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Abstract: Vaccine-induced immunity wanes over time and warrants booster doses. We investigated
the long-term (32 weeks) immunogenicity and safety of a third, homologous, open-label booster
dose of TURKOVAC, administered 12 weeks after completion of the primary series in a randomized,
controlled, double-blind, phase 2 study. Forty-two participants included in the analysis were eval-
uated for neutralizing antibodies (NAbs) (with microneutralization (MNT50) and focus reduction
(FRNT50) tests), SARS-CoV-2 S1 RBD (Spike S1 Receptor Binding Domain), and whole SARS-CoV-2
(with ELISA) IgGs on the day of booster injection and at weeks 1, 2, 4, 8, 16, 24, and 32 thereafter.
Antibody titers increased significantly from week 1 and remained higher than the pre-booster titers
until at least week 4 (week 8 for whole SARS-CoV-2) (p < 0.05 for all). Seroconversion (titers ≥ 4-fold
compared with pre-immune status) persisted 16 weeks (MNT50: 6-fold; FRNT50: 5.4-fold) for NAbs
and 32 weeks for S1 RBD (7.9-fold) and whole SARS-CoV-2 (9.4-fold) IgGs. Nine participants (20.9%)
tested positive for SARS-CoV-2 RT-PCR between weeks 8 and 32 of booster vaccination; none of
them were hospitalized or died. These findings suggest that boosting with TURKOVAC can provide
effective protection against COVID-19 for at least 8 weeks and reduce the severity of the disease.

Keywords: booster; COVID-19; immunogenicity; inactivated vaccine; neutralizing antibody; S1 RBD;
safety; SARS-CoV-2; seroconversion; TURKOVAC
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1. Introduction

Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which became a pandemic in
March 2020, three months after China reported the first case [1]. As of 31 August 2023, the
infection had affected more than 770 million people worldwide and caused approximately
7 million deaths [2].

The high transmissibility of SARS-CoV-2 has made vaccination a key pillar of the fight
against COVID-19 [3]. Tremendous efforts have been made to develop, manufacture, and
distribute safe and effective vaccines against SARS-CoV-2 to reduce the spread and severity
of the infection and the associated hospitalizations and deaths [3–6].

Knowledge gained about family Coronaviridae during severe acute respiratory syn-
drome (SARS) and Middle East respiratory syndrome (MERS) outbreaks, advances in vac-
cine technology, and collaboration between academia, manufacturers, regulatory agencies,
and funding organizations have enabled an accelerated COVID-19 vaccine development
process without compromising safety and quality [3,4,7]. Several vaccines became available
outside a clinical trial setting within a year after the infection first appeared [4]. As of July
2023, there have been 13 COVID-19 vaccines authorized for emergency use by the World
Health Organization (WHO), and hundreds of vaccine candidates are in various stages of
development [8].

Türkiye was one of the first countries to initiate research on COVID-19 vaccine de-
velopment [9]. ERUCoV-VAC, later named TURKOVAC, is an inactivated whole-virion
SARS-CoV-2 vaccine developed under the national vaccine development program. Preclin-
ical and interim phase 1 (NCT04691947) and 2 (NCT04824391) trial results of the vaccine
have been previously published [10,11]. Based on the immunogenicity and safety findings
from these trials, a regimen of two intramuscular (im) injections of TURKOVAC 3 µg ad-
ministered 28 days apart is recommended for primary immunization [11]. The vaccine has
been available in Türkiye since December 2021 with emergency use authorization granted
by the Turkish Ministry of Health, and the development program is ongoing [12].

Although COVID-19 is no longer considered a Public Health Emergency of Interna-
tional Concern (PHEIC) [13] as of May 2023, it remains an ongoing health issue due to the
emergence of new variants and the waning vaccine-induced immune responses over time.
Therefore, booster vaccination has been suggested, especially for at-risk populations, to
enhance immunity against SARS-CoV-2 [14].

