
Citation: Niu, Y.; Ma, S.; Liang, H.; Fu,

X.; Ma, B.; Lin, Q.; Luo, X.; Li, N. The

Stability and Efficency of CPB Cells

Were Acclimated for Virus

Proliferation. Vaccines 2024, 12, 220.

https://doi.org/10.3390/

vaccines12030220

Academic Editors: Roberto Paganelli

and Raffaele D’Amelio

Received: 27 December 2023

Revised: 11 February 2024

Accepted: 14 February 2024

Published: 20 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

The Stability and Efficency of CPB Cells Were Acclimated for
Virus Proliferation
Yinjie Niu, Saiya Ma, Hongru Liang, Xiaozhe Fu, Baofu Ma, Qiang Lin, Xia Luo and Ningqiu Li *

Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug
Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic
Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; nyj@prfri.ac.cn (Y.N.);
saiyama06152024@163.com (S.M.); hrliang@prfri.ac.cn (H.L.); fuxiaozhe@prfri.ac.cn (X.F.);
mabf@prfri.ac.cn (B.M.); linq@prfri.ac.cn (Q.L.); luoxia@prfri.ac.cn (X.L.)
* Correspondence: liningq@126.com

Abstract: Background: Vaccinations are still the most effective means of preventing and controlling
fish viral diseases, and cells are an important substrate for the production of a viral vaccine. Therefore,
the rapid-stable growth and virus sensitivity of cells are urgently needed. Methods: Chinese perch
brain 100th passage (CPB p100) were acclimated in a low serum with 5% FBS L-15 for 50 passages, then
transferred to 8% FBS L-15 for 150 passages. Additionally, the morphology and cell type of CPB 300th
passage (CPB p300) cells were identified. We analyzed the transfection efficiency and virus sensitivity
of CPB p300 cells, and then optimized the conditions of ISKNV, SCRV, and LMBV multiplication in
CPB cells. Results: CPB p300 cells were more homogeneous, and the spread diameter (20–30) µm in
CPB p300 cells became the dominant population. The doubling time of CPB p300 was 1.5 times shorter
than that of CPB p100.However, multiplication rate of CPB p300 was 1.37 times higher than CPB p100.
CPB p300 cells were susceptible to ISKNV, SCRV, and LMBV, and the optimal conditions of ISKNV,
SCRV, and LMBV multiplication were simultaneous incubation, 0.6 × 105 cells/cm2 and MOI = 0.1;
infection at 48 h, 0.8 × 105 cells/cm2 and MOI = 0.01; simultaneous incubation, 0.7 × 105 cells/cm2

and MOI = 0.05, respectively. The time and economic costs of ISKNV, SCRV, and LMBV multiplication
in CPB p300 cells were significantly reduced. Conclusions: The acquisition of CPB p300 cells laid a
good material foundation for the production of ISKNV, SCRV, and LMBV vaccines.
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1. Introduction

Mandarin fish (Sinipercachuatsi) and Largemouth bass (Micropterus salmoides) are im-
portant aquaculture species in Asian countries [1,2]. The mandarin fish and largemouth
bass are not only economically important fish, but also an important part of food secu-
rity. However, viral diseases outbreaks have frequently caused serious economic losses to
Siniperca chuatsi and Micropterus salmoides. Infectious spleen and kidney necrosis virus dis-
ease (ISKNVD) and Siniperca chuatsi rhabdovirus disease (SCRVD) are major pathogens of
the mandarin fish and largemouth bass farming industry [3–7]. ISKNV can infect different
sizes of fish, whilst SCRV is a member of the genus Siniperhabdovirus in Rhabdoviridae [8].
Largemouth bass virus (LMBV) is the most serious disease affecting the largemouth bass
industry [9,10]. At present, there are no effective prevention and control measures for those
viral diseases. Successful vaccination is the most effective means of preventing and control-
ling viral diseases [11]. Vaccination has become the international routinely practice for the
prevention and controlling fish diseases in aquaculture [12]. Research about fish vaccines
started late in China. Xianle Yang et al. developed cell culture inactivated vaccines for grass
carp reovirus (GCRV) in 1984, and obtained the first new veterinary medicine certificate for
a fish vaccine in 1992. At present, one inactivated vaccine and one attenuated vaccine of
GCRV, an inactivated vaccine for ISKNV, three fish viral vaccines have obtained Chinese
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new veterinary drug certificates. However, these vaccines have not yet been used on a
large scale. The reason for this lies in small production scales, unstable quality of vaccines,
and high production costs, which causes the backward vaccine production process. Cells
are the basic material of vaccine production process [13].

