 days, the presence of cell-associated virus was detected by an ELISA-method, 
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as reported earlier [30]. Individual sera from each group were pooled, and half of the pooled sera were 

heat inactivated (HI; 56 °C for 30 min). Assays for both HI and not heat inactivated (NHI) sera were 

repeated 3 times for all samples. Two-fold dilutions of either HI or NHI serum were added in duplicate 

to a 96-well microtiter plate with maintenance media (MM; Minimum essential medium eagle (MEM) 

supplemented with 2% Foetal bovine serum (FBS)), giving a final dilution range from 1:20 to 1:640 

(1:160 to 1:5,120 for the CpG/polyI:C-treated groups) when 100 µL of virus supernatant SPDV (SAV 

Subtype 1 isolate, 6,000 TCID50/mL) were added to the wells containing salmon serum dilutions. 

Neutralizing effects in serum were expressed as the highest reciprocal titres showing a >50% reduction 

of the positive control OD value using the following formula: 

50% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑂𝐷 =  
   𝑣𝑖𝑟𝑢𝑠 𝑐𝑡𝑟𝑙 𝑂𝐷 −   𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑐𝑡𝑟𝑙 𝑂𝐷 

2
  

2.6. SAV nsP1 RT-qPCR Detection 

To measure SAV levels during the viraemic phase, a quantitative real-time RT-PCR (RT-qPCR) 

was performed on viral RNA extracted from sera 3 wpc from 10 individuals per group, as described 

previously [26]. Non-structural protein 1 (nsP1) primers and the probe used for this assay are described 

in Table 1. Individual Cq-values were transformed to relative numbers by the following formula, 

where y represents the lowest Cq-value detected (i.e., the highest number of nsP1 transcripts) and 

where x is any of the other Cq-values detected: 

RelCq(x) = 2
(y−x)

  

A sample was considered infected when it had a relative value between 1.0 × 10
0
 and the cut off 

value of 3.0 × 10
−7

 (x = 37.5). 

2.7. Histopathology 

Heart samples for detecting SAV-induced lesions were collected from 15 fish/group at 5 and  

6 weeks post-challenge and immediately fixed in 3.5% formaldehyde in buffered saline at pH 7.0  

(4.0 g NaH2PO4·2H2O, 6.5 g Na2HPO4·2H2O, 100 mL 35% formaldehyde and 900 mL dH2O). To 

evaluate the severity of SAV-induced heart lesions, a previously defined scoring system was used  

(no lesion: 0; minimal: 1; mild: 2; moderate: 3; severe: 4), where scores of 2 and more are defined to 

be specifically induced by an SAV infection [41]. The lesion scoring was done by Marian McLoughlin 

(Aquatic Veterinary Services, Belfast, Ireland) using ―blinded‖ heart samples. 

2.8. Data Analyses 

All analyses were done in GraphPad Prism 5.0 if not mentioned otherwise. Differences in 

protection (SAV nsP1 RT-qPCR and histology) were statistically evaluated by the Kruskal-Wallis rank 

sum test with p < 0.05 as the significance limit, followed by Dunn’s post hoc test at a 5% level of 

significance. The histology test parameter used for statistical analysis was the severity of heart lesions, 

scored on the ordinal scale (0–4). Statistical analysis of the SAV nsP1 RT-qPCR used the individual 

Cq-values of each group as the test parameters. A modified expression of the relative percent 

protection score (RPPsc.) [29] was used to evaluate the level of protection against SAV induced by the 
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tested treatments, based on the results obtained with the experimental methods (SAV-induced heart 

lesions histology or SAV-specific RT-qPCR assay). The advantage with this modified RPPsc. method 

is that the actual differences in degrees of severity of disease between the affected animals for the 

treated and control groups are taken into consideration. RT-qPCR data were statistically analysed by 

the Relative Expression Software Tool (REST 2009 v.2.0.13) [39]. 

Table 2. Primers and probe sequences for quantitative reverse-transcriptase PCR and PCR efficiency. 

GENES ASSAY 
PRIMERS

/PROBE 
SEQUENCE (5'–3') 

PCR 

EFFICIENCY 

ACCESSION 

NO. 

