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Abstract: Plasmodium spp. is the etiological agent of malaria, a life-threatening parasitic disease
transmitted by infected mosquitoes. Malaria remains a major global health challenge, particularly in
endemic regions. Over the years, various vaccine candidates targeting different stages of Plasmodium
parasite life-cycle have been explored, including subunit vaccines, vectored vaccines, and whole
organism vaccines with Mosquirix, a vaccine based on a recombinant protein, as the only currently
approved vaccine for Plasmodium falciparum malaria. Despite the aforementioned notable progress,
challenges such as antigenic diversity, limited efficacy, resistant parasites escaping protective immu-
nity and the need for multiple doses have hindered the development of a highly efficacious malaria
vaccine. The recent success of mRNA-based vaccines against SARS-CoV-2 has sparked renewed
interest in mRNA vaccine platforms. The unique mRNA vaccine features, including their potential for
rapid development, scalability, and flexibility in antigen design, make them a promising avenue for
malaria vaccine development. This review provides an overview of the malaria vaccines’ evolution
from the past towards the mRNA vaccine era and highlights their advantages in overcoming the
limitations of previous malaria vaccine candidates.

Keywords: malaria; vaccines; mRNA; peptide vaccines; protein vaccines; Plasmodium; P. falciparum;
DNA vaccines

1. Introduction

Malaria, a life-threatening mosquito-borne infectious disease caused by the Plasmodium
parasite, continues to pose a significant global health burden as half of the world’s popula-
tion lives at risk of infection, particularly in tropical and subtropical regions. Based on the
latest World Health Organization (WHO) data, malaria cases increased up to 247 million,
with reported 619,000 deaths in 2021, as during the COVID-19 pandemic, the prevention
and diagnosis efforts were disordered [1]. Five different parasite species can cause malaria
in humans, namely Plasmodium falciparum, P. vivax, P. ovale, P. malariae, as well as P. knowlesi,
which infects non-human primates in Southeast Asia and can also infect humans (“zoonotic”
malaria) [2]. Of these species, P. falciparum infection commonly results in severe malaria
cases, which require prompt treatment to avoid death. In fact, P. falciparum was documented
as the etiological agent of 95% of malaria cases and 96% of malaria deaths in 2021, and
unfortunately, 80% of all malaria deaths were accounted for in children under 5 years old
in the African continent [1].

Malaria can be a devastating disease, but there are continuous efforts to prevent illness
and death by integrating control strategies that combine vector control measures, improved
diagnostics, and access to prompt and effective treatment. Despite the progress in malaria
mitigation measures, the intricate life cycle of the Plasmodium parasite, involving both
humans and female Anopheles mosquitoes as its hosts, contributes to the complexity of
malaria transmission and its ability to persist in endemic areas [3]. In the mammalian
host, Plasmodium parasites differentiate in different forms, starting with sporozoite form
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inoculated during a blood meal of an infected female Anopheles mosquito into the human
host skin. Subsequently, the sporozoites invade the hepatocytes in the liver, where they
mature, replicate, and release merozoite forms, which eventually invade erythrocytes,
where they transform from rings and trophozoites to the schizonts stage. The ruptured
schizonts release merozoites that can infect fresh blood cells [4,5].

The Global Technical Strategy for Malaria (2016–2030) has a set target to reduce 90%
of malaria incidents and mortality rates around the world; thus, there is a need for novel,
efficient preventive antimalarial strategies [6]. Although vaccination represents a crucial
pillar in the comprehensive approach to malaria control, the development of an effective
malaria vaccine has been difficult, primarily due to the complex biology of the parasite
and the intricate host immune response required for protection [3]. However, recent
advancements in vaccine research and the identification of promising vaccine candidates
have renewed hopes for developing effective vaccines for malaria.

Our goal is to provide a comprehensive overview of the current landscape and progress
in malaria vaccine development. The current review aims to discuss the challenges posed
by malaria and new strategies that can be used to develop effective malaria vaccines. Hence,
we will delve into key aspects of vaccine development through the years and the progress
from the traditional vaccine development methods towards the mRNA vaccine era in the
fight against malaria.

2. Vaccines That Target the Sporozoite Form of Plasmodium Parasite

Until now, different vaccine strategies have been developed targeting different stages
of Plasmodium species. Vaccines that target the sporozoite stage aim to prevent infection of
the liver and induce immunity against the parasites [7]. At first, whole-killed sporozoites
were tested as a malaria vaccine in animal studies, offering only partial protection [8].