Cells are used in a variety of applications in industry and research. Cells are an
especially important substrate for the production of viral vaccines [14]. Therefore, the
CPB (Chinese perch brain, CPB) cells were established by our laboratory from the brain
of Siniperca chuatsi [15]. The CPB cells have been passaged more than 100 times. On
the basis of the CPB cells line, our laboratory constructed an ISKNV and SCRV bivalent
inactivated vaccine [16], and screened a SCRV potential live vaccine candidate for Chinese
perch against SCRV disease [17]. For scale production of CPB cells for ISKNV and SCRV
vaccines, we developed a suspension culture system of CPB cells on cytodex 1 microcarrier
in 3-L bioreactor [18]. The stability, growth rate, and virus sensitivity of cells directly
influence vaccine production scales, production costs, and competitiveness [19–21]. At
present, CPB cells below 120 passages are prone to mutation, apoptosis, and are not stable.
Compared with Vero and MDCK cells, the proliferative capacity of CPB cells was slightly
weaker [22,23]. The instability and low productive capacity of CPB p100 cells influenced
the development of the vaccine production process and hindered the marketing of ISKNV,
SCRV, and LMBV vaccines.

In order to reduce vaccine production costs, and improve vaccines quality and market
competitiveness, we cultured the CPB p100 cells in 5% FBS L-15 for 50 passages, then
transferred to 8% FBS L-15 for 150 passages. The morphology and cell type of CPB p300
cells were identified. We analyzed the transfection efficiency of CPB p300 cells and the
susceptibilities of ISKNV, SCRV, LMBV in CPB p300 cells, and optimized the multiplication
conditions of three viruses. Taken together, we acclimated the high proliferation of CPB
p300 cells and provided a solid material base for the production of ISKNV, SCRV and
LMBV vaccines.

2. Material and Methods
2.1. Cells and Virus Strains

The CPB cells were domesticated from Mandarin fish brain and stored in our labora-
tory [15]. The ISKNV QY-2009 and SCRV QY-2014 were isolated from the tissue of diseased
Siniperca chuatsi and stored by our laboratory [3]. LBMV-2007 virus strains were isolated
from the spleen of diseased Microptencs salmoides and kept in our lab. The Leibovitz’s L-15
medium, 0.25% trypsin-EDTA and phosphate-buffered saline (PBS) were purchased from
Cytiva Hyclone (Logan, UT, USA).

2.2. Cells Acclimation

The CPB p100 CPB cells were cultured in a low serum culture medium (Leibovitz’s
L-15 medium with 5% fetal bovine serum, 5% FBS L-15). When the cells were 90–100%
confluence, the passage was performed. The briefly performed steps was as follows: the
CPB cells in T25 flask were rinsed once with 10 mL PBS, and incubated in 1 mL 0.25%
trypsin-EDTA for 4–5 min, then added10–15 mL 5% L-15 medium, blown, mixed well, and
dispensed into T25 flask. If the cells fail to reach 90–100% confluence, the culture medium
was changed every 5 days. CPB cells was passaged according to the above me cells were
transferred to 8% FBS L-15 for continuous passage.

