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Abstract: The intradermal route has emerged as a dose-sparing alternative during the coronavirus dis-
ease 2019 (COVID-19) pandemic. Despite its efficacy in healthy populations, its immunogenicity has
not been tested in immune-mediated dermatologic disease (IMDD) patients. This assessor-blinded,
randomized-controlled, non-inferiority trial recruited patients with two representative IMDDs
(i.e., psoriasis and autoimmune bullous diseases) to vaccinate with fractionated-dose intradermal
(fID) or standard intramuscular (sIM) BNT162b2 vaccines as a fourth booster dose under block ran-
domization stratified by age, sex, and their skin diseases. Post-vaccination SARS-CoV-2-specific IgG
and interferon-γ responses measured 4 and 12 weeks post-intervention were serological surrogates
used for demonstrating treatment effects. Mean differences in log-normalized outcome estimates
were calculated with multivariable linear regression adjusting for their baseline values, systemic
immunosuppressants used, and prior COVID-19 vaccination history. The non-inferiority margin was
set for fID to retain >80% immunogenicity of sIM. With 109 participants included, 53 received fID
(all entered an intention-to-treat analysis). The fID demonstrated non-inferiority to sIM in humoral
(mean outcome estimates of sIM: 3.3, ∆fID-sIM [mean, 95%CI]: −0.1, −0.3 to 0.0) and cellular (mean
outcome estimates of sIM: 3.2, ∆fID-sIM [mean, 95%CI]: 0.1, −0.2 to 0.3) immunogenicity outcomes.
Two psoriasis patients from the fID arm (3.8%) developed injection-site Koebner’s phenomenon.
Fewer fID recipients experienced post-vaccination fever (fID vs. sIM: 1.9% vs. 12.5%, p = 0.027). The
overall incidence of disease flare-ups was low without a statistically significant difference between
groups. The intradermal BNT162b2 vaccine is a viable booster option for IMDD patients troubled by
post-vaccination fever; its role in mitigating the risk of flare-ups remains unclear.

Keywords: COVID-19 vaccines; BNT162 vaccine; intradermal vaccines; immune-mediated dermatologic
disease; autoimmune bullous disease; psoriasis
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1. Introduction

Staying up-to-date with the coronavirus disease 2019 (COVID-19) vaccination sched-
ules is essential to protect oneself from COVID-19-related complications and maintain herd
immunity to prevent another pandemic. An epidemiological model raised concerns about
the waning of protective efficacy to less than 50% if the boosting schedule was lengthened
to more than 1.5 years, resulting in the introduction of annual vaccination into the scientific
discussion [1]. Boosting with newer vaccines may also be expected to tackle the mutating
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants.

Fractionated-dose intradermal vaccination (fID) is an alternative delivery route that
has gained popularity among countries experiencing vaccine supply shortages as it allows
up to 80% cost reduction and facilitates efficient vaccine distribution in these areas [2]. As a
booster dose, fID using either mRNA or viral vector vaccines induces a less intense overall
reactogenicity while offering slightly lower but acceptable protective immunity than the
standard intramuscular injection (sIM) [3–9]. This feature of fID may help persuade more
patients with immune-mediated diseases to vaccinate, as studies have shown that they
hesitate to receive COVID-19 vaccines due to the possibility of vaccine-related adverse
reactions that may act upon their conditions, especially in causing disease flare-ups [10]. In
Thailand, where fID is offered country-wide, many patients who seek ways to mitigate the
immune-triggering effect of COVID-19 vaccination often consider this vaccination option,
including patients with immune-mediated dermatological diseases (IMDD).

The effects of the fID COVID-19 vaccination on IMDD patients are difficult to predict,
especially when their responses to the vaccines deviate from the general population [11,12].
Previous observational studies reported a reduced COVID-19 vaccine immunogenicity in
approximately half of autoimmune bullous disease (AIBD) patients following the primary
series and a few after the third additional or booster dose [11–14]. Despite the preserved
immune responses by the vaccines, psoriasis patients reported a higher rate of systemic ad-
verse events, especially fever and flu-like symptoms, following immunization (AEFI) than
in healthy volunteers and other IMDD patients [11,15,16]. Psoriasis is also one of the most
common pre-existing conditions among people who reported cutaneous vaccine-related ad-
verse reactions, with the incidence of psoriasis flare-up varying between studies [15,17–19].
Given this information, it is uncertain whether fID is an immunogenically sensible choice
of booster for IMDD patients from an immunogenicity or reactogenicity perspective.

Therefore, this study aims to demonstrate non-inferiority in immunogenicity between
fID and sIM in delivering the BNT162b2 COVID-19 vaccine booster dose to IMDD patients.

