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Abstract: Preventing SARS-CoV-2 infection is of utmost importance in allogeneic hematopoietic
cell transplantation patients (allo-HCT), given their heightened susceptibility to adverse outcomes
associated with SARS-CoV-2 infection. However, limited data are available regarding the immune
response to COVID-19 vaccines in these subjects, particularly concerning the generation and per-
sistence of spike-specific memory response. Here, we analyzed the spike-specific memory B cells
in a cohort of allo-HCT recipients vaccinated with multiple doses of the mRNA-1273 vaccine and
monitored the spike-specific antibody response from baseline up to one month after the fourth dose.
After the primary vaccine series, the frequency of spike-specific B cells, detected within the pool
of Ig-switched CD19+ cells, significantly increased. The booster dose further induced a significant
expansion, reaching up to 0.28% of spike-specific B cells. The kinetics of this expansion were slower
in the allo-HCT recipients compared to healthy controls. Spike-specific IgG and ACE2/RBD binding
inhibition activity were observed in 80% of the allo-HCT recipients after the first two doses, with a
significant increase after the third and fourth booster doses, including in the subjects who did not
respond to the primary vaccine series. Additionally, 87% of the allo-HCT recipients exhibited positive
cross-inhibition activity against the BA.1 variant. Our findings provide evidence that allo-HCT
recipients need repeated doses of the mRNA-1273 vaccine to induceSARS-CoV-2 specific immune
response similar to that observed in healthy individuals. This is particularly crucial for vulnerable
individuals who may exhibit a limited response to the primary series of SARS-CoV-2 vaccination.

Keywords: mRNA-based vaccine; allogeneic hematopoietic cell transplantation recipients; vaccina-
tion; SARS-CoV-2; spike-specific memory B cells

1. Introduction

Patients undergoing autologous (auto) and allogeneic (allo) hematopoietic cell trans-
plantation (HCT) for hematologic malignancies have a higher risk of adverse outcomes
linked to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection com-
pared to the general population [1]. SARS-CoV-2 infection in allo-HCT recipients has shown
an associated mortality rate of around 20% compared to 1.8% observed in the overall pop-
ulation of the United States [1,2]. Additionally, HCT recipients tend to have a prolonged
shedding of SARS-CoV-2, leading to a prolonged duration of symptoms and fostering the
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emergence of highly mutated viruses [3]. Therefore, vaccination has been strongly recom-
mended and prioritized for these fragile patients. However, HCT recipients commonly
display variable and sometimes suboptimal immune responses to vaccines when compared
to healthy individuals [4,5]. This period of dysfunctional immunity linked to a heightened
risk of infections can be attributed to the diverse underlying pathology that impairs their
immune system functionality and to the administered therapies that leave them severely
immunocompromised for extended periods of time. [1,2,6]. Previous research on influenza
and pneumococcus vaccines has revealed a diminished antibody response in allo-HCT
recipients when compared to healthy individuals [7–9]. However, despite this weaker
response, influenza vaccination has shown clinical benefits in allo-HCT recipients [10].
With the introduction of novel mRNA vaccines, the FDA and EMA approved their use in
vulnerable populations in 2020. Subsequently, the Centers for Disease Control and Preven-
tion adjusted the initial two-dose primary series, strongly promoting the administration of
booster doses of mRNA vaccine for vulnerable populations [11]. While SARS-CoV-2 mRNA
vaccination has been demonstrated to generally induce elevated levels of antibodies in the
majority of HCT recipients after two vaccine doses, there are cases where some patients do
not develop a substantial immune response to SARS-CoV-2 vaccination [12]. Recent studies
have shown that administering a booster dose of mRNA SARS-CoV-2 vaccine significantly
improves spike-specific humoral immunity in HCT recipients who have shown a limited
response to the initial COVID-19 vaccine series [13]. This finding aligns with similar obser-
vations made in patients who have undergone solid-organ transplantation, highlighting the
significance of an extra vaccine dose for individuals who may have achieved suboptimal
humoral immune responses following the primary series of COVID-19 vaccination [14,15].
While the majority of immunogenicity studies on COVID-19 vaccination have focused on
analyzing the induction and durability of spike-specific antibody responses, limited data
are available on the induction and duration of memory B cell response. Understanding the
persistence of memory B cells is crucial as they play a crucial role in the immune system’s
capability to recognize and rapidly respond to pathogen re-exposure. In this study, we
conducted a longitudinal analysis to assess the production of spike-specific antibodies
and their capacity to bind the spike protein, and, most importantly, we examined the
spike-specific B cell response in allo-HCT recipients who received a four-dose regimen of
the mRNA-1273 vaccine. The analysis was performed from the baseline up to one month
after the fourth dose, allowing us to closely examine the immune response over time and
evaluate the induction and maintenance of spike-specific memory B cells in this fragile
population.