Significant progress in the development of malaria vaccines was reported in 1967 by
vaccinating mice using irradiated sporozoites (metabolically active and motile but non-
replicating) capable of inducing sterile immunity (no detectable parasitemia) to the disease.
The radiation-attenuated sporozoite approach was rapidly implemented in humans in
many dose and regimen optimization studies [9]. P. falciparum (Pf ) sporozoite vaccine
(Pf SPZ) from the NF54 isolate manufactured by Sanaria Inc. (Rockville, MD, USA) met all
the regulatory requirements needed for testing in humans (Table 1). Studies in animals
revealed that Pf SPZ should be administered only intravenously (IV) in order to confer
protection. Later, for a quick and more precise evaluation of the vaccine’s efficacy, the
controlled human malaria infection (CHMI) model was developed. CHMI is considered
a successful model since fewer subjects are required in clinical trials [7]. Consequently,
studies in malaria-naïve volunteers in the United States who received four doses of the
Pf SPZ vaccine provided evidence for long-term protection (up to 14 months) by inducing
sterile immunity against homologous CHMI [10,11].

Subsequent studies aimed to evaluate if the vaccine’s efficacy persists in different
age groups, in individuals previously exposed to the parasite, in endemic areas and the
durability of protective efficacy. Studies in African countries have shown that the direct
venous inoculation (DVI) route of administration can prolong the vaccine’s protection in
adults [12]. DVI route induces circulating Pf CSP-specific antibodies as well as circulating
and liver-resident T cell responses [13] (Table 1). Oneko et al. have shown that there are
differences in the vaccine’s efficacy between infants, children and adults, reporting how
cellular immune response is affected by age. Indeed, in this comparative study between
age groups, it was reported that although infants vaccinated with the highest dose of Pf SPZ
generated the highest levels of antibodies, the Pf SPZ-specific T-cell responses, indicative
of the induction of protection, were not detected. The lack of γδ T cells may explain the
vaccine’s modest efficacy observed at three months instead of six months, which was
the primary endpoint [13]. Furthermore, individuals who were previously exposed to P.
falciparum exhibited low vaccine efficacy. We could hypothesize that pre-existing natural
immunological responses interfere with the development of robust immune responses
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following vaccination with Pf SPZ [14]. Moreover, despite parasite diversity in endemic
areas, clinical trials conducted in countries such as Tanzania and Balonghin, Burkina Faso,
have provided encouraging results since they have shown that an optimized Pf SPZ vaccine
dosage is well tolerated, safe and effective in African adults throughout an entire malaria
season [15–17].

Table 1. Major characteristics of the sporozoite vaccine formulations.

Vaccine Company Target
Source of
Peptide

Antigens
Adjuvant Immune

Response Clinical Status

RTS,S/AS01E
GlaxoSmithKline
Biologicals SA

Inhibition of
sporozoite
infection

Circumsporozoite
protein AS01 Protective hu-

moral/cellular
WHO

recommended

R21
Serum Institute

of India
(Pune, India)

Inhibition of
sporozoite
infection

Circumsporozoite
protein Matrix-M Protective

humoral
Phase III

clinical trial

Pf SPZ Sanaria Inc.
Killing of
infected

hepatocytes

Whole
sporozoite None Protective hu-

moral/cellular
Phase II clinical

trial

Pf SPZ-CVac
(CVac = Chemo-

prophylaxis
Vaccine)