2. Materials and Methods
2.1. Study Design and Participants

This assessor-blinded, open-label, randomized-controlled, non-inferiority trial was
conducted at the dermatology outpatient clinic in Ramathibodi Hospital, Mahidol Uni-
versity, Thailand. The timing of this study coincided with the period when most people
in Thailand had already received the primary series and the third dose and were seek-
ing the fourth booster dose. IMDD patients were screened for eligibility and included
if they were aged ≥18 years, diagnosed with psoriasis or AIBD (e.g., pemphigus and
pemphigoid groups), completed a two-dose primary series and one booster dose lasting
for ≥3 months, and agreed to receive the fourth dose of the BNT162b2 COVID-19 vaccine.
Patients with a history of COVID-19 infection, uncontrolled disease activity of IMDD, con-
comitant diagnosis of non-dermatologic immune-mediated diseases, congenital or acquired
immunodeficiency syndrome, active cancer, pregnancy, and allergy to components of the
BNT162b2 COVID-19 vaccine were excluded. Types of prior COVID-19 vaccines received
were not restricted, as Thai people had limited choices of accessible vaccines during the
pandemic. Moreover, the participants’ diagnoses, representing the two common IMDDs,
were later randomized to balance their tentative immunological responses to COVID-19
vaccines extrapolated from our previous study (i.e., the immunogenicity of COVID-19
vaccines is higher among psoriasis patients compared to AIBD patients, with a reverse
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trend for the vaccine-related adverse reactions) [11]. The study protocol was approved by
the Human Research Ethics Committee, Faculty of Medicine Ramathibodi Hospital, Mahi-
dol University (MURA 2022/238) and prospectively registered in clinical trial databases
(ClinicalTrials.gov: NCT05406908, Thai Clinical Trial Registry: TCTR20220317008). No
change was made to the trial design or protocol after the trial had commenced.

2.2. Interventions

This study contained an investigational arm and an active comparator. The placebo
and inoculation control arms were not included due to ethical concerns about the risks of
disease flare-up without direct benefits. The injection site for both arms was the deltoid
area of the non-dominant arm. The vaccine was reconstituted per the manufacturer’s
instructions with identical appearance and viscosity between arms, leaving the difference
only for the vaccine’s volume and the injection equipment. In the investigational arm,
33% fractionated-dose BNT162b2 COVID-19 vaccine (i.e., 10 µg/0.1 mL) was administered
intradermally. The immunological equivalence of this dose fractionation was postulated by
a modelled relationship summarized from various dose-ranging studies [20] and supported
by studies in a healthy population [4,7]. The active comparator was the on-label standard
dosage of BNT162b2 COVID-19 vaccine (i.e., 30 µg/0.3 mL) administered intramuscularly.
We minimized variation in the inoculation effect by having a single dermatologist perform
the injection and photographically document the presence of intradermal wounds for every
subject in the interventional arm.

2.3. Randomization, Allocation, Concealment, and Blinding

Participants were allocated to either interventional arm in a 1:1 ratio using computer-
generated permuted block randomization, stratifying by age (<, ≥65 years old), sex, and the
disease groups (i.e., psoriasis or AIBD). Upon enrolment notification, envelopes containing
the allocation sequence were delivered to the investigators, who then enrolled participants
sequentially according to the number labelled, performed the vaccine injection, and covered
the injection site with an opaque bandage. All participants were instructed to refrain from
sharing the intervention details with the assessors. If applicable, participants were advised
to discontinue methotrexate or mycophenolate mofetil for 1 week post-vaccination. They
were assessed by blinded investigators for 30 min following vaccination without removing
the bandage for immediate adverse reactions. The same assessors followed participants
to document adverse events and disease activity of IMDD at 1-, 2-, 3-, 4-, 8-, 12-, and
24 weeks post-vaccination. Participants who developed fever or symptoms of respiratory
tract infection during the study period were instructed to report the symptoms, the date of
illness, and COVID-19 testing results to their assessors.

2.4. Study Outcomes

Serological surrogates of SARS-CoV-2-specific immunity, namely anti-SARS-CoV-2 S1
receptor binding domain IgG (referred to as anti-SARS-CoV-2 IgG from this point forward)
and the interferon (IFN)-γ response induced by the SARS-CoV-2 IFN-γ release assay
(IGRA), were used for immunogenicity evaluation of the interventions. The anti-N protein
antibody was not evaluated in the spirit of creating a homogenized protocol for testing
the efficacy of S-protein-based COVID-19 vaccines applicable to participants with mixed
prior vaccination backgrounds. All tests were performed by trained laboratory personnel
using automated machines. SARS-CoV-2 IgG and IFN-γ levels quantitatively represent the
magnitude of humoral and cellular immune responses to the interventions, respectively.
The SARS-CoV-2 IgG level was measured by the SARS-CoV-2 IgG II SEMI QUANT assay
(Abbott, Chicago, IL, USA) and reported in binding antibody units per milliliter (bau/mL).
The positive cut-off recommended by the manufacturer is 7.1 bau/mL. The IFN-γ response
was evaluated by the Quan-T-Cell SARS-CoV-2 assay (Euroimmun, Lübeck, Germany). A
detailed description of the test can be found in our previous publication [11]. The IFN-γ
level above 200 milli-international units per milliliter (mIU/mL) was considered a positive

ClinicalTrials.gov


Vaccines 2024, 12, 73 4 of 17

response based on validation studies [21,22]. These cut-offs were used to summarize
participants’ baseline humoral and cellular SARS-CoV-2-specific immunity. Outcome
analyses were executed with their absolute values since the population-specific cut-off
value was not available at the time of the study.