2. Materials and Methods
2.1. Study Participants

Blood samples were obtained from 56 adult allogeneic hematopoietic cell transplan-
tation recipients (allo-HCT) and from 34 healthy controls (HCs) who received up to four
doses of the mRNA-1273 (Spikevax, Moderna, Cambridge, MA, USA) vaccine. Among the
allo-HCTs, 89% completed the third dose, and of these, 80% also completed the fourth dose.
Among the HCs, all completed the third dose, while only 52% proceeded to the fourth dose.
According to national schedules, the first and second vaccine doses were administered
4 weeks apart. Subsequently, the third and the fourth doses were administered about
6 months after the previous ones (Figure 1). History of SARS-CoV-2 infection before vacci-
nation served as a criterion for exclusion. Participants were asked to respond to a survey
to gather information on infection contracted from the first vaccine administration up to
July 2022, including the date of the positive antigenic or molecular tests, performed on
self-administered or professional-collected nasopharyngeal swabs. Self-reported infected
subjects were symptomatic or were in contact with infected persons and did not include
people who could have contracted the infection in an asymptomatic way. All participants
provided written informed consent before joining the study. Enrollment took place at the
Cellular Therapy Unit, Azienda Ospedaliera Universitaria Senese (Siena, Italy). The study



Vaccines 2024, 12, 368 3 of 12

adhered to all pertinent ethical regulations, and the protocol received approval from the
local Ethical Committee for Clinical experimentation of Regione Toscana Area Vasta Sud
Est (CEAVSE), protocol code 19479 PATOVAC v1.0 of 3 March 2021, approved on 15 March
2021, and protocol code 18869 IMMUNO_COV v1.0 of 18 November 2020, approved on
21 December 2020. The study protocol was designed during the initial pandemic phase
when no data on immunogenicity and effectiveness of mRNA vaccine in allo-HCT re-
cipients were available. Therefore, the study was conceived as a pilot study without the
feasibility of calculating a sample size.
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Figure 1. Schematic representation of the study participants and design. Allogeneic hematopoietic
cell transplantation (allo-HCT) recipients (56 subjects) and healthy controls (HCs; 34 subjects) were
vaccinated with up to four doses of mRNA-1273 Moderna at day 0, 28, 180, and 360. Blood samples
were collected at pre v1 (day 0, baseline), pre v2, +30 v2 (before and 1 month post second dose), pre v3,
+30 v3 (before and 1 month post third dose), and pre v4, +30 v4 (before and 1 month post fourth dose).
Plasma samples were analyzed for spike-specific IgG and ACE2/RBD inhibition, while peripheral
blood mononuclear cells (PBMCs) were examined for spike-specific memory B cell response.

2.2. Plasma and Peripheral Blood Mononuclear Cells Isolation

Blood samples were collected at baseline (pre v1), before the second, third, and fourth
dose (pre v2, pre v3, and pre v4, respectively), and 30 days after the second, third, and
fourth dose (+30 v2, +30 v3, and +30 v4, respectively, as reported in Figure 1). PBMCs were
isolated by density-gradient sedimentation and cryopreserved as previously described [16].