CD4-1 
Fw/Rev 200 nM 

Probe 200 nM 

Forward 

Reverse 

Probe 

GAATCTGCCGCTGCAAAGAC 

AGGGATTCCGGTCTGTATGATATCT 

[6FAM]CCCAAACCAAAAGGATTC[BHQ1] 

1.78 
 

EU409792 

CD4-2a 
SYBR® Green  

3.75 µM 

Forward 

Reverse 

TGCAAAGAAGGCGCAGAT 

GAAAACCTTTAATTTAACAGG 
1.76 

 

EU409793 

CD8a 
Fw/Rev 450 nM 

Probe 250 nM 

Forward 

Reverse 

Probe 

CGTCTACAGCTGTGCATCAATCAA 

GGCTGTGGTCATTGGTGTAGTC 

[6FAM]CTGGGCCAGCCCCTAC[BHQ1] 

1.74 
 

AY693391 

EF1aB 

Fw/Rev 900 nM  

Probe 250 nM 

SYBR Green* 3.75 µM 

Forward * 

Reverse * 

Probe 

TGCCCCTCCAGGATGTCTAC 

CACGGCCCACAGGTACTG 

[6FAM]AAATCGGCGGTATTGG[BHQ1] 

2.09/2.16 * 

 

 

BG933897 

IFNa1 SYBR Green 3.75 µM 
Forward 

Reverse 

CCTTTCCCTGCTGGACCA 

TGTCTGTAAAGGGATGTTGGGAAAA 
2.0 

AY2169594 

AY2169595 

IFNγ 
Fw/Rev 900 nM 

Probe 250 nM 

Forward 

Reverse 

Probe 

AAGGGCTGTGATGTGTTTCTG 

TGTACTGAGCGGCATTACTCC 

[6FAM]TTGATGGGCTGGATGACTTTAGGA 

[BHQ1] 

2.0 
 

AY795563 

mIgM 
Fw/Rev 200 nM 

Probe 200 nM 

Forward 

Reverse 

Probe 

CCTACAAGAGGGAGACCGA 

GATGAAGGTGAAGGCTGTTTT 

[6FAM]TGACTGACTGTCCATGCAGCAACAC

C[BHQ1] 

2.0  

Mx1/2 
Fw/Rev 900 nM 

Probe 250 nM 

Forward 

Reverse 

Probe 

GATGCTGCACCTCAAGTCCTATTA 

CGGATCACCATGGGAATCTGA 

[6FAM]CAGGATATCCAGTCAACGTT[BHQ1] 

1.96 

 

U66475/U6647

6 

PAX5 
Fw/Rev 200 nM 

Probe 200 nM 

Forward 

Reverse 

Probe 

CCACTGCCAGGTCGAGA 

GTCAGCGAGGAGGTGGAGTA 

[6FAM]CCCCGGCTATCCACCACACG[BHQ1] 

1.85  

sIgM 
Fw/Rev 900 nM 

Probe 250 nM 

Forward 

Reverse 

Probe 

CTACAAGAGGGAGACCGGAG 

AGGGTCACCGTATTATCACTAGTTT 

TCCACAGCGTCCATCTGTCTTTC 

1.94 
 

BT060420 

Vig-1 
Fw/Rev 900 nM 

Probe 250 nM 

Forward 

Reverse 

Probe 

AGCAATGGCAGCATGATCAG 

TGGTTGGTGTCCTCGTCAAAG 

[6FAM]AGTGGTTCCAAACGTATGGCGAATA

CCTG[BHQ1] 

1.94 
 

BT047610 

Q_nsP1 
Fw/Rev 900 nM 

Probe 130 nM 

Forward 

Reverse 

Probe 

CCGGCCCTGAACCAGTT 

GTAGCCAAGTGGGAGAAAGCT 

[6FAM]CTGGCCACCACTTCGA[BHQ1] 

- 
 

AY604235 

Fw; forward. Rev; reverse. * The same primers were used for SYBR Green as for TaqMan.  
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3. Results 

3.1. Immune Genes 

Transcription levels of selected antiviral innate genes, as well as selected B- and T-cell markers 

were analysed at 12 and 48 hpv in HK (Figure 1) and spleen (Figure 2) for the vaccine formulations in 

relation to the control group. It is worth noting the often high standard deviations underlining the 

highly individual immunological response, which is common in fish. Tables with average Cq-values 

are included as supplementary material. 

Figure 1. Relative expression of (A) antiviral, (B) B- and (C) T-cell markers in head 

kidney at 12 and 48 hpv for all treatments compared to saline-treated fish (expression is 

normalized to reference gene EF1aB). Relative expression is presented as histograms (the 

colour codes for each gene analysed are indicated below the histograms) calculated from 

fold induction by Pfaffl’s method (see Materials and Methods), and significant up- or 

down-regulation is based on data from REST 2009. Significant differences for all 

treatments compared to SAV Ag are highlighted with an *, against SAV Ag vhsG as Δ and 

against SAV Ag CpG/polyI:C as °, + or −, respectively, indicates the presence or absence 

of either SAV Ag, oil, CpG/polyI:C or vhsG. 
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Figure 2. Relative expression of (A) antiviral, (B) B- and (C) T-cell markers in spleen at 

12 and 48 hpv for all treatments compared to saline-treated fish (expression is normalized 

to reference gene EF1aB). Relative expression is presented as histograms (the colour codes 

for each gene analysed are indicated below the histograms) calculated from fold induction 

by Pfaffl’s method (see Materials and Methods), and significant up- or down-regulation is 

based on data from REST 2009. Significant differences for all treatments compared to 

SAV Ag are highlighted with an *, against SAV Ag vhsG as Δ and against SAV Ag 

CpG/polyI:C as °, + or –, respectively, indicates the presence or absence of either SAV Ag, 

oil, CpG/polyI:C or vhsG. 