The primary outcomes were peak humoral and cellular immunogenicity observed at 4
and 12 weeks post-intervention, respectively. The secondary outcomes included SARS-CoV-
2 IgG levels measured at 12 and 24 weeks post-intervention, IFN-γ responses measured at
24 weeks post-intervention, vaccine-related adverse events, post-intervention COVID-19
infection, and disease flares during the study period. Vaccine-related side effects were
documented using the list modified from the World Health Organization’s (WHO) AEFI
form. Documentation of disease flare episodes was performed with pre-defined criteria
accompanied by objective evidence of an increased disease-specific severity score and
an up-titration of treatment for disease control. Further details regarding adverse event
monitoring (i.e., the list of items monitored and the operational definitions) can be found in
the Supplementary Document (See Supplementary S1).

2.5. Assay Sensitivity Evaluation

The historical placebo-controlled trial of the fID COVID-19 vaccine is unavailable.
Therefore, a relatively stable SARS-CoV-2-specific immunity level was assumed for the
placebo arm since vaccine-induced immunity levels would plateau 3–6 months following
the third COVID-19 vaccine, [23,24] coinciding with the time between enrolment and
primary outcome measurement in this study. The effect size of the placebo was deduced
from the possible variations in the serological surrogate values (i.e., the within-laboratory
measurement variability of the laboratory tests), which are 4.2–6.4% for SARS-CoV-2 IgG II
SEMI QUANT assay and 2.3–7.5% for Quan-T-Cell SARS-CoV-2 according to the assays’
manuals. Therefore, to ensure that the treatment effect observed is beyond that of the
placebo, the goal was set for the interventions to induce a ≥10% increase in the primary
outcome estimates from their baseline values to fulfill the assay sensitivity assumption.

2.6. Statistical Analysis

Both intention-to-treat (ITT) and per-protocol (PP) analyses were performed. Dur-
ing the ITT analysis, imputation using group means was conducted for patients with
missing outcomes. The PP analysis of immunogenicity outcomes included participants
without missing outcomes whose immunogenicity outcomes fulfilled the assay sensitivity
assumption and did not acquire a breakthrough COVID-19 infection. The PP analysis
of reactogenicity-related outcomes included participants without missing data. Non-
inferiority analyses were performed for all immunogenicity outcomes; the outcome esti-
mates were log-normalized before analysis. The non-inferiority margin was constructed
with a synthesis method based on previous data that associated dose fractionation of
BNT162b2 COVID-19 vaccine with clinical efficacy and a mean neutralizing antibody level
at approximately 80% of those induced by the standard dosage (i.e., the between-arm dif-
ferences in immunogenicity levels should be less than 20% of the mean levels produced by
sIM) [20]. The difference in treatment effects was calculated via multivariable linear regres-
sion models, using log-transformed outcome estimates as dependent variables and their
corresponding baseline values along with imbalanced baseline characteristics as covariates.
Non-inferiority was interpreted using a one-sided confidence interval (CI) approach to the
covariate-adjusted mean differences in log-transformed outcome estimates between the
interventional arms.

Secondary reactogenicity outcomes (i.e., the percentages of participants who reported
each AEFI item, were diagnosed with disease flares, and had breakthrough COVID-19)
were compared between groups using chi-square or Fisher’s exact tests as appropriate and
a p-value of 0.05 as a statistical significance threshold.
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2.7. Sample Size Calculation

Due to the lack of prior data, serological surrogate levels measured from IMDD
patients receiving the third dose as an mRNA vaccine were used for sample size estima-
tion [13]. These levels were assumed to be similar to those measured following the fourth
dose, as this trend was demonstrated in healthy volunteers [25]. To compare the difference
in effect sizes under the non-inferiority criteria above with a one-sided significance level of
2.5%, a power of 80%, and an allocation ratio of 1:1, the sample sizes required to reject the
null hypothesis (i.e., fID is inferior to sIM) are 110 and 118 for the primary humoral and
cellular immunogenicity outcomes, respectively.

3. Results
3.1. Study Participants

Between June and August 2022, 109 IMDD patients participated in this study (92%
of the desired sample size). The recruitment was stopped thereafter, given the release of
the bivalent vaccine that replaced the monovalent version used in this study. Fifty-three
participants were allocated to receive fID (Figure 1). All participants received treatment
as allocated and were followed up in person or via telemedicine until the last visit. The
number of participants entering ITT and PP analyses is illustrated in Figure 2. Baseline
characteristics were mostly balanced between arms, except for the difference in the propor-
tion of systemic immunosuppressant-free participants in the ITT sample (Table 1), those
receiving interleukin 17/23 inhibitors in the PP analysis of the secondary humoral im-
munogenicity outcome (fID vs. sIM: 24.2% vs. 5.0%, p = 0.017), and participants receiving
interleukin 17/23 inhibitors in the PP analysis of the cellular immunogenicity outcome
(fID vs. sIM: 36.0% vs. 10.7%, p = 0.028). All factors showing a baseline imbalance were
adjusted during multiple linear regression analyses. The number of participants who did
not fulfil the assay sensitivity assumption was similar between arms without a predilection
towards one particular IMDD (See Supplement S2: Table S1). However, these participants
tended to have higher baseline SARS-CoV-2-specific serological surrogate levels, especially
in cellular immunity, than those who fulfilled the assay sensitivity assumption, but the
SARS-CoV2-specific immunity levels observed during the study period were comparable
between the two groups.
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some blood test visits but completed other assessments via telemedicine were included for analysis.
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Table 1. Baseline characteristics of the study participants.