2.3. ELISA and ACE2/RBD Inhibition Assays

The production of spike-specific IgG was assessed using recombinant SARS-CoV-2
Spike S1 + S2 ECD (1 µg/mL protein; Sino Biological, Eschborn, Germany) as a coating
following previously described procedures [16]. WHO international positive (NIBSC
20/150) and negative (NIBSC 20/142) controls were included in duplicate on each plate as
internal controls to guarantee assay reproducibility. ACE2/RBD inhibition was assessed
using a SARS-CoV-2 surrogate virus neutralization test (sVNT) kit (cPass™, Genscript,
Rijswijk, The Netherlands) according to the manufacturer’s protocol and as previously
detailed [16]. Inhibition values ≥ 30% were considered positive, while values < 30% were
considered negative, following the manufacturer’s guidelines.

2.4. Multiparametric Flow Cytometry

To analyze B cell populations and to identify SARS-CoV-2-specific B cells within PBMC
by flow cytometry, a multi-color panel was developed. PBMCs were incubated with the
BD human Fc block (BD Biosciences, Aalst, Belgium) for 10 min at RT. The cells were then
stained with the SARS-CoV-2 spike full protein ECD-His recombinant biotinylated-protein
(25 µg/mL, Sino Biological) in a staining buffer [PBS, 0.5% bovine serum albumin (BSA)
and 2 mM EDTA, all from Sigma-Aldrich, St. Louis, MO, USA/Burlington, MA, USA]
for 30 min at 4 ◦C, followed by staining with FITC- and Brillant-Violet-421-conjugated
streptavidin for an additional 30 min at 4 ◦C. Subsequently, the cells were stained for 30 min
at 4 ◦C using the subsequent antibody mixture, comprising CD3-PECy 7 (clone SK7), CD56-
PECy7 (clone B159), CD14-PECy7 (clone M5E2), CD19-BUV395 (clone SJ25C1), IgM-BV605
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(clone G20-127) and IgD-PE (clone IA6-2) (all from BD Biosciences, Belgium). The cells
were then labeled with live/dead FSV780 following the manufacturer’s instructions (BD
Biosciences). Finally, the cells were fixed using a BD fixation solution (BD Biosciences) and
analyzed with an SO LSRFortessa X20 flow cytometer (BD Biosciences). Data analysis was
conducted using FlowJo v10 (TreeStar, Ashland, OR, USA).

2.5. Statistical Analysis

Descriptive statistics, including numbers, medians, interquartile ranges, and frequen-
cies, were employed to depict the baseline characteristics of the patients. The age distri-
bution and gender ratio were assessed between groups using the non-parametric Mann–
Whitney test and Fisher’s exact test, respectively. The Kruskal–Wallis test, followed by
Dunn’s post-test for multiple comparisons, was utilized to evaluate the statistical dif-
ferences of the ELISA titers as well as the percentages of ACE2/RBD inhibition. The
Mann–Whitney test was applied to evaluate the statistical differences in spike-specific
IgG between HC and HCT for each time point and in ACE2/RBD inhibition percentages.
The Mann–Whitney test was also used to analyze the differences in spike-specific B cell
frequencies. The potential association between the clinical and demographic variables
of allo-HCT and log-transformed spike-specific IgG ELISA titers, detected at +30 v3 and
+30 v4, were investigated by a multiple linear regression analysis. Analyses were performed
using GraphPad Prism v10 (GraphPad Software, San Diego, CA, USA). For all statistical
analyses, the significance level was set to 0.05.

3. Results

The induction of spike-specific immune responses was monitored in a cohort of 56
allo-HCT recipients and 34 HCs after the second, third, and fourth doses of the mRNA-
1273 vaccine (Figure 1). As described in Table 1, the median time from transplantation to
vaccination was 6.4 years (range 0.2–18.9 years), and at the time of the first vaccination,
11 patients (20%) were still undergoing immunosuppressive therapy, and no relevant
changes in treatment were observed during the study. Primary pathologies were mainly
acute myeloid leukemia (52%) and acute lymphoblastic leukemia (18%).

Table 1. Characteristics of the subjects.