Sanaria Inc.
Killing of
infected

hepatocytes

Whole
sporozoite None Protective hu-

moral/cellular
Phase II clinical

trial

Another vaccine approach combines replication–intact sporozoites with antimalarial
drug prophylaxis, such as chloroquine and mefloquine, to prevent malarial illness [18,19].
Pf SPZ-CVac manufactured by Sanaria Inc. (CVac = Chemoprophylaxis Vaccine) can induce
sterile immunity in malaria-naive volunteers, whereas it cannot confer significant protective
efficacy in malaria-exposed adults [20]. Pf SPZ-CVac is a stronger immunoantigen compared
to Pf SPZ since the infectious Pf SPZ in Pf SPZ-CVac expresses ∼4500 different proteins,
including blood-stage proteins, whereas Pf SPZ expresses ~1000 proteins. Thus, there are
dramatically more parasites and antigens presented to the immune system per Pf SPZ
injected with Pf SPZ-CVac [21]. Nevertheless, the dose schedules of this vaccine are not
standardized. Compressing thePf SPZ–CVac regimen to 28 and 10 days proved safe and
simultaneously maintainedhigh efficacy (67 and 63%, respectively). However, the 10-day
regimen induced more robust cellular and humoral immune responses (Table 1). This could
be attributed to the continuous exposure to liver-stage parasites, which in nature lasts
about 6.5 days. The duration of liver-stage exposure is a factor in optimizing Pf SPZ–CVac
immunogenicity [22]. In conclusion, Pf SPZ-CVac could be used in elimination campaigns in
endemic areas where the population is already exposed to natural malaria transmission [21].

Alternative strategies for P. falciparum attenuation are the genetic modifications proce-
dure that incorporate mutations to the parasite that lead to the arrest of parasite develop-
ment at various points during liver infection in humans. Identification of genes that are
upregulated in infective sporozoites resulted in the development of a P. falciparum early
liver stage-arresting triple knockout parasite (p36−/p52−/sap1−), namely Pf GAP3KO.
Pf GAP3KO has been assessed for its immunogenicity in humans, showing potent sporo-
zoite infection-blocking antibodies, but no data are available for T-cell responses [23,24]. In
a CHMI study, Pf GAP3KO was safe, immunogenic and capable of achieving protection
in half of tested malaria-naïve study participants [25]. Another P. falciparum genetically
attenuated parasite was created by the deletion of two genes loci, slarp and b9, each
governing independent and critical processes for successful liver-stage development. Pf
double-knockout (Pf ∆b9∆slarp) SPZ was manufactured by Sanaria (Pf SPZ-GA1 vaccine),
and a clinical trial was conducted to assess its safety, immunogenicity and efficacy in
malaria-naïve volunteers in comparison with Pf SPZ group. The results showed that the
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vaccine was safe and well-tolerated when administered by DVI. Moreover, it induced
cellular and humoral immune responses. Regarding efficacy, the authors observed an
unexpectedly low efficacy in the Pf SPZ reference group, which limited the ability of the
authors to interpret the observed data for the Pf SPZ-GA1 vaccine [26].

3. Circumsporozoite Protein Subunit Vaccines

The circumsporozoite protein (CSP) on the surface of the malaria sporozoite is rep-
resented early in the liver phase of infection, and it is considered a major antigen compo-
nent [27]. The RTS,S/AS01E (RTS,S), the most advanced of the subunit malaria vaccines, is
a pre-erythrocytic P. falciparum vaccine that consists of a protein (RTS) of the NANP repeat
and C-terminal portions (R and T, respectively) of the NF54 strain of P. falciparum CSP,
fused with the hepatitis B virus surface antigen (HBsAg; the S portion). It is administered
with a liposome-based adjuvant (AS01), which is used to enhance the immune response
to vaccination through antibodies and CD4+ T cells [7,28] (Table 1, Figure 1). The anti-
bodies after vaccination have to act quickly in order to prevent sporozoites’ invasion of
hepatocytes (naturally, sporozoites reach the liver within 30 min after a mosquito bite) and
also to elicit a cellular response, enabling the destruction of infected hepatocytes [14,29].
Phase 3 trials showed a median vaccine efficacy against malaria of 55.1% (95% confidence
interval [CI], 50.5–59.3%) over 12 months after vaccination when delivered according to a
0-, 1-, and 2-month schedule in children aged 5–17 months at first vaccination [30]. Despite
the limited efficacy and the fact that it wanes over multiple years, RTS,S /AS01E is the
first malaria vaccine (trade name Mosquirix, GlaxoSmithKline Biologicals SA) that gained
WHO approval in October 2021 [1] (Table 1). It has been approved for vaccination in
children under the age of two residing in regions of moderate to high malaria transmission.
Moreover, it is recommended to be provided in countries with seasonal malaria transmis-
sion. Implementation of Mosquirix vaccination has reduced hospital admissions for severe
malaria by around 30% (modest efficacy) [31]. Moreover, a booster vaccination schedule,
including a delayed and fractional third dose showed 87% efficacy in malaria-naïve adults
but not in children [32]. The modest efficacy of RTS,S/AS01E predicates the development
of an optimal vaccine against malaria a clinical need.
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R21 vaccine is the next-generation pre-erythrocytic P. falciparum vaccine with the aim to
be more immunogenic than the RTS,S/ASO1E. R21 particle is different from the RTS,S since
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it contains only the CSP-HBsAg fusion protein, resulting in a higher density of the CSP on
the surface [33] (Figure 1). It has been developed at the University of Oxford and is currently
manufactured by the Serum Institute of India (Pune, India). As an adjuvant, Matrix-M™
(MM) has been used, a formulation that is similar to a COVID-19 vaccine, which consists
of the SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) and-MM adjuvant (Novamax,
Gaithersburg, MD, USA) [34] (Table 1). R21/MM vaccine has reached the WHO’s goal of
at least 75% efficacy over 12 months in African children under the age of two who had
been previously exposed to malaria [35]. One limitation of this study is that it had been
conducted prior to the peak malaria season, as antibody levels had declined markedly at
12 months post-vaccination. The funding organization extended the clinical trial in order
to determine vaccine efficacy over 2 years across different malaria transmission settings
(NCT04704830) [7,14]. At the same target group, a phase 1/2b clinical trial was conducted
in order to evaluate if a booster dose of R21/Matrix-M at 12 months after the initial three
doses maintains the observed immunity. Authors reported that the booster dose exerts
high efficacy (over 75%) against first and multiple episodes of clinical malaria as well as
high antibody titers [36]. With regard to the safety profile of the vaccine, no major adverse
effects have been reported with R21/MM immunization [35,36]. Due to its high efficacy
and favorable safety profile, the R21/MM vaccine has been licensed for use in three African
countries: Ghana, Nigeria and Burkina Faso.