Investigational Arms
p

fID (n = 53) sIM (n = 56)

Age group, n (%) 0.700 a

<65 35 (66.0) 35 (62.5)

≥65 18 (34.0) 21 (37.5)

Female, n (%) 28 (52.8) 31 (55.4) 0.791 a

Immune-mediated dermatologic diseases, n (%) 0.887 a

Autoimmune bullous diseases 31 (58.5) 32 (57.1)

Psoriasis 22 (41.5) 24 (42.9)

Systemic immunosuppressants used before intervention

Prednisolone, n (%) 19 (35.9) 17 (30.4) 0.542 a

Dose (mg/day), median (IQR) 6.3 (3.8–10.0) 5.0 (3.8–7.5) 0.501 b

Azathioprine, n (%) 24 (45.3) 17 (30.4) 0.108 a

Dose (mg/day), median (IQR) 62.5 (30.4–100) 50.0 (25.0–75.0) 0.257 b

Methotrexate, n (%) 12 (22.6) 13 (23.2) 0.943 a

Dose (mg/week), median (IQR) 10.0 (5.0–16.3) 12.5 (10.0–12.5) 0.599 b

Mycophenolate mofetil, n (%) 0 3 (5.4) 0.088 a

Dose (mg/day), median (IQR) 0 1000 (1000–3000) NA

Cyclophosphamide, n (%) 1 (1.9) 0 0.302 a

Dose (mg/day), median (IQR) 14.3 (14.3–14.3) 0 NA

Cyclosporin, n (%) 3 (5.7) 2 (3.6) 0.602 a

Dose (mg/day), median (IQR) 50 (50–100) 125 (100–150) 0.128 b

Sulfasalazine, n (%) 4 (7.6) 2 (3.6) 0.363 a

Dose (mg/day), median (IQR) 2500 (1500–3000) 2500 (2000–3000) 0.803 b

Leflunomide, n (%) 2 (3.8) 1 (1.8) 0.526 a

Dose (mg/day), median (IQR) 20 (20–20) 20 (20–20) 1.000 b

Recent rituximab use: c, n (%) 13 (24.5) 10 (17.9) 0.394 a

Interleukin 17/interleukin 23 inhibitors d, n (%) 12 (22.6) 6 (10.7) 0.094 a

Tumor necrotic factor inhibitors d, n (%) 1 (1.9) 0 0.302 a

No systemic immunosuppressants were used, n (%) 5 (9.4) 14 (25.0) 0.032 a,*

Previous COVID-19 vaccination, n (%)

Primary series 0.487 a

Viral vector vaccines 38 (71.7) 41 (73.2)

Inactivated vaccines 9 (17.0) 9 (16.1)

Heterologous vaccines 4 (7.6) 6 (10.7)

mRNA vaccines 2 (3.8) 0

Third dose 0.693 a

mRNA vaccines 51 (96.2) 53 (94.6)

Viral vector vaccines 2 (3.8) 3 (5.4)

Interval between the third and fourth doses (days), median
(IQR) 148 (130–178) 155 (136.0–183.5) 0.507 b
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Table 1. Cont.

Investigational Arms
p

fID (n = 53) sIM (n = 56)

Baseline SARS-CoV-2-specific immunity levels, median (IQR)

Anti-SARS-CoV-2 S1 RBD IgG (bau/mL) 422.7 (153.5–927.1) 385.0 (142.2–985.1) 0.974 b

% Participants tested negative (<7.1 bau/mL) 5 (9.4) 3 (5.4) 0.415 a

IFN-γ measured from SARS-CoV-2 IGRA (mIU/mL) 831.3 (379.5–2031.3) 1481.4
(270.1–3822.3) 0.403 b

% Participants tested negative (≤200 mIU/mL) 8 (15.1) 10 (17.9) 0.698 a

Participants whose immunogenicity data did not fulfil the assay
sensitivity assumption, n (%)