Allo-HCT
(n = 56)

Healthy Controls
(HCs, n = 34) p

General variables
Age a 53 (45–61) 53 (45–62) 0.824
Male 33 (58.9%) 20 (58.8%)

>0.999Female 23 (41.1%) 14 (41.2%)

Transplantation
Time post allo-HCT (years) b 6.4 (0.2–18.9) -

Disease before allo-HCT
Acute lymphoblastic leukemia 10 (17.9%) -
Acute myeloid leukemia 29 (51.8%) -
Chronic lymphocytic leukemia 4 (7.1%) -
Myelodysplastic syndromes 3 (5.4%) -
Myelofibrosis 1 (1.8%) -
Multiple myeloma 3 (5.4%) -
Other blood malignancies 6 (10.6%) -

Comorbidities
Chronic graft versus host disease 5 (8.9%) -
Diabetes 4 (7.1%) -
Other comorbidities 14 (25.0%) -

Therapy
Immunosuppressive therapy 11 (19.6%) -
Other therapies 1 (1.8%) -

Notes: values are expressed as n (%), except for a mean (range). b years were calculated at first dose administration
date. Other comorbidities: hyperthyroidism, celiac disease, severe obesity, Sjogren’s syndrome. Other therapies:
methimazole. Abbreviations: -, not applicable.
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3.1. Spike-Specific Antibody Response and ACE2/RBD Inhibition Binding Activity

The spike-specific IgG response induced by SARS-CoV-2 mRNA vaccination in the
allo-HCT recipients and HCs was assessed by ELISA on plasma samples collected before
each vaccine administration and 30 days after the second (+30 v2), third (+30 v3), and fourth
(+30 v4) vaccine dose. In Figure 2A, the kinetics of spike-specific IgG in each allo-HCT
recipient is shown in grey, while their mean value is represented in green, and the mean
value of anti-spike IgG in the HCs is reported in blue. As is evident from the overlapping
spike-specific IgG curves (Figure 2A), there was no significant difference (assessed by Mann–
Whitney test) in the humoral response triggered by the mRNA-1273 vaccine between the
allo-HCT recipients and HCs (Figure 2A). The kinetics of spike-specific IgG in each HC is
reported in Supplementary Figure S1.
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Figure 2. Spike-specific IgG production against SARS-CoV-2 in allo-HCT recipients. (A) The anti-
spike IgG titers were assessed over time using ELISA, with sampling conducted at baseline (prior
to the first dose, pre v1), before the second dose (pre v2), 30 days after the second dose (+30 v2),
before the third dose (pre v3), 30 days after the third dose (+30 v3), before the fourth dose (pre
v4), and 30 days after the fourth dose (+30 v4). Data are reported in grey for individual allo-HCT
patients and in green the mean value. Healthy subjects were included as controls (HCs), and the mean
value is reported in blue. (B) Spike-specific IgG were evaluated in individual allo-HCT recipients at
different time points. Data are presented in a box-and-whiskers diagram illustrating the minimum
and maximum values of the entire dataset. Antibody end-point titers are indicated as the reciprocal
of the sample dilution, reporting double the background OD value. Kruskal–Wallis’ test, followed by
Dunn’s post-test for multiple comparisons, was employed to assess statistical differences between
groups; ** p ≤ 0.01; *** p ≤ 0.001.
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At the baseline (pre v1), the anti-spike IgG geometric mean titer (GMT) was 230
[95% confidence interval (CI): 260 to 620; titers range: 40–640], and significantly increased
4 weeks after the first dose (pre v2), reaching a GMT of 2560 [95% CI: 2942 to 4811; titers
range: 160–20,480; p ≤ 0.001; Figure 2A,B]. At the same time point, HCs developed spike-
specific IgG with a GMT of 8320 (Figure 2A). The second dose boosted the anti-spike IgG
in allo-HCT recipients, as observed 30 days later (+30 v2), with a GMT of 12,638 [95%
CI: 17,487 to 31,199; titers range: 640–81,920; p ≤ 0.01; Figure 2A,B]. Six months after
the second dose (pre v3), the levels of anti-spike IgG slowly decreased, with a GMT of
5747 [95% CI: 9212 to 25,402; titers range: 80–163,840; Figure 2A,B]. The third vaccine
dose significantly enhanced antibody levels in the allo-HCT recipients, reaching after
30 days (+30 v3) a GMT of 132,372 [95% CI: 154,059 to 256,591; titers range: 10,240–655,360;
p ≤ 0.001; Figure 2A,B]. A not-significant decrease was observed six months later (pre v4),
with a GMT of 70,613 [95% CI: 75,572 to 161,776; titers range: 5120–327,680; Figure 2A,B].
The fourth vaccine dose robustly increased the IgG levels, with a GMT of 319,374 [95% CI:
327,605 to 82,818; titers range: 10,240–1,310,720; Figure 2A,B], in the allo-HCT recipients
(+30 v4). No statistically significant differences, evaluated by the unpaired Mann–Whitney
test, were observed in the spike-specific humoral response between the allo-HCT recipients
and HCs for all time points analyzed, as shown by the overlapping green and blue lines in
Figure 2A, highlighting a similar vaccine-induced antibody response for both groups.