 

Results showed that IFNa1, IFNγ and two antiviral proteins induced by IFNs (Mx and Vig-1) were 

strongly induced by the CpG/polyI:C-adjuvanted treatments, which confirms earlier findings [30]. In 

detail, for the CpG/polyI:C-adjuvanted treatments, IFNγ were highly upregulated at both time points in 

HK (Figure 1A; 60–150-fold) and spleen (Figure 2A; 50–100-fold), which was not seen for any of the 

other treatments. IFNγ is a cytokine secreted by T- and NK-cells and important for both innate and 

adaptive immune responses against viral infections. Upregulation of IFNa1 in HK and spleen for 

CpG/polyI:C-treated groups was significantly higher at 12 hpv than at 48 hpv, when a 10-fold 

reduction was seen. This is consistent with the fact that Type I IFN is an early induced innate antiviral 

actor, and in accordance, the antiviral genes, Vig-1 and Mx (induced by IFN Type I), accompanied the 
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IFNa1-induction and were still highly expressed at 48 hpv in the CpG/polyI:C-treated groups with 

approximately a 40-fold induction in spleen and 100-fold for HK. Generally, the antiviral immune 

gene expression pattern seen for SAV Ag alone and for the formulations without CpG/polyI:C was 

moderate in both organs (zero- to two-fold in general). In HK, SAV Ag alone induced a low, but 

significant, upregulation of IFNγ, Vig-1 and Mx at 48 hpv compared to control fish. Antiviral gene 

responses in HK for vhsG immunized fish were in general moderate and not significantly higher than 

those in the other groups, except for the CpG/polyI:C-treated groups. Compared to SAV Ag 

CpG/polyI:C, the immune gene expression patterns for SAV Ag CpG/polyI:C vhsG were similar in 

both organs, except a slight, but significant, upregulation of IFNa1 and Vig-1 in HK at 48 hpv and 

downregulation of IFNγ in spleen at 48 hpv. In spleen at 48 hpv, IFNa1 was significantly upregulated 

in all vhsG-treated groups compared to SAV Ag alone (0.8- to 2.3-fold). Besides that, the expression 

pattern levels in spleen were similar to those in HK. 

PAX5, soluble (s) and membrane-bound (m) IgM were chosen as B-cell markers. PAX5 belongs to 

the family of paired box transcription factors and is present during early B-cell development, but must 

be repressed for plasma cell differentiation to take place [42]. Expression of mIgM often occurs in 

parallel to PAX5, and the ratio of mIgM vs. sIgM is important in relation to B-cell development. Early 

and developing B-cells have higher levels of mIgM and no or low sIgM levels, whereas a shift in their 

ratio indicates the presence of antibody producing B-cell populations [43]. In general, induction of all 

three B-cell markers was low at both time points, and the expression pattern varied for the two immune 

organs. At 12 hpv, a slightly higher expression of PAX5 and mIgM was measured in HK (Figure 1B) 

for vhsG-treated groups with fold inductions from two to four compared to the other treatments 

(approximately 1.5 to 2.5). PAX5 was the only B-cell marker induced at 12 hpv in HK of fish treated 

with SAV Ag, SAV Ag oil or SAV Ag CpG/polyI:C. At 48 hpv, a slight increase of mIgM from  

0.8- to 1.5-fold was present for these latter groups, which could indicate a later onset of early B-cell 

development in groups not receiving vhsG. In spleen (Figure 2B), no clear expression pattern could be 

seen, and the B-cell markers were hardly detectable until 48 hpv, except for the SAV Ag  

CpG/polyI:C-treated group, where both PAX5 (2.4-fold) and mIgM (2.3-fold) were induced at 12 hpv. 

At 48 hpv, the expression of PAX5 was reduced, and both sIgM and mIgM were induced for fish 

treated with SAV Ag CpG/polyI:C and SAV Ag CpG/polyI:C vhsG. 