Humoral immunogenicity outcome 1 (1.9) 1 (1.8) 0.969 a

Cellular immunogenicity outcome 21 (39.6) 24 (43.6) 0.672 a

* p <0.05 a p-value from the chi-square or Fisher’s exact test, b p-value from the Mann–Whitney test, c The
most recent course of rituximab treatment received by all participants was administered as follows: two doses
of 1000 mg rituximab infusions separated by 2 weeks. Recent use was defined as a rituximab-to-vaccination
interval < 9 months, d Biologics were prescribed with the standard dosage for psoriasis. Abbreviations: bau,
binding antibody unit; COVID-19, coronavirus disease 2019; fID, fractionated intradermal; IFN-γ, interferon
gamma; IGRA, IFN-γ release assay; IQR, interquartile range; IU, international unit; ml, milliliter; NA, not
applicable; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; sIM: standard intramuscular.
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• COVID-19 infection at Week 4 and 24 (n = 1)

• Not fulfilling assay sensitivity (n = 25)
• Missing outcomes at Week 12 (n = 1)
• Missing outcomes at Week 24 (n = 4)
• COVID-19 infection at Week 4 (n = 3)
• COVID-19 infection at Week 12 (n = 1)
• COVID-19 infection at Week 24 (n = 3)

Analysis

Figure 2. The number of participants entering intention-to-treat and per-protocol analyses. All
participants entered the intention-to-treat analysis. The per-protocol analyses included participants
without missing immunogenicity outcome data, fulfilled the assay sensitivity assumption, and had
not contracted COVID-19 at the respective time points post-intervention. Abbreviation: COVID-19,
coronavirus disease 2019.

3.2. Immunogenicity Outcomes

During ITT analysis, fID induced a slightly lower anti-SARS-CoV-2 IgG level than
sIM at Week 4 but returned to a comparable level at Week 24 (Figure 3). In the fID arm,
anti-SARS-CoV-2 IgG increased by 2053.7 (95%CI: 1163.7, 2943.6) bau/mL from baseline
to peak and dropped by 186.4 (95%CI: −1652.1, 2025.0) bau/mL between Week 4 and
12 and 1034.4 (95%CI: −383.2, 2451.9) bau/mL between Week 12 and 24. At Week 4,
sIM raised anti-SARS-CoV-2 IgG by 2530.6 (95%CI: 1708.6, 3352.5) bau/mL from baseline
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before its level decreased by 1260.7 (95%CI: 532.3, 1989.1) bau/mL between Week 4 and 12
and 768.0 (95%CI: −235.9, 1771.9) bau/mL between Week 12 and 24. After adjusting for
effects of covariates (i.e., baseline SARS-CoV-2 IgG level, the use of immunosuppressants,
prior COVID-19 vaccines received, and the doses of mRNA vaccines received previously),
the mean difference in the log-transformed primary humoral immunogenicity outcome
estimate between fID and sIM of −0.1 (95%CI: −0.3, 0.0) was shown. According to the
non-inferiority margin of −0.7, the fID vaccine was non-inferior to sIM (Figure 4). ITT
analyses of secondary humoral immunogenicity outcomes yielded the same conclusion as
the primary one (See Supplement S2: Figures S1 and S2). The results of PP analyses also
followed those observed during ITT analyses (See Supplement S2: Figures S4, S6 and S7).
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Figure 3. The longitudinal trend of serological surrogates of SARS-CoV-2-specific immunogenicity.
The boxplots illustrate SARS-CoV-2 S1 RBD IgG levels (a) and IFN-γ responses measured by SARS-
CoV-2 IGRA (b) from baseline to 24 weeks post-intervention in each interventional arm. The circles
indicate the means. Abbreviations: bau/mL, binding antibody units per milliliter; fID, fractionated
intradermal; IFN-γ, interferon gamma; IGRA, IFN-γ release assay; mIU/mL, milli-international
units per milliliter; RBD, receptor binding protein; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2; sIM, standard intramuscular; Wk, weeks.
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Figure 4. Intention-to-treat analysis of the mean difference in the primary humoral (a) and cellular
(b) immunogenicity outcome estimates. Anti-SARS-CoV-2 S1 RBD IgG measured 4 weeks post-
vaccination and the IFN-γ response measured by SARS-CoV-2 IGRA at 12 weeks post-vaccination
were log-normalized prior to analysis. The mean outcome differences between arms were estimated
using multivariable linear regression analyses, adjusting for the baseline value of the corresponding
outcome measures, the use of systemic immunosuppressants, the types of COVID-19 vaccines, and
the doses of mRNA vaccines previously received. Diamonds, solid black lines, and dotted red lines
represent means, 95%CI, and NI margins. Abbreviations: CI, confidence interval; COVID-19, coron-
avirus disease 2019; fID, fractionated intradermal; IFN-γ, interferon gamma; IGRA, IFN-γ release
assay; NI, non-inferiority; RBD, receptor binding protein; SARS-CoV-2, severe acute respiratory
syndrome coronavirus 2; sIM, standard intramuscular.