The Hybrid COV-RAPEL TR Study (NCT04979949) demonstrated that heterologous
boosting with TURKOVAC 90 to 270 days after receiving two doses of the CoronaVac
vaccine stimulated a significant immune response that persisted up to post-booster Day 84
with acceptable safety and tolerability [15]. However, there was a gap in knowledge about
the outcomes of homologous boosting with TURKOVAC. Therefore, we investigated the
long-term (32 weeks) immunogenicity, safety, and efficacy of a third, homologous, open-
label booster dose of the vaccine in healthy adults administered 12 weeks after completion
of the primary series in a randomized, placebo-controlled, double-blind, phase 2 study.

2. Materials and Methods
2.1. Study Design and Participants

In a randomized, double-blind, placebo-controlled, phase 2 immunogenicity and safety
trial of the inactivated COVID-19 vaccine TURKOVAC, healthy volunteers <65 years of
age were randomly assigned (2:2:1) to receive two intramuscular injections of TURKOVAC
3 µg or 6 µg or a placebo (0.9% saline) 28 days apart. Considering the immunogenicity and
safety results for the primary series [11], TURKOVAC 3 µg was selected as the optimal dose
to continue the clinical development program, and the study protocol was amended to
investigate the immunogenicity and safety of a booster dose of TURKOVAC 3 µg. Subjects
who had received two doses of TURKOVAC 3 µg for primary immunization during the
study were invited to participate in the booster substudy. Those who gave their consent to
receive the booster dose and had had a recent negative reverse transcriptase polymerase
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chain reaction (RT PCR) test for SARS-CoV-2 received a third dose of the vaccine 12 weeks
after the second dose and were followed up to 32 weeks after the booster injection.

This study was conducted according to the guidelines of the Declaration of Helsinki
and approved by the Ethics Committee for Clinical Trials of Erciyes University (17 June
2021; 2021/396) and the Turkish Ministry of Health (18 June 2021; E-66175679-514.02.01-
463635). Written informed consent was obtained from all subjects involved in the study.
The trial is registered on ClinicalTrials.gov (NCT04824391) (10 February 2021).

2.2. Procedures and Outcomes

A microneutralization test (MNT50) and focus reduction neutralization test (FRNT50)
were performed to measure neutralizing antibodies (NAbs) to wild-type SARS-CoV-2
(hCoV-19/Türkiye/ERAGEM-001/2020 strain, GenBank accession number; MT327745.1
and GISAID; EPI_ISL_424366). IgG responses to SARS-CoV-2 S1 RBD (Spike S1 Receptor
Binding Domain) and whole SARS-CoV-2 were evaluated with the Euroimmune anti-
SARS CoV-2 IgG enzyme linked immunoassay (ELISA) kit and in-house IgG ELISA (based
on purified whole SARS-CoV-2), respectively. Methods of immunogenicity testing were
previously reported in detail [11,16,17]. Laboratory investigations for immunogenicity
were performed on the day of booster injection (i.e., second dose +12 weeks) and at weeks
1, 2, 4, 8, 16, 24, and 32 thereafter. The geometric mean titers (GMTs) of the antibodies
were compared to the pre-booster (second dose +12 weeks) levels. A ≥4-fold higher post-
booster antibody titer compared to the pre-immune levels served as an immune correlate
of protection (ICP) predicting the clinical efficacy of the booster dose.

Adverse event (AE) questioning and laboratory (blood chemistry and hematology)
investigations for safety were performed on the same days as the immunogenicity assess-
ments. In addition, daily phone calls were made to collect AEs within the first week of
booster injection. AEs were graded as mild (grade 1: requiring no intervention; no impact
on activities of daily living (ADL)), moderate (grade 2: requiring minimal, non-invasive in-
tervention; moderate impact on ADL); and severe (grade 3: requiring invasive intervention;
major assistance needed for ADL).

2.3. Statistical Analysis

The GraphPad Prism 9.0.1 program was used for statistical analyses and graphical
representations of immunogenicity data. Antibody titers were presented as GMTs including
95% confidence interval (CI) and seroconversion rates (number of patients and %). An
unpaired t-test was used to compare the antibody titers; Spearman’s correlation curves
and linear regression analyses were utilized to assess the correlation between MNT50 and
FRNT50 results at pre-determined study time-points.

All volunteers who received a booster dose of TURKOVAC 3 µg constituted the safety
population. AEs were descriptively analyzed as number and percentage of events.

A p value < 0.05 was considered statistically significant for all tests.