We also investigated clinical and demographic variables associated with spike-specific
IgG titers at +30 v3 and +30 v4 by multiple linear regression analysis (Supplementary Table S1).
We observed a significant negative association of IgG titers with ongoing immunosuppres-
sive therapy (p = 0.044) after the third dose. Other variables (age, male gender, years post
transplantation, and chronic GVHD) had a negligible negative impact on the IgG response
(p > 0.05). Interestingly, after the fourth, dose no significant influence of clinical and demo-
graphic variables on IgG response was registered, remarking that multiple booster doses
induce a strong humoral response even in patients with immunosuppressive therapy.

To further investigate the role of the anti-spike IgG induced by vaccination, a surrogate
virus neutralization assay was employed to assess the capacity of vaccine-induced antibodies to
inhibit the ACE2/RBD interaction and its persistence at +30 v2, +30 v3, and +30 v4 (Figure 3A).
A general increase in the mean inhibition ± standard deviation values was observed for the
allo-HCT recipients throughout the time of the study. The fourth dose significantly increased
the inhibition percentages compared to the levels observed after the second (94.87% ± 15.69%
vs. 65.43% ± 33.30%; p ≤ 0.001) and third doses (94.87% ± 15.69% vs. 79.19% ± 35.39%;
p ≤ 0.001). The percentages of responders gradually increased after multiple doses, with
77% at +30 v2, 83% at +30 v3, and +97% at +30 v4. No significant differences were observed
when comparing the mean inhibition at +30 v2 between the allo-HCT recipients and HCs
(65.43% ± 33.30% vs. 65.70% ± 24.17%; p = 0.645), while a significantly higher response was
observed in the controls at +30 v3 (79.19% ± 35.39% vs. 96.78% ± 0.998%; p ≤ 0.05) (Figure 3A).
In the HCs, the percentages of responders were high already after two doses, with 93% at
+30 v2 and reaching and maintaining 100% at +30 v3 and +30 v4.
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Figure 3. ACE2/RBD binding inhibition following SARS-CoV-2 mRNA vaccination identified in
plasma of allo-HCT recipients and HCs. (A) ACE2/RBD inhibition for wild-type SARS-CoV-2
was assessed at +30 v2, +30 v3, and +30 v4. A threshold (indicated by dotted red line) was set at
30% inhibition percentage to differentiate between positive and negative samples. Kruskal–Wallis’
test, followed by Dunn’s post-test for multiple comparisons, was employed to evaluate statistical
differences between time points within allo-HCT recipients (green dots) and in HCs (blue dots).
Mann–Whitney’s test was used for assessing statistical differences within HC cohort and between
the same time points of the two cohorts. * p ≤ 0.05; *** p ≤ 0.001. (B) Comparison of ACE/RBD
inhibition for wild-type (WT) and Omicron/BA.1 (BA.1) variants were assessed at +30 v4 in allo-HCT.
Mann–Whitney’s test was used for assessing statistical differences between responses against the two
variants. *** p ≤ 0.001.