At Week 12, the IFN-γ response of fID recipients increased by 1002.5 (95% CI:
140.9–1864.1) mIU/mL from baseline values, while this change varies among participants
receiving sIM (mean change [95% CI]: −303.1 [−1576.7, 970.4] mIU/mL). The temporal
change in IFN-γ response after Week 12 differs among participants of both arms (mean
change [95% CI] of fID vs. sIM: 71.1 [−637.9, 780.1] vs. 536.2 [685.2, 1757.7]). The covariate-
adjusted (same covariates as the humoral immunogenicity outcomes) difference in the
log-transformed primary cellular immunogenicity outcome estimates between fID and sIM
was within the predefined non-inferiority margin of −0.6, with the point estimate favoring



Vaccines 2024, 12, 73 10 of 17

fID (mean difference [95% CI]: 0.1 [−0.2, 0.3]). The ITT analysis of secondary cellular
immunogenicity outcomes and all PP analyses of cellular immunogenicity outcomes also
showed the same trend (See Supplement S2: Figures S3, S5 and S8).

Among the covariates adjusted during regressions, only the serological surrogate
values measured before the outcome of interest were positively associated with the
magnitude of the immunogenicity outcomes. Conversely, the number of doses of mRNA
vaccines received prior to enrolment exerts a negative effect on the increment of SARS-
CoV-2-specific IFN-γ response from Week 4 to 12 in ITT analysis but not in PP analysis
(See Supplement S2: Table S2).

3.3. Vaccine-Related Adverse Reactions and Breakthrough COVID-19

Among study participants, both local and systemic adverse reactions persisted for
approximately one week, with only a few patients reporting symptom persistence beyond
this time (Table 2). No severe adverse reactions were reported. The distinctive local
reaction observed following fID was itching associated with immediate wheal formation
that persisted for 1-2 weeks (Figure 5). A bullous local reaction was not found in any
interventional arm. Koebner’s phenomenon was detected in two psoriasis patients in the
fID group. No AIBD patient developed Koebner’s phenomenon. Other types of local
reactions were observed similarly in both arms.
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Figure 5. Examples of normal (a) and abnormal (b) local vaccine-related reactions following the
fractionated-dose intradermal injection. All patients developed a small induration immediately after
the injection, followed by a wheal formation that persisted for 1–2 weeks. The wheal gradually
resolved and may leave residual post-inflammatory hyperpigmentation or a scaly erythematous
patch that can be seen up to 4 weeks post-vaccination. Abnormal reactions occurred infrequently,
such as a large wheal formation a few days following injection or Koebner’s phenomenon occurring
around 1–2 weeks after injection.
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Table 2. Vaccine reactogenicity, disease activity, and breakthrough COVID-19.

Investigational Arms p
fID (n = 53) sIM (n = 56)

Vaccine-related local adverse reactions

Acute immunization site pain 40 (75.5) 41 (73.2) 0.787 a

Pain score (possible range: 1–10), median (IQR) 3 (2–5) 2 (1–4) 0.493 b

Delayed immunization site pain 9 (17.0) 13 (23.2) 0.418 a

Pain score (possible range: 1–10), median (IQR) 3 (3–3) 5 (4–6) 0.270 b

Itching, n (%) 12 (22.6) 0 <0.001 a,*

Induration, n (%) 6 (11.3) 4 (7.1) 0.336 a

Swelling of limb, n (%) 0 1 (1.8) 0.514 a

Nodule at injection site, n (%) 0 0 NA

Abscess or cellulitis, n (%) 0 0 NA

Ipsilateral lymph node enlargement or lymphadenitis, n (%) 0 0 NA

Bleeding at injection site, n (%) 0 0 NA

Local reaction persisting for > 3 days, n (%) 3 (5.7) 2 (3.6) 0.474 a

Local reaction extending beyond the nearest joint, n (%) 0 0 NA

Koebner’s phenomenon, n (%) 2 (3.8) 0 0.234 a

Vaccine-related systemic adverse reactions

Fever, n (%)

No fever 52 (98.1) 49 (87.5)

Fever < 38 ◦C 0 6 (10.7) 0.027 a,*

Fever ≥ 38 ◦C 1 (1.9) 1 (1.8)

Headache, n (%) 2 (3.8) 3 (5.4) 0.234 a

Chills, n (%) 0 0 NA

Arthritis, n (%) 0 2 (3.6) 0.262 a

Muscle pain, n (%) 4 (7.6) 11 (19.6) 0.067 a

Fatigue or tiredness, n (%) 0 4 (7.1) 0.119 a

Drowsiness, n (%) 0 2 (3.6) 0.496 a

Dizziness, n (%) 1 (1.9) 2 (3.6) 0.262 a

Upper respiratory symptoms, n (%) 1 (1.9) 1 (1.8) 0.738 a

Others: fainting, gastrointestinal symptoms, neurological conditions, systemic
cutaneous reactions, anaphylaxis, thrombocytopenia, toxic shock syndrome, sepsis, n
(%)

0 0 NA

Duration of vaccine-related adverse reactions, n (%)

≤1 week 21 (39.6) 24 (42.9) 0.732 a

>1–2 weeks 4 (7.5) 5 (8.9) 0.535 a

>2–3 weeks 0 2 (3.6) 0.262a

Disease activity, n (%)

Participants diagnosed with flare-ups during the study period 4 (7.5) 8 (14.3) 0.261a

Diagnosed in less than 1 month post-intervention 0 4 (7.1) 0.066 a

Diagnosed after 1 month but less than 3 months post-intervention 0 2 (3.6) 0.262 a