3. Results

Out of 93 study participants who had received two doses of TURKOVAC 3 µg 28 days
apart for primary immunization, 43 (46.2%) agreed to receive a booster dose of the vaccine.
The mean age of these subjects was 36.79 ± 10.20 years (range: 20–57), and 33 of them
(76.7%) were men. Their mean body mass index was 25.7 ± 3.7 (range: 18.3–32.0). Forty-two
patients were eligible and included in the analysis.

ClinicalTrials.gov


Vaccines 2024, 12, 140 4 of 13

3.1. Immunogenicity

Table 1 presents the GMTs of NAbs, anti-S1-RBD, and anti-whole SARS-CoV-2 IgG
antibodies and the seroconversion rates at baseline (pre-immune) on the day of booster
injection (12 weeks after the second dose of primary series; pre-booster) and at weeks 1, 2, 4,
8, 16, 24, and 32 thereafter. The changes in antibody titers over the course of follow-up are
shown in Figure 1, including how many times GMTs increased at each time-point compared
to pre-immune levels.

Table 1. Pre-immune, pre-booster, and post-booster assessments of antibody titers and seroconversion
rates. * Data are % (n/N) [95 %CI]. Seroconversion was defined as fourfold rise over baseline;
n = number of participants who achieved seroconversion. N = number of participants included in
the immunogenicity analysis; CI = confidence interval.

Antibody Responses Pre-
Immune

2nd Dose
+ 12 Weeks

3rd Dose
+ 1 Week

3rd Dose
+ 2 Weeks

3rd Dose
+ 4 Weeks

3rd Dose
+ 8 Weeks

3rd Dose
+ 16

Weeks

3rd Dose
+ 24

Weeks

3rd Dose
+ 32

Weeks

SARS-CoV
2-neutralizing antibodies

(MNT50)
(GMT-95%CI)

2.0
(2.0–2.0)

10.5
(3.5–23.7)

33.6
(6.7–60.4)

47.9
(21.2–74.5)

44.2
(18.9–69.4)

18.9
(12.7–25.0)

12.0
(5.6–18.3)

5.5
(2.1–8.8)

3.4
(0.1–6.6)

Seroconversion (%) *
Seroconverted/tested (n)

95%-CI

0.0%
0/43

0.0–0.0

78.5%
33/42

63.1–89.7

97.6%
41/42

87.4–99.9

97.6%
41/42

87.4–99.9

97.6%
41/42

87.4–99.9

91.8%
34/37

78.0–98.3

85.7%
24/28

67.3–95.9

48.1%
13/27

28.6–68.0

30.7%
4/13

9.0–61.4

SARS-CoV
2-neutralizing antibodies

(FRNT50)
(GMT-95%CI)

2.0
(2.0–2.0)

9.1
(3.11–21.3)

30.0
(3.4–56.5)

51.9
(22.8–80.9)

49.5
(20.2–78.7)

21.4
(15.5–27.2)

10.8
(7.4–14.4)

5.3
(2.6–7.9)

3.4
(0.1–6.6)

Seroconversion (%) *
Seroconverted/tested (n)

95%-CI

0.0%
0/43

0.0–0.0

80.9%
34/42

65.8–91.4

95.2%
40/42

83.8–99.4

97.6%
41/42

87.4–99.9

97.6%
41/42

87.4–99.9

94.5%
35/37

81.8–99.3

85.7%
24/28

67.3–95.9

44.4%
12/27

25.4–64.6

30.7%
4/13

9.0–61.4

Antibody responses to
S1-RBD

(GMT-95%CI)

45.2
(44.0–47.0)

915.1
(635.5–
1194.3)

2893.4
(2347.5–
3439.2)

3434.9
(2912.3–
3957.4)

3290.6
(2781.8–
3799.3)

1801.9
(1245.9–
2357.8)

816.5
(336.6–
1266.3)

532.9
(243.9–
821.7)

359.5
(76.9–
887.2)

Seroconversion (%) *
Seroconverted/tested (n)

95%-CI

0.0%
0/43

0.0–0.0

100%
42/42

91.5–100.0

100%
42/42

91.5–100.0

100%
42/42

91.5–100.0

100%
42/42

91.5–100.0

97.2%
36/37

85.8–99.9

92.8%
26/28

76.5–99.1

85.1%
23/27

66.2–96.1

76.9%
10/13

46.1–94.9

Antibody responses to
whole SARS-CoV-2

antigen
(GMT-95%CI)