The ability of vaccine-induced IgG antibodies of inhibiting ACE2/RBD binding, in
the allo-HCT recipients was also evaluated after the fourth dose (+30 v4) using the RBD
protein from the Omicron variant (BA.1) and was compared to wild-type SARS-CoV-2
RBD (Figure 3B). The binding inhibition when using the BA.1 RBD was significantly lower
(69.07% ± 30.98% vs. 94.87% ± 15.69%, p ≤ 0.001) with respect to the wild-type RBD.
However, it is important to note that one month after the fourth vaccine dose, 87% of the
allo-HCT recipients exhibited antibodies with the ability to inhibit ACE2/RBD of the BA.1
variant binding.

3.2. Spike-Specific Memory B Cells following SARS-CoV-2 mRNA Vaccination in Allo-HCT
Recipients

Eliciting broad reactive memory B cells is a key aspect in vaccine development, since
memory B cells take an important part in the immune response, acting as a secondary
defense line and triggering a rapid increase in Ab-secreting plasma cells in case of pathogen
exposure ([17]). Here, we profiled the immune memory elicited by SARS-CoV-2 vaccination
and its persistence by analyzing PBMCs samples collected 30 days after the second, third,
and fourth vaccine dose (+30 v2, +30 v3, and +30 v4) in the allo-HCT recipients and HCs
by multiparametric flow cytometry (Figure 4). Circulating SARS-CoV-2-specific B cells
were identified by employing the full-spike protein with two distinct fluorescent probes
according to the expression of CD19, IgD and IgM molecules. Spike-specific B cells, referred
to as S+ B cells, were identified within the pool of Ig-switched CD19+ cells using the gating
strategy outlined in Figure 4A. The frequency of antigen-specific memory B cells in the
allo-HCT subjects increased already after the second dose, as evidenced by the statistically
significant rise in S+ B cells compared to the baseline (0.15% at +30v2 versus 0.04% at day 0;
p ≤ 0.001) (Figure 4B). Furthermore, a further significant increase was observed after the
third dose, with the detection of 0.28% S+ B cells (p ≤ 0.05), while no further increase was
observed after the fourth vaccine dose administration. It is worth noting that the trend of
the increase in spike-specific S+ B cells was similar in the allo-HCT subjects and controls,
but the frequencies of S+ B cells in the allo-HCT subjects at +30 v2, +30 v3, and +30 v4 were
consistently significantly lower than in the healthy individuals (0.15% vs. 0.32%, 0.28% vs.
0.52%, and 0.28% vs. 0.51%, respectively; p ≤ 0.001, p ≤ 0.01, p ≤ 0.05; Figure 4C).
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B cells. From left to right: B cells were gated as CD19+, CD3− CD14− CD56− cells. Within the B
cells gate, spike-specific B cells were defined as Ig-switched B cells (IgM− IgD−) and double-positive
for S FITC and S BV421 (S+ B cells). (B) Bar graphs show the percentages of S+ B cells at baseline
and 30 days after the second, third, and fourth mRNA-1273 vaccine doses in allo-HCT recipients. (C)
Frequencies of S+ B cells at different time points in allo-HCT recipients (green dots) compared to HCs
(blue dots). Mann–Whitney’s test, followed by Dunn’s post-test for multiple comparative tests, was
used for assessing statistical differences between cell frequency at different time points. * p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001.

Overall, these data suggest that repeated administrations of the mRNA-1273 vaccine
induce a pool of memory S+ B cells in allo-HCT subjects, with a similar trend to that
observed in healthy individuals. The statistically lower frequencies of S+ B cells in the
allo-HCT subjects may be attributed to the close administration of vaccine doses in these
fragile individuals, not allowing the immune response activated after one vaccination to
wane before the next dose. A vaccination schedule with more spaced doses, as occurs in
healthy subjects, could be beneficial in adopting in the perspective of increasing the pool of
memory S+ B cells in fragile individuals.