Diagnosed after 3 months post-intervention 4 (7.5) 2 (3.6) 0.313 a

Participants with dose escalation of systemic immunosuppressants despite not fulfilling
flare definitions 4 (7.5) 5 (8.9) 0.793 a

Participants with breakthrough COVID-19 during the study period, n (%) 9 (17.0) 7 (12.5) 0.509 a

Diagnosed in less than 1 month post-intervention 4 (7.5) 3 (5.4) 0.641 a

Diagnosed after 1 month but less than 3 months post-intervention 3 (5.7) 1 (1.8) 0.288 a

Diagnosed after 3 months post-intervention 3 (5.7) 3 (5.4) 0.634 a

* p < 0.05; a p-value from the chi-square or Fisher’s exact test; b p-value from the Mann–Whitney test. Abbrevi-
ations: COVID-19, coronavirus disease 2019; fID, fractionated intradermal; IQR, interquartile range; NA, not
applicable; sIM: standard intramuscular.
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Regarding the systemic side effects, the most common item reported by participants
was fever (Table 2); the frequency of post-vaccination fever was significantly lower among
participants receiving fID compared to those receiving sIM. A total of 12 patients were
diagnosed with disease flare-ups during the study period, including six AIBD patients
and six psoriasis patients. The participants diagnosed with flare-ups seemed to cluster
more in the sIM arm; nonetheless, the between-group difference did not reach a statistically
significant level. There was an equal number of psoriasis patients with post-vaccination
flare-ups between arms (3 [5.7%] participants in the fID arms, 3 [5.4%] participants in
the sIM arms). However, there were more AIBD patients with flare-ups in the sIM arm
compared to the fID arm (1 [1.9%] participants in the fID arm, 5 [8.9%] participants in the
sIM arm). The percentages of participants needing escalated treatment but not fulfilling
flare definitions were also similar between the two interventional arms.

Sixteen participants (17 infection episodes) were diagnosed with symptomatic, micro-
biologically confirmed breakthrough COVID-19. All episodes were mild and manageable
as outpatients, with the disease resolution occurring within 1–2 weeks. No significant
difference in the incidence of breakthrough COVID-19 between the interventional arms
was demonstrated.

4. Discussion

Alternative COVID-19 vaccination routes have been actively researched during the
COVID-19 pandemic with a wide range of focuses, including efficacy, safety, ease of
administration, and economic benefits. Intranasal and intradermal routes were the two
promising COVID-19 vaccination options that reached the later stages of studies. Although
intradermal injection is widely studied, it is currently an off-label route of administration,
while the intranasal vaccine has yet to be released [4,5,7,9,26–29]. The benefits of these
alternative routes are often multidimensional; for example, the intranasal COVID-19 vaccine
offers an IgA-mediated local protective effect and pain-free administration, though its
performance in inducing systemic immunity varies and requires further studies [26]. The
intradermal route offers a robust antigen-specific immunity induction with a low amount
of antigen by bringing them to the proximity of dendritic cells [30]. Compared to the
intramuscular route, it is more economically and logistically efficient, does not carry
neurovascular injury risks, and is associated with itch rather than pain following injection,
based on our previous research and a few prior studies [4,5]. Additionally, the intradermal
route is theoretically more suitable for self-adjuvanted mRNA COVID-19 vaccines than the
subcutaneous route, another injectable route with an elevated risk for severe local reactions
and contraindicated for adjuvanted vaccines [31–34].

Immunological equivalence of intradermal to the standard intramuscular routes was
demonstrated in many vaccines [35,36]; some (i.e., influenza and polio vaccines) have been
proven safe and efficacious in immunocompromised hosts [37,38]. With these promising
historical data and their tendency towards lower systemic adverse reactions compared to
the intramuscular counterpart, the fID COVID-19 vaccines have attracted great attention
from the general public [3–8,39,40]. Many forms of fractionated intradermal COVID-19
vaccines (i.e., ChAdOx1-nCoV-19, BNT162b2, and mRNA-1273) were proven adequately
immunogenic in healthy populations [3–6,8,9,36,37,39,40]. However, there is a lack of
data on IMDD patients. In this study, we demonstrated that the immunogenicity of
the fID BNT162b2 booster vaccine was comparable to the standard intramuscular form.
Interestingly, a certain number of patients did not gain measurable benefits from vaccinating
with the booster dose of either route, especially in the cellular immunity aspect. The
ceiling for inducing cell-mediated immunity, observed with either natural infection or
vaccines [41–43], was limited by T cell exhaustion. This phenomenon may antedate or
get accelerated after vaccination in immune-mediated disease and cancer patients due
to disease- and treatment-related factors [44]. In cancer patients, Benitez Fuentes et al.
observed T lymphocytes with exhaustive phenotypes as early as after the third dose. The
frequency of exhausted T cells was higher among patients with poor SARS-CoV-2-specific
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IFN-γ responses than those with good responses [45]. The same timeframe of T cell
exhaustion is speculated for IMDD patients because we observed significant numbers of
participants who did not fulfil assay sensitivity in the primary cellular immunogenicity
outcome in both interventional arms. Our data also suggest previous exposure to mRNA
COVID-19 vaccines as a factor contributing to this inability to boost SARS-CoV-2. Because
these participants had a higher baseline IFN-γ response than those who responded well to
the fourth dose, pre-booster SARS-CoV-2 IGRA testing may serve to identify IMDD patients
who would gain benefit from an additional vaccine over a humoral immunity booster such
as long-acting monoclonal antibodies (i.e., tixagevimab and cilgavimab), but the proper cut-
off IFN-γ levels would require further studies. A trend of better cellular immunogenicity
among those who fulfilled assay sensitivity may also signal us to further evaluate the
superiority of the intradermal to intramuscular route in inducing SARS-CoV-2-specific
T-cell immunity among IMDD patients.