Co-receptors for T-helper cells (CD4) and cytotoxic T-cells (CD8) were used as T-cell markers to 

further study early adaptive responses. Atlantic salmon contain two shorter CD4 domain molecules 

(CD4-2a and -2b) in addition to the four classical (CD4-1) domains [44]. To determine which T-cell 

subsets were activated, both CD4-1 and CD4-2a, in addition to CD8α transcript levels were measured 

in HK (Figure 1C) and spleen (Figure 2C) at 12 and 48 hpv. As for B-cell markers, the general 

induction of T-cell markers in both organs was low and, with a few exceptions, their mRNA levels 

differed little between treatments and sampling time points. As the supplementary data show, the basal 

levels of CD4-2a (average Cq-values of 29.7 and 27.5 at both time points for HK and spleen, 

respectively) were higher in both tissues and at both time points compared to CD4-1 (average  

Cq-values of 33.6 and 32.4 at both time points for HK and spleen, respectively), although CD4-2a 

levels were not affected in the two organs at either time point. CD4-1 and CD8α were the most highly 

upregulated in HK at 12 hpv in groups co-injected with vhsG, ~2.3- to four-fold for both markers, 

which declined to an average of 1.3-fold for both CD4-1 and CD8α over the next 36 h. At 48 hpv, 



Vaccines 2014, 2 238 

 

 

CD4-1 and CD8α levels in HK were significantly higher for the SAV Ag alone treatment (2.6 and 2.2, 

respectively) compared to the other treatments (0.8–1.4 for CD4-1 and approximately 1.25 for CD8α). 

In spleen, the overall expression levels of T-cell markers were very low at both 12 and 48 hpv, except 

at 48 hpv for SAV Ag CpG/polyI:C vhsG and vhsG alone, where both CD4 markers were upregulated.  

3.2. SAV Neutralizing Ab Responses 

The presence of anti-SAV neutralizing responses in sera was measured at 6 wpv and at three and  

6 wpc by a viral neutralization assay. It is well known that heat sensitive factors in serum may augment 

the neutralizing activity of Ab [45], and therefore, neutralizing activity was measured both with HI and 

NHI sera. For the NHI sera (Figure 3A), detectable neutralizing antibody titres (nAbTs) were present 

from 6 wpv for all groups, except groups treated with SAV Ag oil vhsG, vhsG alone or saline. The 

highest nAbTs were found in the SAV Ag CpG/polyI:C-treated group with titres of 640 before 

challenge that rose to 1280 and further to 2560 at three and 6 wpc, respectively. Fish treated with SAV 

Ag CpG/polyI:C that also received the vhsG i.m. injection showed the second highest nAbTs of 640 

and 320 at 6 wpv and 3 wpc, respectively and 640 at 6 wpc. While all groups receiving a SAV Ag 

formulation, except the SAV Ag oil vhsG group, mounted a detectable neutralizing response before 

challenge, groups receiving either vhsG alone or saline had detectable nAbTs first after challenge. For 

vhsG alone and saline, the nAbTs are most likely induced upon exposure to the challenge virus, with 

titres of 80 (3 wpc) and 160 (6 wpc) for vhsG and 160 for saline at both three and 6 wpc. For HI sera, 

nAbTs were only present in three groups pre-challenge (Figure 3B). CpG/polyI:C-adjuvanted 

treatments provided the highest responses, with nAbTs ranging from 640 at 6 wpv to 1,280 at 6 wpc 

for SAV Ag CpG/polyI:C, and for SAV Ag CpG/polyI:C vhsG, the generation of nAbs was consistent 

with a titre of 160 at all sampling points. No positive sera were found among the fish injected with 

SAV Ag, SAV Ag oil or SAV Ag oil vhsG, while SAV Ag vhsG had detectable nAb responses both 

pre- and post-challenge. Fish treated with vhsG and saline, where >80% of the fish in both groups had 

positive SAV-specific heart lesions at 6 wpc (Figure 4B), showed detectable nAbTs at 6 wpc (80 for 

both treatments). 

3.3. Protection 

Six weeks after vaccination, all fish were challenged by cohabitation with an SAV Subtype 3 

isolate, and vaccine-induced protection was measured at three, five and 6 wpc (Figure 4). No mortality 

was observed after challenge. At 3 wpc, during the viraemic phase [46], viral RNA from sera were 

isolated, and SAV nsP1 transcript levels were detected by RT-qPCR. At 3 wpc, 70% (seven out of  

10 fish) of the saline-treated fish had SAV positive sera, thus indicating a successful challenge (Figure 4A). 

Four of the six water-formulated SAV Ag treatments, namely SAV Ag, SAV Ag CpG/polyI:C, SAV 

Ag vhsG and SAV Ag CpG/polyI:C vhsG, provided full protection (RPPsc. = 100%) against SAV at  

3 wpc, with non-detectable Cq-values. For the two oil-formulated groups, SAV Ag oil and SAV Ag oil 

vhsG, 20% and 10% of the fish had nsP1 positive sera, leading to RPPsc. of 71.4% and 85.7%, 

respectively. Furthermore, based on the prevalence of viremia determined by nsP1 RT-qPCR, there 

was a significant difference between all water- and oil-formulated SAV Ag treatments compared to 

saline-treated fish, except for SAV Ag oil (RPP.sc. = 71%). The prevalence of nsP1 positive fish in the 
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group treated with vhsG alone (nine out of 10 serum positive fish) was significantly higher than the 

prevalence in the other treatment groups, except the saline group. Protection for the vhsG alone 

treatment was less than for the saline injected fish with an RPPsc. of −0.28%. 