4. Discussion

In this study, we examined the immune responses triggered by multiple booster doses
of RNA-1273 in 56 allo-HCT recipients and 34 HCs. We focused on analyzing the devel-
opment of spike-specific memory B cells and assessing the quantity and functionality of
spike-specific antibodies in allo-HCT recipients up to one month after the fourth vaccine
dose. The spike-specific memory B cells showed a significant increase in the allo-HCT
recipients after repeated RNA-1273 booster doses, exhibiting slower kinetics compared to
the HCs. Additionally, we demonstrated the concurrent production of spike-specific IgG
antibodies in the allo-HCT recipients, comparable to that observed in the HCs. Notably, in
87% of the allo-HCT recipients, the antibodies were capable of inhibiting the binding of the
BA.1 variant to ACE2/RBD, showing potential effectiveness against this variant. A history
of allogeneic hematopoietic stem cell transplantation constitutes a significant risk factor
for severe COVID-19, characterized by morbidity and mortality rates that can surpass
20%, exceeding those observed in healthy individuals. This heightened risk is primarily
attributed to factors such as immune dysregulation, extended periods of immunosup-
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pression, graft-versus-host disease, and the presence of comorbidities [2,18,19]. Although
individuals who have recently undergone transplantation may exhibit a diminished re-
sponse to COVID-19 vaccines, it remains imperative to prevent infections in these patients
given the unequivocal benefits of vaccination [20]. Several studies, including our previous
work [13], have demonstrated that SARS-CoV-2 mRNA vaccination elicits high levels of
antibodies in the majority of HCT recipients after a two-dose primary series. However, it is
important to note that some patients do not develop a significant immune response to the
primary series of SARS-CoV-2 vaccination [12,13]. Hence, administering additional vaccine
doses is essential to effectively enhance the immune system, especially in low responders
who may experience weakened or delayed immune priming [12,13,21]. Consequently,
there is a need for further immunogenicity data, not only regarding the humoral response
but also the memory spike-specific B cell response, to inform decisions about vaccinating
vulnerable subjects. We have already analyzed in detail the role as well as the dynamics
and magnitude of the spike-specific B cell response in healthy subjects in the context of
SARS-CoV-2 vaccination [16,22]. Here, we longitudinally profiled spike-specific antibody
production and their functionality and, for the first time, the spike-specific memory B cells
induced by SARS-CoV-2 vaccination and their persistence from baseline up to one month
after the fourth mRNA-1273 vaccine administration in allo-HCT recipients. The frequency
of spike-specific B cells, detected within the pool of Ig-switched CD19+ cells, significantly
increased after the second vaccine dose. A further significant expansion was elicited by
the booster dose, characterized by lower frequencies of spike-specific B cells and a slower
kinetics in the allo-HCT recipients compared to the HCs. To enhance the magnitude of the
vaccine-induced immune response, as previously demonstrated in preclinical studies [23],
it would probably be useful to increase the time interval between a booster dose and the
next one in fragile subjects, allowing the antigen-specific immune response activated by
the previous vaccination to wane before the administration of the next one. In terms of
kinetics, a slower B cell response compared to that seen in healthy individuals has been also
observed in a recent study performed by our group in myelofibrosis patient cohort [24].
Further studies aim to investigate the long-term persistence of vaccine-induced B cells,
which play a crucial role in protection against SARS-CoV-2 infection. The antibody re-
sponse in allo-HCT recipients is influenced by various factors, including the number of
CD19+ cells, the timeframe following transplantation, complete remission status, the use
of immunosuppressive drugs, and the levels of lymphocyte subpopulations [25]. Recent
studies have demonstrated the safety and efficacy of the primary cycle of the mRNA-based
SARS-CoV-2 vaccine BNT162b2 in allo-HCT recipients, with approximately 50–80% of
subjects generating a protective immune response [7,26–29]. However, limited data are
available regarding neutralizing antibody levels in allo-HCT recipients following SARS-
CoV-2 vaccination. It was reported that after two doses of mRNA vaccine, about 50% of
allo-HCT recipients had neutralizing antibodies above the positive threshold, which was
significantly lower than the neutralizing antibody rates observed in HCs [30]. Here, we
observed spike-specific IgG antibody production in 90% of the HCT recipients following
the primary series of SARS-CoV-2 vaccination up to six months after the second dose (pre
v3), and a robust increase was observed after the third and the fourth doses. No statistically
significant differences were observed in the spike-specific humoral response between the
allo-HCT recipients and HCs for all the time points analyzed. Despite the increase in
antibody titers observed in the allo-HCT recipients following the administration of the
fourth dose of the mRNA-1273 vaccine, consistent with findings reported by Mittal and
colleagues [31], our allo-HCT cohort exhibited a cumulative 22% incidence of breakthrough
SARS-CoV-2 infections up to five months after the fourth vaccine dose administration. At
the same time, July 2022, 38% of the HCs declared a SARS-CoV-2 infection. This observation,
rather than being attributed to a diverse susceptibility to infection, is likely associated with
SARS-CoV-2-preventive behaviors adopted by the allo-HCT patients (e.g., greater social
distancing and wearing a face mask in social occasions) and the different time intervals at
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which the booster vaccine doses were administered in the allo-HCT recipients compared to
the HCs.