42.6
(41.2–43.9)

486.4
(326.8–645.8)

2067.6
(1754.8–
2380.3)

2371.5
(1986.1–
2756.9)

2265.0
(1889.0–
2641.0)

1230.9
(674.2–
1787.5)

1007.9
(406.1–
1609.6)

484.3
(272.1–
696.4)

400.0
(32.0–
946.1)

Seroconversion (%) *
Seroconverted/tested (n)

95%-CI

0.0%
0/43

0.0–0.0

92.8%
39/42

80.5–98.5

100%
42/42

91.5–100.0

100%
42/42

91.5–100.0

97.6%
41/42

87.4–99.9

97.2%
36/37

85.8–99.9

96.4%
27/28

81.6–99.9

74.0%
20/27

53.7–88.8

61.5%
8/13

31.5–86.1

At 12 weeks after the second vaccination, before the booster shot, NAb seroconversion
persisted in approximately 80% of subjects (Table 1), with 5.2-fold and 4.5-fold higher
NAb GMTs in MNT50 and FRNT50 assays compared to the pre-immune levels, respectively
(Figure 1A,B). Significant increases in NAb GMTs occurred from 1 week after booster
vaccination compared to pre-booster levels, peaking at week 2 and persisting until week 4
(p < 0.05 for all). The NAb titers then showed a gradual decline and became comparable to
pre-booster levels at weeks 8, 16, 24, and 32. However, they remained ≥4-fold higher than
at pre-immune status at weeks 8 and 16 after the booster shot. The seroconversion rates
for NAbs were below 50% and their GMTs were four times lower than the pre-immune
levels at weeks 24 and 32 (Table 1 and Figure 1A,B). The results of MNT50 and FRNT50
assays were very strongly correlated at all assessment time-points and showed a perfect
correlation at week 32 (r = 1; p = 0.001) (Figure 2).
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Figure 1. Comparison of antibody titers across the study assessment time-points. (A) shows the
neutralizing antibody titer in the MNT50 (micro-neutralization test) assay. (B) shows the neutralizing
antibody titer in the FRNT50 (focus reduction neutralization test) assay. (C) shows the IgG titer
against S1-RBD. (D) shows the IgG titer against the whole SARS-CoV 2 antigen. The values inside
the bars represent geometric mean titers (GMTs), and the values above the bars (shown in red) show
how many times GMT values increased versus the pre-immune levels. The dotted line represents
the threshold value for the experiments. The unpaired t-test was used to determine the statistically
significant differences between groups. p < 0.05 indicates statistically significant differences, with ns
indicating nonsignificant; * < 0.05, ** < 0.005, *** < 0.0005 and **** <0.0001.

As presented in Table 1, the seroconversion rates for anti-S1-RBD and anti-SARS-CoV-2
IgG antibodies on the day of booster injection were 100% and 92.8%, respectively. The
GMTs of both antibodies significantly increased, and all subjects achieved seroconversion
at week 1 after the booster injection (p < 0.0001 for both) with 63.5-fold and 48.7-fold-higher
GMTs for anti-S1-RBD and anti-whole SARS-CoV-2 IgGs compared to the pre-immune
values, respectively. IgG antibody titers peaked 2 weeks after the booster shot and gradually
declined in subsequent visits. The anti-S1-RBD IgG GMTs at weeks 8, 16, 24, and 32 after the
third injection were comparable to the pre-booster level but remained ≥4 fold higher than
the titer at the pre-immune state at all these time-points. The anti-whole SARS-CoV-2 IgG
GMT also peaked 2 weeks after the booster dose administration. Unlike the anti-S1-RBD
IgG, the GMTs of anti-whole SARS-CoV-2 IgG at weeks 8 and 16 were significantly higher
than the pre-booster level (p < 0.0001 and p < 0.005, respectively). At week 32 after the
booster dose, the GMTs of anti-S1-RBD and anti-whole SARS-CoV-2 IgG antibodies were
7.9-fold and 9.4-fold higher than the pre-immune levels, respectively (Figure 1C,D). The
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percentage of seroconverted patients was 76.9% for anti-S1-RBD IgG and 61.5% for the
anti-whole SARS-CoV-2 IgG at this time-point.
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Figure 2. Correlation between MNT50 and FRNT50 results. (B–H). Correlation between MNT50 and
FRNT50 at post-booster 1, 2, 4, 8, 16, 24, and 32 weeks. r: correlation coefficient p < 0.05 indicates
statistical significance.
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3.2. Safety