2.3. Morphological Characteristics of CPB Cells

CPB p100, p150, and p300 cells were cultured for 72 h, then 100 cells of CPB p100, p150,
and p300 cells were randomly selected and their long diameter were measured, then fixed
with 4% paraformaldehyde for 30 min, respectively. The indirect immunofluorescence
of fixed cells were performed with cytokeratin 19 antibody (marker protein of epithelial
cells), and then were observed with the fluorescent inverted microscope (OLYMPUS IX83,
Olympus, Tokyo, Japan).



Vaccines 2024, 12, 220 3 of 11

2.4. The Growth Characteristics of CPB Cells

CPB p100, p150, and p300 cells were cultured in T75 flasks with the cell density of
2.0 × 105 cell/mL, respectively. The cells were digested and counted at 12, 24, 48, 72, 96,
120, 144 and 168 h. The number of cells/mL was calculated and the growth curve of each
passage was analyzed. The digestion time of CPB p100, p150, and p300 cells was measured.

2.5. Transfection Efficiency

CPB p100 and p300 cells were propagated in 12 well plate at a density of 2.5 × 105 cell/mL,
respectively. Cells at 80–90% confluence were transfected with 2 µgpEGFP eukaryotic ex-
pression vector. After 48 h of transfection, the EGFP expression was observed by fluorescent
inverted microscope (OLIMPUS IX83)

2.6. Virus Susceptibility

In total, 2.5 × 105 of CPB p100 and p300 cells were seeded in T25. After 24 h culti-
vation, the cells were infected with ISKNV (MOI = 0.1), SCRV (MOI = 0.001), and LMBV
(MOI = 0.01). Those cells were observed daily for the cytopathic effect of ISKNV, SCRV,
and LMBV, and the viral titer were measured by 50% tissue culture infective dose (TCID50)
in 96-well plates.

2.7. Virus Multiplication Conditions

In order to obtain higher ISKNV, SCRV, and LMBV titers: ISKNV and LMBV were incu-
bated in cell culture at 0 h, 24 h, and 48 h, respectively. SCRV was incubated in cell culture at
24 h, 48 h, and 72 h, respectively. Then, 0.5 × 105, 0.6 × 105 and 0.7 × 105 cells/cm2of p300
were infected with ISKNV(MOI = 0.1), respectively. 0.6× 105, 0.7 × 105 and 0.8 × 105 cells/cm2

of p300 were infected with LMBV (MOI = 0.01), respectively. 0.7 × 105, 0.8 × 105 and
0.9 × 105 cells/cm2 of p100 and p300 cells were infected with SCRV (MOI = 0.001), respec-
tively. Next, p300 cells were infected with ISKNV (MOI =1, 0.1, 0.01), LMBV (MOI = 0.5,
0.05, 0.005), and SCRV (MOI = 0.01, 0.001, 0.0001), respectively. We selected the optical cell
density, placed cells in 6-well plates, and then was infected with ISKNV, SCRV and LMBV.
The cells were frozen and thawed at 12, 24, 48, 72, 96, 120, and 144 h post- infection, and
the cell debris was removed by centrifugation. The viral titers of different time points were
measured by TCID50.

2.8. The Time and Economic Cost of Viral Multiplication

We selected the optical cell density to spread in a T75 flask, then it was infected with
ISKNV (synchronous infection, MOI = 0.1), SCRV (infection at 48 h, 0.001 and LMBV
(synchronous infection, 0.05). The viral titer was measured by TCID50. The time cost was
calculated as TCID50 × V (mL)/time (d). The economic cost is calculated as TCID50/total
cost (Yuan).

2.9. Statistical Analyses

Results are expressed as the means ± standard deviation (SD) from at least 3 experi-
ments. Statistical data were analyzed by one-way analysis of variance (ANOVA) (expressed
as Mean ± SD). “*” represented the significance level (p < 0.05). All data were compared
using SPSS 13.0 (SPSS, Chicago, IL, USA).