Figure 3. Vaccine-induced anti-SAV neutralizing titres from not heat inactivated (A) and 

heat inactivated (B) sera, collected at 6 wpv, 3 wpc and 6 wpc (the colour codes for each 

time point are next to the y-axis). Titres representing a 50% reduction, calculated as 

described in the Materials and Methods, are shown above the histogram corresponding to 

each treatment. + or −, respectively, indicates the presence or absence of either SAV Ag, 

oil, CpG/polyI:C or vhsG. 

 

Heart tissue was sampled at five and 6 wpc to evaluate the severity of SAV-induced heart lesions by 

histological scoring. Protection based on the reduction of the severity of SAV-induced heart lesions 

was comparable to the protection shown through the reduction of the prevalence of viremia at 3 wpc 

for all treatments. Here, only histology data for 6 wpc are presented (Figure 4B), given that the 

prevalence of fish with SAV-specific heart lesions in the control group was highest at 6 wpc (80% vs. 

60% at 5 wpc), where 10 out of 12 individuals had severe heart lesions. Further, at 6 wpc, lesions in 

the group vaccinated with SAV Ag oil vhsG were reduced, and only one out of 15 fish showed 

moderate lesions (RPPsc. 83.3%). The group treated with SAV Ag oil had an RPPsc. of 58.3%, and 

five fish showed mild to severe lesions, compared to an RPPsc. of 100% at 5 wpc (not shown), with 

only two fish showing minimal heart lesions. However, there was no significant difference in 

protection for that treatment between both time points. 
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Figure 4. Protection against pancreas disease (PD) in vaccinated and control groups based 

on (A) the reduction of the prevalence of viremia and (B) the reduction in severity of  

SAV-specific heart lesions. (A) Relative SAV nsP1 expression at 3 wpc measured by SAV 

nsP1 RT-qPCR for each treatment group. Individual Cq-values were transformed to RelCq 

numbers, as described in the Materials and Methods. One (1.0 × 10
0
) indicates the highest 

presence of nsP1 transcripts. Sera below the dotted line (cut off; 3.0 × 10
−7

) were 

considered negative, and sera below the solid line had undetected Cq-values. Relative SAV 

nsP1 values are presented as black (<3.0 × 10
−7

) and blue (≥3.0 × 10
−7

) dots. (B) The 

distribution of individual heart lesion scores assessed by histology at 6 wpc for each 

treatment group. A score of ≥2 was set as the cut off (indicated by the dotted line). 

Individual heart lesion scores are presented as black (<2) and blue (≥2) dots. Relative 

percent protection score (RPPsc.) values corresponding to each group are shown above 

Graphs A and B. + or −, respectively, indicate the presence or absence of either the SAV 

Ag, oil, CpG/poly I:C or vhsG DNA construct. 

 

4. Discussion 

How innate and adaptive immunity interact upon vaccination affects the outcome of protection. 

Especially, TLRs, included in the PRR-family, have emerged as key components of the innate immune 

system, activating signals critically involved in the initiation and maintenance of adaptive responses. 

Thus, TLR stimuli can be exploited as powerful adjuvants to elicit both primary and anamnestic 

immune responses. In light of this, our group used a combination of a selected CpG ODN [47] and a 
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synthetic dsRNA (polyI:C), known to activate PRR-family members specialized in viral and nucleic 

acid detection (TLR-3, -9, -22 and RIG I), as a model to study the mechanisms of adjuvant action in 

bony fish. We showed that this TLR-ligand adjuvant combination induced a strong modulation of core 

response genes and increased levels of nAbs [30]. 

Here, to follow up and to extend this model, the CpG/poly I:C combo was i.p. injected alone or 

combined with an i.m. injection of the VHSV G DNA genetic adjuvant. Montanide ISA763A was 

included as a control adjuvant, i.p. injected in combination with the genetic adjuvant. This was to 

determine if any enhanced protective responses were induced, since oil-adjuvanted formulations 

previously had provided a lower protection, most likely due to depot effects [29,30]. An inactivated 

SAV whole-virus formulation was used as the test Ag and injected i.p. with the same suboptimal dose 

for all formulations, hypothesized to give about 70% protection based on previous unpublished results. 