Table 2 provides a summary of the 46 AEs experienced during the post-booster
32 weeks. None of these events were severe. Almost two thirds of the events (63.3%;
30 AEs in 19 participants) occurred after the 8th week of booster shot. Headache (n = 7;
43.8%) was the most common AE experienced within the initial 8 weeks that followed the
booster injection.

Table 2. Adverse events experienced after the booster injection.

Type of Event
Time from the Booster Dose

Overall
n (%)0–8 Weeks

n (%)
9–32 Weeks

n (%)

Positive SARS-CoV-2 RT PCR test - 9 (30) 9 (19.6)
Headache 7 (43.8) 2 (6.7) 9 (19.6)
Weakness 1 (6.3) 4 (13.3) 5 (10.9)

Runny nose 1 (6.3) 3 (10) 4 (8.7)
Joint pain 1 (6.3) 3 (10) 4 (8.7)

Sore throat 1 (6.3) 2 (6.7) 3 (6.5)
Toothache 2 (12.5) - 2 (4.3)
Backpain - 2 (6.7) 2 (4.3)

Chills 1 (6.3) 1 (3.3) 2 (4.3)
Nosebleed 1 (6.3) - 1 (2.2)

Cough - 1 (3.3) 1 (2.2)
Anosmia - 1 (3.3) 1 (2.2)

Shoulder pain - 1 (3.3) 1 (2.2)
Tibia fracture - 1 (3.3) 1 (2.2)
Cat scratching 1 (6.3) - 1 (2.2)

Total 16 (100) 30 (100) 46 (100)
n—number of events; a RT PCR—reverse transcriptase polymerase chain reaction; SARS-CoV-2—severe acute
respiratory syndrome coronavirus 2.

None of the study participants had a laboratory-confirmed SARS-CoV-2 infection
within 8 weeks of booster injection. In total, nine participants were tested positive for
COVID-19 by SARS-CoV-2 RT-PCR after the eight week of booster vaccination. Among
these cases, three were diagnosed between weeks 8 and 16, with neutralization titers
ranging from 1/8 to 1/16. The remaining six cases were detected beyond week 16, also
with neutralization titers ranging from 1/8 to 1/16, except for one case which had a negative
neutralization titer. None of the infected patients had a severe disease requiring hospital
admission. There were no deaths associated with COVID-19.

Eleven subjects (26.2%) had an overall 15 abnormal laboratory test results requiring
repeat testing within the same period; abnormal blood glucose levels (n = 9) in six subjects
(14.3%) were the most common laboratory abnormalities, followed by abnormal white
blood cell counts (n = 3) in three subjects (7.1%) and abnormal blood urea nitrogen levels in
two subjects (4.8%).

4. Discussion

We found that a homologous booster shot with TURKOVAC, administered 12 weeks
after the completion of primary immunization against SARS-CoV-2, elicited rapid and
robust immune responses with acceptable safety and tolerability in healthy adults <65 years
of age. Overall, the results of this study are consistent with those of the previously published
studies that investigated the immunogenicity and safety of homologous boosting with
inactivated vaccines against SARS-CoV-2 [18–26].