3. Results
3.1. The Passage of CPB Cells

The CPB p100 cells were transferred in 5% FBS L-15 for low serum acclimation. Those
results showed that the low serum (5% FBS) had no significant effect on CPB cells at
passage101–102, the cells began to apoptosis and the growth of cells also decreased at p103,
this phenomenon continued until CPB p130, the cells were stably cultured in 5% FBS L-15
to p150, then p150 cells were continuously passaged in 8% FBS L-15to CPB p300 (Figure 1a).
The passage intervals of CPB p101-p102, p103-p130, p131-p150, and p151-p300 cells were
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about 4–5 d, 6–12 d, 4–6 d, and 3–4 d, respectively. Those data indicated that the passage
interval of CPB p300 cells were stable at 3–4 d (Figure 1b).
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Figure 1. The cells state of CPB p100–p300 cells. (a) The cells growth state of CPB p100–p300 cells.
(b) The interval time through a generation of p100–p104, p105–p300 and p131–p150 cells needed
4–5 d, 6–12 d, 4–6 d, 3–4 d, respectively.

3.2. Identification of Morphological Features

CPB p100 cells contained several different shapes, the cell morphology of CPB p150 and
p300 cells were becoming more and more homogeneous. The spread diameters (20–30 µm)
of CPB p100, p150 and p300 cells were about 65%, 77%, and 94%, respectively (Figure 2a).
This data suggested that the small spread area of CPB p300 cells became the dominant
population. An indirect immunofluorescence assay indicated that the vast majority of CPB
p300 cells were epithelial cells (Figure 2b).
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Figure 2. The cell morphological features of CPB p100, p150 and p300 cells. (a) The cell diameter
of CPB p100, p150, and p300 cells. (b) The indirect immunofluorescence assay with cytoketatin
19 antibody of CPB p100, p150, and p300 cells showed that CPB p100, p150, and p300 cells appeared
green fluoresce.
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3.3. The Growth Characteristics of CPB Cells

CPB p100 cells were completely digested with 0.25% trypsin+EDTA for 4~5 min, the
digestion time of CPB p150 cells was 3~4 min, However, CPB p300 cells needed to be
digested for 2~3 min, which showed that the cells wall adhesion ability was becoming
weaker and weaker (Figure 3a). The cell growth curves of CPB p100, p150, and p300 cells
showed that the cell population doubling time of CPB p100, p150, and p300 cells were
60 h, 48 h, and 24 h, the logarithmic growth phases of CPB p100, p150, and p300 cells were
24~72 h, 24~96 h, 12~96 h, respectively (Figure 3b, Table 1). The cell multiplication times of
CPB p100, p150, and p300 cells were 2.616, 3.61, and 6.2 (Figure 3b, Table 1). These results
indicated that the doubling time of CPB p300 cells was 1.5 times shorter than that of CPB
p100 cells, and the multiplication time of CPB p300 cells was 1.37 times higher than CPB
p100 cells (Table 1). CPB p100 and p300 cells were used for follow-up comparative studies.
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Table 1. The cell doubling and multiplication of CPB p100, P150, and p300 cells.

T 0 h 24 h 48 h 72 h 96 h 120 h 144 h 168 h Doubling Multiplication

p100 2 × 105 2.17 × 105 3.15 × 105 4.77 × 105 5.16 × 105 5.19 × 105 5.20 × 105 4.85 × 105 60 h 2.616
p150 2 × 105 2.36 × 105 3.90 × 105 5.89 × 105 7.58 × 105 7.74 × 105 7.63 × 105 7.16 × 105 48 h 3.61
p300 2 × 105 3.92 × 105 6.36 × 105 9.48 × 105 1.16 × 106 1.23 × 106 1.20 × 106 1.15 × 106 24 h 6.2

3.4. Transfection Efficiency

We used green fluorescence protein marker to investigate their transfection efficiency.
After 48 h of transfection, 10% CPB p100 cells showed green fluorescence, while 35% CPB
p300 cells expressed the green fluorescent protein (Figure 4a,b). Those results indicated
that the transfection efficiency of CPB p300 cells was increased by 25% compared with CPB
p100 cells.
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Vaccines 2024, 12, 220 6 of 11