However, in the present SAV challenge, fish injected with SAV Ag alone were fully protected (RPPsc. 

of 100%), thus preventing the detection of differences in protection between non-oil-based treatments. 

SAV Ag formulated with Montanide ISA763A oil had a lower efficacy (RPPsc. of 58.3%–85.7%) and 

produced lower nAb titres (25%–70% reduction) compared to the formulations receiving the 

equivalent water-based formulation, a difference that could be explained by the slower release of the 

Ag from the vaccine depot for the oil-adjuvanted formulations. 

Correlating to earlier reports, the present CpG/polyI:C formulation induced a distinctively higher 

upregulation of early innate antiviral transcripts (IFNa1, Vig-1 and Mx) and also higher titres of nAbs 

compared to all other treatments [26,29,30]. nAbs are thought to be the primary correlate of protection 

against SAV [7,9,10], and the results suggest that an efficient clearance of virus mediated by Ab is 

possible. Interestingly, IFNγ expression levels were highly elevated in the CpG/poly I:C-adjuvanted 

groups. IFNthe hallmark of Th1 responses in mammals, is produced mainly by activated T-cells, NK 

cells and NKT cells; however, other cells, including macrophages/DCs, as well as B-cells are known to 

express IFN upon CpG-stimulation [48]. In support of this, a recent paper showed that salmon 

MHCII-positive mononuclear phagocytes, as well as B-cells and putative T-cells showed highly 

upregulated IFN transcript levels upon CpG-stimulation [49]. Since IFN has been shown to 

upregulate TLR9 expression in salmon leukocytes [22], the increased levels of this cytokine may 

represent a positive feed-back loop, where the secreted IFN upregulates the TLR9 receptor, and 

thereby, the cell’s responsiveness to its own agonist are increased. 

In higher vertebrates, B-cells activated via PRRs and/or by Ag cross-linking of the B-cell receptor 

rapidly respond, proliferate and differentiate into IgM secreting short-lived plasma cells (SLPC). T-cell 

help is needed to induce long-term B-cell memory, represented by memory B-cells or long-lived 

plasma-cells (LLPC) [50,51]. Bony fish Ab secreting cells (ASCs) are known to possess comparable 

B-cell subpopulations [52]; however, the understanding of the mechanisms by which these 

subpopulations are produced and distributed is scarce. Since germinal centres and antibody isotype 

shifting are not found in bony fish, the classical T-helper function in fish can be questioned. It is thus 

possible that CpG ODNs (through PRRs) can activate salmon B-cells directly, so that once activated, 

they start to proliferate and mature into ASCs. This would allow polyclonal activation of the entire  

B-cell pool, which has been demonstrated for mammalian B-cells [53,54]. Salmon B-cells express 

TLR9 and are responsive to their own agonist, CpG DNA [55]. Here, the CpG/poly I:C-adjuvanted 

vaccines were injected into the peritoneum, and recent studies have revealed that IgM-positive cells 
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dominate the peritoneal cavity of unstimulated rainbow trout [56]. Upon inflammatory stimulation, 

these IgM positive cells were found at high levels 72 h post-injection. Since bony fish B-cells are 

phagocytic [57], it is possible that the vaccine can be engulfed by B-cells in the peritoneum and 

directly activated by CpG ODNs to differentiate into ASCs or, alternatively, migrate into secondary 

immunological organs, such as HK or spleen, and at those sites become ASC. This interesting 

possibility should be further elucidated in future studies. 

Moreover, Desvignes et al. [9] have previously suggested that the complement in general might aid  

in the clearance of SAV. Other studies have since then shown that salmonid Abs are dependent  

on complement activity to neutralize VSHV and IHNV [58,59], which both are enveloped viruses. 

SAV is also an enveloped virus; hence, it is possible that complement factors are involved in SAV 

neutralization, as well. A previous study indeed showed induced levels of complement component C4 

(classical pathway) in salmon treated either with saline or with CpG/polyI:C after SAV challenge [29]. 

In this study, a major fraction of the nAb titres were heat sensitive, underlining the involvement of the 

complement system in the clearance of SAV. The addition of naive salmon serum as the complement 

source was evaluated in the virus neutralization assay using HI sera samples. Interestingly, for the sera 

with low titres, i.e., SAV Ag CpG/poly I:C vhsG, the fresh complement increased nAbs, while for the 

high titre group (SAV Ag CpG/poly I:C), there was no increase in nAbs (results not shown). A 

possible explanation for the variation in the results for the different groups could be that in the groups 

with very high nAbT, the neutralizing activity by the Abs per se is very efficient, and therefore, the 

complement does not provide any additional effect. In the groups with lower nAbT, the results  

indicate that combining the complement and Abs increases neutralization, supporting a role of  

complement-mediated neutralization, for example, by the classical complement pathway. Further 

studies aimed at elucidating the significance of the complement for the neutralizing responses need to 

be addressed. 