Previous studies on inactivated COVID-19 vaccines have demonstrated that the hu-
moral immune responses elicited by a two-dose primary immunization gradually dimin-
ished over time, typically remaining detectable for up to 6 months following the second
dose [15,18–28]. Ates et al. conducted an investigation to assess the long-term immuno-
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genicity of the TURKOVAC and CoronaVac vaccines when administered as booster doses
subsequent to the second dose of primary vaccination with CoronaVac. Their findings
revealed a slight decline in antibody positivity on Day 84 compared to Day 28; however,
there was no statistically significant difference observed between the two vaccine groups in
terms of antibody response [18]. The study conducted by Zeng et al. investigated the im-
mune persistence and efficacy of CoronaVac, a two-dose COVID-19 vaccine, in individuals
aged 18 years and older. The results indicate that after a period of six months, the levels of
neutralizing antibodies induced by the two-dose regimen of CoronaVac declined to low
concentrations. However, the administration of a third dose, eight months after the second
dose, led to a significant enhancement in the immune response, with neutralizing antibody
levels increasing three-fold to five-fold. This study also demonstrated the safety of the third
dose, as no adverse events were reported, and the reactogenicity of the vaccine was com-
parable to that of the placebo. Notably, regardless of age group, a high seropositivity rate
ranging from 98% to 100% was achieved after the administration of the third dose. These
findings suggest that the third dose of CoronaVac, given at an interval of eight months
after the second dose, substantially augments neutralizing antibody levels, potentially
conferring longer-lasting immunity and a heightened level of protection compared to the
standard two-dose schedule [27]. AI et al. conducted a study to evaluate the immuno-
genicity and safety of a third homologous BBIBP-CorV booster vaccination administered
four to eight months after the initial two doses. The results demonstrated that the third
dose of BBIBP-CorV was well tolerated and highly immunogenic in healthy adults aged
18–59 years. This study presented additional evidence demonstrating the effectiveness of a
third dose in generating strong humoral and cell-mediated immune responses, specifically
targeting variants of concern (VOCs). The administration of a third dose of BBIBP-CorV
vaccine effectively stimulated and promptly elevated the humoral immune response by
enhancing antibody levels. Moreover, the third dose demonstrated both safety and efficacy
in eliciting robust humoral and cell-mediated immune responses. These findings provide
support for the potential adoption of a third homologous BBIBP-CorV booster vaccination
approach to enhancing and extending protection against COVID-19 [28].

The administration of a third dose, utilizing different vaccine platforms in addition to
inactivated vaccines, has been shown to rapidly enhance the immune response and maintain
its effectiveness for an extended period. The safety and immunogenicity evaluation of
a booster dose of the BNT162b2 vaccine, given 7 to 9 months after the initial two-dose
series, indicates that a third dose has the potential to extend the duration of protection and
further strengthen the breadth of defense against COVID-19. These findings emphasize the
scientific rationale and importance of administering a third dose to optimize and sustain
immune protection, especially in the face of emerging variants and the ongoing need for
long-lasting immunity in the fight against the COVID-19 pandemic [29]. Flaxman et al.
investigated the immune responses to ChAdOx1 nCoV-19 following a second dose with an
extended interval between the first and second dose, as well as after a third dose with an
extended interval between the second and third doses. Notably, they found that prolonging
the interval between the first two doses to 44–45 weeks resulted in higher antibody titers
after the second dose compared to a shortened interval. Moreover, administering a third
dose 28–38 weeks after the primary series led to antibody titers surpassing those observed
after a second dose with a shortened interval. Importantly, the reactogenicity was lower
after the second or third dose compared to the first dose [30].

In our study, the GMTs of NAbs and ELISA-detected SARS CoV-2-specific IgGs were
above the seropositivity thresholds for the relevant assays on the day of booster administra-
tion, i.e., 12 weeks after completing the primary series, and the seroconversion rates were
approximately 80% for NAbs and exceeded 90% for IgGs. Although these findings suggest
that a substantial group of participants might have had the potential to remain seropositive
for longer periods of time after primary immunization, we do not know what the impact
of delaying the booster administration would be as we only tested the 12-week boosting
schedule.
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Protection against SARS-CoV-2 infection and a reduction in disease severity in affected
individuals are complex processes in which both the humoral and cellular components
are involved [25,31–38]. Various humoral markers, including anti-spike protein/anti-
RBD IgG and IgA and NAbs, have been suggested as potential surrogate markers of
SARS-CoV-2 vaccine efficacy, but there are no established protective thresholds or ranges
for these antibodies [34–38]. In this study, a booster dose of TURKOVAC increased the
seroconversion rate of NAbs to >95% and those of anti-SARS-CoV-2 S1 RBD IgG to 100%
as early as 1 week after the injection, and >90% of the subjects remained seropositive for
both antibodies for at least 8 weeks after the vaccination. None of the participants had
a PCR-confirmed SARS-CoV-2 infection during this period. It is noteworthy to mention
that two thirds of the confirmed cases of infection occurred after the sixteenth week of
booster administration, when the GMTs of NAbs fell below six times the pre-immune levels
and there were no hospitalizations or deaths due to COVID-19 throughout the 32-week
study period despite the declining antibody GMTs over time. Although this study was
not designed to determine an ICP, our findings suggest that the NAbs may be a potential
correlate of protection at least against laboratory-confirmed SARS-CoV-2 infection for
TURKOVAC. The GMTs of IgGs, which remained above the lower limit of seroconversion
throughout the study period, might be explained by the persistence of specific immune
memory cells allowing for antibody production following exposure to the relevant antigens.
Overall, our findings show the clinical efficacy of boosting with TURKOVAC in preventing
SARS-CoV-2 infection and reducing COVID-19 severity and are complementary to those
from previous studies of various inactivated vaccines which reported low rates of infection,
pneumonia, hospitalization, and death associated with SARS-CoV-2 infection after the
administration of a booster dose [39–46].