3.5. Virus Susceptibility of CPB p300

The CPB p300 cells were analyzed for their susceptibility to ISKNV, SCRV, and LMBV.
ISKNV susceptibility: the typical cytopathic effect (CPE) of ISKNV showed cell swelling
and rounding at 48 h post infection, the CPE cells were clustered and started shedding at
96 h post infection, 90% cells shed at 144 h post infection, its entire process was around
6~7 d (Figure 5a), this result indicated that the speed and progression of ISKNV CPE was
relatively slow; SCRV susceptibility: the obvious expressions of CPE included increased cell
diopter, rounding reduced cells and filamentous cells at 12 h post infection, CPE included
rounding reduced cells and filamentous cells at 24 h, the entire cytopathic process was
approximately 24~36 h (Figure 5b), the data suggested that the SCRV infection has the rapid
rate and progression of CPE; LMBV susceptibility: the expressions of CPE were presented
with rounding reduced cells, nuclear shrinkage, and increased cell diopter at 24 h post
infection, the main presentation of CPE were cells rounding and shedding at 48 h post
infection, the entire course of LMBV was about 48 h~72 h (Figure 5c), the result indicated
that the speed and progression of LMBV CPE was moderate. Those results indicated that
ISKNV, SCRV, and LMBV appeared at different speeds in the progression of the CPE. The
cells infected with ISKNV, SCRV, and LMBV, respectively, showed corresponding typical
CPE, indicating that CPB p300 was susceptible to ISKNV, SCRV, and LMBV.
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3.6. The Optimal Conditions of Viral Multiplication in CPBp300 Cells

In order to obtain higher ISKNV, SCRV, and LMBV titers, we optimized the infection
time, cell concentration and virus incubation dose of ISKNV, SCRV, and LMBV multipli-
cation. ISKNV multiplication: the viral titer of ISKNV at 0 h and 24 h of infection were
higher than its infection at 48 h (Figure 6a). Considering the time cost, we chose 0 h for
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ISKNV infection, that is, ISKNV and cells were incubated at the same time. The virus yield
of 0.6 × 105 cells/cm2 was higher than 0.5 × 105and 0.7 × 105 cells/cm2 (Figure 6b). The
viral titer of MOI = 0.1 is higher than MOI = 1 and 0.01 (Figure 6c). Those results indi-
cated that the optimal conditions of ISKNV multiplication were simultaneous incubation,
0.6 × 105 cells/cm2 and MOI = 0.1.

SCRV multiplication: the virus yields of SCRV at 48 and 60 h were higher than its
infection at 24 h, then SCRV titer of 0.8 × 105 cells/cm2 was relatively highest among
0.7 × 105 cells/cm2 and 0.9 × 105 cells/cm2 (Figure 6a,b). The virus yield of MOI = 0.01
was higher than 0.1 and 0.001 (Figure 6c). Those data suggested that the optimal conditions
of SCRV multiplication were infection at 48 h, 0.8 × 105 cells/cm2 and MOI = 0.01.
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Figure 6. The optimal incubation time, cell density, and incubation viruses dose of ISKNV, SCRV, and
LMBV multiplication in CPB p300 cells, respectively. (a) The optimization of ISKNV, SCRV, and LMBV
incubation time was 0 h, 48 h, and 0 h, respectively. (b) The optimization of cell densityin ISKNV,
SCRV, and LMBV multiplication was 0.6 × 105 cells/cm2, 0.8 × 105 cells/cm2 and 0.7 × 105 cells/cm2.
(c) The optimization viruses dose of ISKNV, SCRV, and ISKNV incubation was MOI = 0.1, MOI = 0.001,
and MOI = 0.05, respectively.

LMBV multiplication: the virus yield of LMBV at 0 h of infection was slightly higher
than its infection at 24 h and 48 h (Figure 6a). The LMBV titer of 0.7 × 105 cells/cm2was
relatively higher than 0.6 × 105 cells/cm2 and 0.8 × 105 cells/cm2, then the viral titer of
MOI = 0.05 was higher than 0.5 and 0.005 (Figure 6b,c). The optimal conditions of LMBV
multiplication were simultaneous incubation, 0.7 × 105 cells/cm2 and MOI = 0.05.