Concerning the functionality of the observed spike-specific IgG, the third and fourth
doses significantly increased the ACE2/RBD inhibition percentages compared to the levels
observed after the second dose, together with a gradual increase in the percentages of
responders after multiple doses. ACE2/RBD binding inhibition was observed in most of
the allo-HCT recipients, including the 10% of subjects that did not respond to the primary
series of SARS-CoV-2 vaccination. In general, patients receiving a hematopoietic stem cell
transplant typically undergo a short duration of immunosuppressive treatment. At the
conclusion of this treatment, the immune system is considered restored. This is in contrast
to solid-organ transplantation recipients, where immunosuppressive treatment continues
throughout life. These treatments could impact the immune response to vaccinations and
may have an impact on the generation of neutralizing antibodies, potentially hindering
the germinal center reaction and B cell maturation [32], as proposed by Yi-Chou Hou
and colleagues in their discussion of the effectiveness of COVID-19 vaccines in kidney-
transplanted patients [33]. In our cohort, those individuals exhibiting a lower immune
response and a lack of neutralizing antibody activity were precisely the patients who, due
to post-transplant complications such as graft-versus-host disease, had to prolong their
immunosuppressive treatment. Interestingly, in our study, we observed that about 87% of
the allo-HCT recipients vaccinated with the mRNA-1273 vaccine, encoding the Wuhan-
Hu-1 spike protein, also presented IgG capable of binding and blocking the interaction
between the Omicron BA1 RBD and ACE2 receptor. The Omicron variant represents the
most divergent strain observed in substantial numbers thus far in the pandemic, giving rise
to concerns related to heightened transmissibility, diminished vaccine efficiency, and an
elevated risk of reinfection [34]. Achieving long-term immunogenicity through vaccination
presents a specific challenge in patients with blood malignancies who have undergone
HCT. These investigations contribute to defining the most effective approach to ensure
long-term immunity in this vulnerable group.

This study has strengths and limitations. The strengths include the profiling of the
spike-specific memory B cells induced by SARS-CoV-2 vaccination and their persistence
from baseline up to one month after the fourth mRNA-1273 vaccine administration in
allo-HCT recipients. The major limitation of our study is the relatively small sample size.
Another potential weakness of the study is the different time intervals at which the booster
vaccine doses were administered in the allo-HCT recipients compared to the HCs.

In summary, this study provides evidence that repeated doses of mRNA-1273 vaccine
considerably enhance SARS-CoV-2 specific memory B cell and antibody responses in
allo-HCT recipients, underlining the importance of further vaccine doses for allo-HCT
recipients who may have achieved a limited response to the primary series of SARS-CoV-2
vaccination.
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