The current study did not reveal any new concerns regarding TURKOVAC safety. All
AEs were mild to moderate in severity and resolved within a few days. In contrast to
other inactivated COVID-19 vaccine studies [19–21,23,28,29,39], including those of TURKO-
VAC [11,15,18,32], none of the participants in this study reported pain at the injection
site after receiving a booster injection. This may be because we collected AEs through
spontaneous reporting, unlike previously published TURKOVAC studies where safety
assessments included both solicited and unsolicited data collection and pain at injection
site was the most reported local reaction.

To our knowledge, this is the first paper to report the outcomes in volunteers who were
boosted with homologous TURKOVAC vaccine. The strengths of this study are the long
follow-up period extending up to 32 weeks after the booster dose and the assessment of im-
munogenicity with both NAbs and SARS-specific IgGs. This provides valuable information
about the long-term immunogenicity and efficacy of a booster dose of TURKOVAC.

The following limitations should be considered when interpreting the results. This
was a small-sized, single-arm study which included healthy adults aged <65 years and
investigated the immunogenicity and safety of a single boosting scheme. In addition, this
study only evaluated the antibody responses against wild-type SARS-CoV-2 and did not
include cellular immune response assessments.

One of the limitations of our study is that we lack information about the specific
variants or lineages with which the nine volunteers were infected, despite their positive
rt-PCR results during the study. However, it is worth noting that a study conducted in
Türkiye between April 2021 and February 2022 analyzed 492 SARS-CoV-2 strains. Out of
these, 64% were identified as variants, while 16% were classified as the wild type. During
this period, seven different lineages and a sublineage were reported among the variant
sequences. Initially, the Alpha variant was dominant, followed by the Beta, Delta, Eta, and
Lota variants. However, by September 2021, the Delta variant became the dominant variant
in Türkiye. In December 2021, the Omicron variant was reported for the first time, and
by February 2022 it overtook the Delta variant [47]. According to these results, it can be
speculated that the Alpha variant was initially dominant during the study, followed by the
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Delta variant, and in the final stages of the study, the Omicron variant was detected for the
first time.

Ongoing studies are actively investigating the vaccine’s efficacy against variants of
concern (VoCs) and evaluating cellular immune responses, with these studies currently in
the process of being prepared for submission.

5. Conclusions

The administration of a third homologous booster dose of TURKOVAC, an inactivated
whole-virion SARS-CoV-2 vaccine, 12 weeks after the completion of primary immuniza-
tion can safely provide effective protection against SARS-CoV-2 infection and reduce the
severity of COVID-19 by inducing strong humoral immune responses which persist at least
8 weeks in healthy adults under 65 years of age. Future research and real-life data on the
immunogenicity, efficacy, or effectiveness of various boosting regimens against the vari-
ants of concern in study populations, including those who are vulnerable to SARS-CoV-2
infection, will help optimize the immunization strategy for TURKOVAC.

6. Patents

Aykut Ozdarendeli, Shaikh Terkis Islam Pavel, Hazel Yetiskin, Muhammet Ali Uygut,
and Gunsu Aydin are the named inventors on patent applications covering inactivated
COVID-19 vaccine development.
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