B- and T-cell markers were, in general, not, or very modestly, induced for all formulations tested, 

which could be due to the early sampling time points. The results show that fish treated with SAV Ag 

CpG/polyI:C had a slight, but notable, increase of PAX5 transcripts levels at 12 hpv in both HK and 

spleen. In spleen, PAX5 induction occurred in parallel to that of mIgM at 12 hpv, while at 48 hpv, 

PAX5 expression was reduced and mIgM remained stable. This indicates that an early B-cell 

development takes place [43]. In rainbow trout, activated B-cells differentiate into plasmablasts and 

plasma cells (PC), both in HK and spleen, and are distributed through the blood system to peripheral 

tissues [43,52], where hydroxyurea-resistant PC can migrate back to the anterior kidney and may 

persist there as LLPCs. In mammals, LLPCs are generated by migration to a supportive niche in the 

bone marrow [50]. The ability of LLPCs to produce Ab for months to years without the stimulating Ag 

relies on specialized cues. One suggested cue is Type I IFN, which, when injected as an adjuvant in 

mice, has been shown to induce both short- (10 dpv) and long-lived (26 wpv) Ab production [60]. It 

has been suggested that the signals induced by Type I IFN affect either migration to survival niches or 

differentiation of PC [61]. It may well be possible that CpG/polyI:C through its strong induction of 

Type I IFN could enhance the generation of a, if present, similar long-lived Ab production in salmon, 

and our intent is to further investigate this aspect. 

The immunological mechanisms behind the full protection provided by SAV Ag alone have been 

reasoned to depend on a T-cell independent (TI) nAb response, as that formulation did not induced an 



Vaccines 2014, 2 243 

 

 

antiviral immune gene response at 5 dpv [30]. Here, a moderate induction of IFNa1, Mx, Vig-1 and 

IFNγ was evident in HK of fish treated with SAV Ag alone at 12 hpv. Inactivated viral Ags based on 

other enveloped viruses have been shown to trigger IFN responses [62,63]. Here, the actual mechanism 

responsible for the IFN responses observed in vivo with SAV Ag alone is unknown; nonetheless, by 

analogy with other alphaviruses, it can be hypothesized that the inactivated SAV particles present in 

the Ag preparation might induce the Type I IFN response seen, possibly through binding to the 

mannose receptor of N-glycans present on SAV E2, as observed for other alphaviruses [64] and other 

enveloped viruses [63]. The effect that the moderate induction of innate responses has on cellular 

immunity later in the course of the challenge is complex to interpret, owing to the limited knowledge 

on cellular immunity against viral infections in fish. Interestingly, NHI sera from fish treated with 

SAV Ag alone displayed nAb activity, while there was no detectable nAbT in HI sera for the group 

receiving SAV Ag alone. This variation between NHI and HI sera emphasizes the importance of the 

complement in the clearance of SAV and also the suggested ability of CpG to activate B-cells 

polyclonal through TLR 9, based on the high generation of heat-stable nAbs evident here for SAV Ag 

CpG/polyI:C compared to SAV Ag alone. 

To our knowledge, very few studies have been performed on teleost to investigate the 

immunostimulatory and protective effects of an i.p. vaccine injected simultaneously with a DNA-based 

adjuvant injected i.m. The efficacy of the DNA vaccines based on the glycoprotein G from VHSV and 

IHNV are well-documented; these vaccines have been shown to induce a long-lasting protection against 

these viruses [65,66], and a commercial IHNV-G DNA vaccine is approved for use in Canadian 

aquaculture [67]. An early induced cross-protection after VHSV G DNA vaccination has been seen 

following infection with nodavirus in turbot (Scophthalmus maximus) [68] and with the heterologous 

Novirhabdovirus IHNV in rainbow trout. This study also showed that the DNA expressed G protein 

does not confer protection against bacterial diseases [69], hence emphasizing that the early non-specific 

protection provided is purely antiviral. In one study on rainbow trout [70], two or four CpG motifs 

were incorporated into the plasmid backbone along with VHSV G open reading frame, and this 

modified DNA vaccine gave significantly higher immune responses (Mx and IFNγ) and a significantly 

higher production of anti VHSV nAb compared to when plasmid without CpG motifs were administered. 