3.7. The Time and Economic Cost of Viral Multiplication

The CPB p100 cells from cell recovery to culture in T75 flask needs double passage and
8 days, and the cytopathic progression of ISKNV, SCRV, and LMBV were 7, 2, and 3 days,
respectively. Therefore, it took 15, 11, and 10 days from cell recovery to the production
of 15 mL ISKNV, SCRV and LMBV in CPB p100 cells, respectively (Figure 7a). However,
CPB p300 cells from cell recovery to cell culture in T75 needs one passage and 4 days, so
CPB p300 cells recovery to the production of 15 mL ISKNV, SCRV, and LMBV needed 11,
7, and 6 days, respectively (Figure 7a). The TCID50of LMBV and SCRV in CPB p300 cells
increased 10 times than in CPB p100 cells. TCID50of ISKNV in CPB p300 cells was not
significantly different from that in CPB p100 cells (Figure 7b). The TCID50/yuan of ISKNV
in CPB p300 cells was 1.7 times higher than CPB p100 cells, TCID50/yuan of SCRV in CPB
p300 cells increased 19 times than that in CPB p100 cells, the TCID50 of LMBV in CPB p300
cells increased 13 times than that in CPB p100 cells. The TCID50/d of ISKNV in CPB p300
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cells was 1.87 times higher than that in CPB p100 cells, the TCID50/d of SCRV in p300 cells
was 24 times higher than that in CPB p100 cells, the TCID50/d of LMBV in p100 cells was
14.4 times higher than that in CPB p100 cells (Table 2). These data indicated that the time
and economic cost of ISKNV, SCRV and LMBV in CPB p300 cells were lower than CPB
p100 cells.
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Table 2. The TCID50/y and TCID50/d of CPB p100 and p300 cells, respectively.

Viruses p100(TCID50/y) p300(TCID50/y) p100(TCID50/d) p300(TCID50/d)

ISKNV (2.25 ± 0.15) × 107 (4.0 ± 0.15) × 107 (2.52 ± 0.35) × 107 (4.73 ± 0.22) × 107

SCRV (1.17 ± 0.16) × 108 (2.24 ± 0.25) × 109 (2.01 ± 0.35) × 108 (4.84 ± 0.51) × 109

LMBV (2.00 ± 0.15) × 108 (2.64 ± 0.36) × 109 (3.77 ± 0.32) × 108 (5.43 ± 0.35) × 109

4. Discussion

Largemouth bass and mandarin fish are important economic species, widely dis-
tributed in China. ISKNV, SCRV, and LMBV outbreaks frequently have caused significant
economic losses to the largemouth bass and mandarin fish industry [3,24]. Vaccination is
the most cost-effective measure to prevent and control fish viral diseases [25]. Compared
with the aquaculture industries in developed countries, such as Europe and United States,
the vaccine prevalence within the aquaculture industry is not high, either in terms of
covered varieties or single species in China [26,27]. The main problem is that the vaccine
varieties are few and incomplete, which is not enough to form the complete disease immune
comprehensive prevention and control system. Meanwhile, the long process of developing
an effective fish vaccine has reduced the farmer’s confidence for vaccine industrial applica-
tion, and caused negative effects in the popularization and industrialization of fish vaccine.
Cells are important substrates for production of viral vaccines. The cell synchronization
and proliferation ability influence the development of vaccine production process [28]. In
this study, CPB p100 cells were acclimated in low-serum with 5% FBS for 50 passage, then
transferred to 8% FBS for 150 passage, we designated the passage cells as CPB p300. The
growth rate and proliferation time of CPB p300 cells were significantly higher than CPB
p100 cells. The size and morphology of CPB p300 cells were relatively uniform. Further
studies showed that the CPB p300 cells were susceptibility to ISKNV, SCRV, and LMBV.
These results suggested that the CPB p300 cells promoted the development of vaccine
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production process, shortened developing fish vaccine process, and enhanced the market
competitiveness of these vaccines.