Regarding side effects, a significantly lower rate of post-vaccination fever was ob-
served in participants receiving fID, even among psoriasis patients. Although the incidence
of flare-ups among psoriasis participants was lower than those estimated by the Vaccine
Adverse Event Reporting System Database (14.0% vs. 26.8%), the psoriasis flare-up events
seem to distribute equally between arms, suggesting that fID may not help reduce flare.
The risk of flare associated with mRNA vaccines and the interruption of methotrexate after
vaccination may confound the effect of fID in this matter [18,46,47]. Another potential
downside of the intradermal vaccination for IMDD patients is the prolonged local reac-
tion. This protracted cutaneous stimulation may implicate the development of Koebner’s
phenomenon in psoriasis patients. According to what we observed in our participants,
Koebner’s phenomenon does not always lead to systemic flare-ups. The reaction may be
preventable by carefully selecting a vaccine inoculation site without surrounding active
skin lesions or further optimizing the vaccine’s fractionation. If the benefit of vaccination
outweighs the risk, such as in the pandemic, this local side effect is manageable by topical
corticosteroids and should not preclude patients from further vaccinations. Physicians
should inform psoriasis patients of this information so that they can set accurate expec-
tations for the fID BNT162b2 COVID-19 vaccine. Aside from IMDDs being studied, no
new-onset immune-mediated adverse reactions (e.g., urticaria, pityriasis rosea, alopecia
areata, demyelinating diseases) were observed among participants, despite the increased
incidence of these autoimmune diseases after COVID-19 vaccination found in other popu-
lations [48]. The occurrence of these conditions could be masked by the use of systemic
immunosuppressants before and after intervention among participants. For certain dis-
eases, other host factors could play a role in developing these conditions post-vaccination.
For example, the median age of 57 among participants in this study has placed them
in the age group with a low incidence of alopecia areata (0.1 per 1000 person-year) [49].
Demyelinating diseases are also uncommon in people of Asian descent [50–52].

The limitations of this study are as follows: Firstly, the sample size limits the power to
interpret the reactogenicity outcome analysis and does not allow rare event comparisons
such as herpes zoster reactivation, with an estimated incidence of 0.20% among COVID-19
vaccinees [53]. Secondly, an asymptomatic breakthrough infection cannot be estimated since
we did not check for anti-N protein antibodies. Nonetheless, all symptomatic infections
were accounted for and served as clinically relevant data for the protective effect of the
intervention. Thirdly, the effect of the ipsilateral or contralateral site injections relative to the
previous vaccination was not part of the study protocol. Emerging evidence demonstrated
that COVID-19 vaccination in the ipsilateral arm was immunogenically superior to the
contralateral arm vaccination in the neutralizing activity of anti-S IgG, median spike-specific
CD8 T-cell levels, and CTLA-4 expression on spike-specific CD4 T-cells [54]. Exploring
this benefit for fID could be an interesting area of further study. Lastly, the lack of fID
COVID-19 vaccines’ immunogenicity data in other groups of immunocompromised hosts
precludes the comparison of the vaccine’s performance between patients with different
immune-mediated conditions.
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The strength of this study is that it is one of very few that objectively addresses the
immunogenicity and reactogenicity of a COVID-19 booster dose in completely vaccinated
IMDD patients, a specific group of patients with minimal information regarding their
immunological response to COVID-19 vaccines as well as intradermal vaccines in gen-
eral. Findings from this study are valuable in counselling IMDD patients regarding their
vaccination options and establishing new knowledge essential for the next outbreak.

5. Conclusions

The 33% fractionated intradermal BNT162b2 COVID-19 vaccine is immunologically
not inferior to its standard intramuscular form when used as a fourth booster dose in IMDD
patients. Some participants showed little change in the strength of SARS-CoV-2-specific
cellular immunity, suggesting the presence of a boosting ceiling. The intradermal vaccine
significantly induces less post-vaccination fever, but the benefit of reducing IMDD flare-ups
was not observed. A prolonged local reaction is expected from the intradermal vaccine;
Koebner’s phenomenon may occur infrequently following the injection. This information
is helpful in laying down the tangible benefits and risks of this vaccination option for
IMDD patients.
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