Based on these findings, it was hypothesized that the G protein might be able to contribute with a  

non-specific antiviral protection also against an SAV infection. As evident here, VHSV G glycoprotein 

DNA vaccination showed no additive effects on early protective responses against SAV. Furthermore, 

co-injecting vhsG with CpG/poly I:C or oil-adjuvanted SAV Ag neither caused additive nor synergistic 

effects on the immune gene expression. Muscle samples (n = 8) harvested at 48 hpv from vhsG  

co-injected groups were analysed for vhsG-transcripts, and the levels varied between individual fish, 

where some individuals had undetectable vhsG mRNA levels (results not shown). The low 

transcription of vhsG in muscle and the weak effect on innate immune gene expression could be 

explained by the relative early sampling time points. Indeed, studies on rainbow trout have shown that 

it can take as long as 14 dpv (earlier samplings at two and 7 dpv did not show any expression) before 

ISGs are significantly upregulated in spleen [70], and similar results in the liver of rainbow trout [71] 

and kidney of Japanese flounder (Paralichthys olivaceus) [72] have also been described. Protective 

immune responses observed after challenge in G DNA-vaccinated rainbow trout have been related to 

increased Mx expression and other ISGs [31,35,73], preceded by the upregulation of IFN Type I  
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and II [35,74]. This early non-specific protection has been followed by a more specific long-lasting 

anti-viral response, based on both humoral (nAb) and cellular protective mechanisms (MHCII,  

T-cells) [73,75,76]. Interestingly, both B- and T-cell markers analysed for all vhsG formulations in this 

study had the highest expression compared to all other groups and were most distinct at 12 hpv in HK. 

This could indicate that the glycoprotein G has been expressed, and the high standard deviations 

indicate a high variation between individuals related to either immune gene expression profile and/or 

of vhsG expression. 

In regards to humoral immunity, diverse responses were seen in the different groups i.m. injected 

with vhsG. While the SAV Ag oil vhsG treatment showed reduced nAbs titres compared to SAV Ag 

oil, the water-based SAV Ag formulation co-injected with vhsG had higher titres than SAV Ag alone 

at both 6 wpv and 6 wpc. Finally, a reduction in neutralizing responses was present when vhsG was 

co-injected with the SAV Ag CpG/polyI:C formulation, and the NHI nAbTs were reduced by half or 

more at all three time points compared to SAV Ag CpG/polyI:C. These data show that vhsG induced a 

slightly higher production of nAbs for the SAV Ag-treated fish co-injected with vhsG, and it also 

suggests the presence of factor(s) that cause a reduction in humoral responses when CpG/polyI:C-

adjuvanted SAV Ag is co-injected with vhsG. For both mammals and teleosts, it has been shown that 

polyvalent vaccination often negatively affects the generation of specific Ab [77–79]. Skinner et al. [78] 

have shown that concurrent i.p. vaccination of a polyvalent oil vaccine with i.m. injection of a 

rhabdovirus-specific DNA vaccine delayed seroconversion of IHNV-specific nAb compared to DNA 

vaccination alone. The negative effects on nAbT when SAV Ag CpG/poly I:C was co-injected with the 

vhsG vaccine can thus have several explanations, such as antigenic competition or Ag immunodominance. 

However, without the possibility of analysing the presence of vhsG-specific Ab (due to the limited 

amount of sera remaining), neither explanation can be claimed for certain. 

5. Conclusions 

To summarize, the vaccine based on a suboptimal dose of inactivated SAV whole virus Ag 

formulated with CpG/polyI:C induced the highest nAb responses, followed by the combined treatment 

of SAV Ag vhsG and, finally, the oil-adjuvanted SAV Ag formulation. The expression of several 

innate antiviral immune genes showed consistently elevated levels in the groups injected with 

CpG/polyI:C compared to the other adjuvants tested. B- and T-cell markers were, in general, not, or 

very modestly, induced for all formulations tested. For groups receiving the vhsG DNA vaccine, no 

antiviral immune gene expression was detected at these early time points, but as indicated by 

Martinez-Alonso et al. [70], a later induction could be possible. Pre-challenge humoral responses for 

SAV Ag co-injected with vhsG had slightly higher levels of both heat-sensitive and heat-stable 

neutralizing factors compared to SAV Ag alone, suggesting a very moderate adjuvant effect of vhsG. 

No enhancement of nAbs responses was evident when co-injecting vhsG with the TLR-ligand-adjuvanted 

SAV Ag formulation. Instead, a negative influence was observed, which may result from Ag competition. 

Overall, these data show that CpG/polyI:C is a potent TLR-ligand combo, which could be used in 

future salmonid vaccination strategies against SAV. Further work should be aimed at investigating the 

duration of the efficacy of these TLR-ligands as adjuvants, while at the same time facilitating their 

administration. One potential strategy may be to protect the TLR-ligand/Ag formulation from degradation 



Vaccines 2014, 2 245 

 

 

by encapsulating them in protective vehicles, such as nanoparticles, as recently described in [80]. 

Considering the potency of the TLR-ligand combo tested here, one can anticipate that CpG/polyI:C 

used as an adjuvant in an SAV Ag formulation could provide an Ag dose-sparing effect. 
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