The production process of the fish vaccine was mainly based on the traditional rotating
bottle cells production process. However, Announcement No. 1708 of the Ministry of
Agriculture clearly stipulated that the GMP acceptance application of production line of
veterinary cell vaccine by rotating bottle culture was suspended from 1 February 2012.
The Announcement indicated that the production of fish cell vaccine must be adopted cell
suspension culture technology. Cell, culture mediums, and the cell culture process are
three key elements of cell suspension culture technology [29,30]. The biological features
of cells determine the future market competitiveness of vaccine product [31]. The CPB
cells serve as an important substrate for production viral vaccines against ISKNV, SCRV,
and LMBV [16,17]. The doubling time and proliferation rate of CPB p100 cells were 72 h
and 2–3 times, respectively. CPB p100 cells were not uniform in size and morphology. The
heterogeneity and slow proliferation of CPB p100 cells seriously hindered the development
of ISKNV, SCRV, and LMBV vaccines suspension technologies and the industrialization
process of those vaccines. In order to improve the proliferation and synchronization of CPB
p100 cells, CPB p100 cells were acclimated in low serum (5% FBS) L-15. The proliferation
rate of CPB p300 cells was 6.2, and the doubling time was 24 h. Compared with CPB P100
cells, the proliferation rate and doubling time were increased by more than 2 times. The
significant enhancement of proliferative ability reduced production material costs and time
costs. The improvement synchronization of CPB p300 cells increased the quality, stability
and future market competitiveness of those vaccines.

The successful expression of foreign genes in eukaryotic cells is an important tool for
studying the fine structure and regulation mechanism of the genes in cells [32]. After trans-
fection of pEGFP, 35% cells successfully expressed green fluorescent protein. Compared
to CPB p100 cells, the transfection efficiency increased by 25% [15]. This result suggested
that the improvement of transfection efficiency in CPB p300 cells promoted studying the
pathogenic mechanisms of ISKNV, SCRV and LMBV.

Viruses are obligate intracellular parasites, and viral multiplication depends on cellular
energy and material [33]. The virus sensitivity of cells was important for virus research and
production [34]. Compared with CPB p100 cells, the ISKNV, SCRV, and LMBV sensitivity
in CPB p300 cells was not different, while the SCRV and LMBV titers increased 10 times in
CPB p300 cells. These data suggested that the CPB p300 cells were more suitable for viral
ISKNV, SCRV, and LMBV production. The viral multiplication method can increase the
virus yield and the cost-effectiveness [35,36].The speed and progression of three viruses
CPE is ISKNV < LMBV < SCRV and the difference is relatively significant, which suggested
that the more suitable conditions of three viruses production were different. Therefore, we
optimized the infection time, cell concentration, and virus incubation dose of ISKNV, SCRV,
and LMBV multiplication. Those results indicated that the optimal conditions of ISKNV,
SCRV, and LMBV multiplication were simultaneous incubation, 3.0 × 105 cells/cm2 and
MOI = 0.1, simultaneous incubation, 3.5 × 105 cells/cm2 and MOI = 0.05, and infection at
48 h, 4.0 × 105 cells/cm2 and MOI = 0.01.

Taken together, the CPB p100 cells performed low serum acclimation in 5% FBS L-15
for 50 passages, and cultured in 8% FBS L-15 for 150 passages, and the cells were renamed
CPB p300. Compared with CPB p100 cells, the size and morphology of CPB p300 cells
were more uniform, and the proliferation ability of CPB p300 cells was doubled. There was
no difference in ISKNV, SCRV, and LMBV sensitivity between CPB p100 and p300 cells.
We optimized ISKNV, SCRV, and LMBV proliferation condition, respectively. These data
showed that CPB p300 cells promoted the future competitiveness of ISKNV, SCRV, and
LMBV vaccines.
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