4. Viral-Vector-Vaccines

Viral-vectored vaccines (Figure 2A) were designed in the pursuit of the aim to exceed
the protection rate of the RTS,S vaccine by enhancing the cellular immunity against the liver
stage of P. falciparum [37]. Despite the fact that several viral-vector vaccines did not reach
this goal, in the last several years, the progress of this approach has been accelerated consid-
erably. Currently, one of the most advanced viral-vector vaccines is chimpanzee adenovirus
63 (ChAd63) and modified Vaccinia Ankara (MVA) (Figure 2B). ChAd63 and MVA encode
the thrombospondin-related adhesion protein pre-erythrocytic antigen and the multiple
epitope string (ME-TRAP) in order to prime an immune response. This particular prime-
boost immunization approach (MVA is used as a prime booster) induces higher CD8+ T cell
responses than single vector immunization, and it confers 21% sterile short-term protection
as determined by CHMI in malaria-naive adults [28,34]. Moreover, its efficacy has been
verified in a field study since vaccination reduced the risk of infection by 67% among adults
living in a malaria-endemic area in Kenya [38]. As described above, the development of all
malaria vaccine candidates targets one stage of the complex life of P. falciparum. Recently,
a multi-stage vaccine regimen, namely human adenovirus 5 (AdHu5)- adeno-associated
virus serotype 1 (AAV1) prime-boost (Figure 2B), was generated, and in animal studies, it
provided significant efficacy as well as induced high-titer antibody responses. It expresses
either P. falciparum pre-erythrocytic PfCSP or sexual stage Pf s25 antigen [39].
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5. Erythrocytic Vaccines (Blood-Stage Vaccines)

Erythrocytic vaccines are a unique category of malaria vaccines since their mechanism
of action is to block the invasion of red blood cells by the merozoites (after the completion
of the pre-erythrocytic stage) [40]. They target antigens highly expressed on the surface of
merozoites, namely erythrocyte-binding antigen-175 (EBA-175), apical membrane antigen-1
(AMA-1), glutamate-rich protein (GLURP), serine repeat antigen 5 (SERA5) and merozoite
surface proteins (MSPs). However, this strategy has provided disappointing results from
the clinical studies, maybe because the induced antibodies cannot act as quickly as required
in order to trap the numerous merozoites outside the erythrocytes [27]. Moreover, the above
antigens are highly polymorphic. Recently, the recombinant SE36 antigen formulated with
aluminum hydroxyl gel (BK-SE36) has been assessed for its immunogenicity and safety in
phase I [41] and phase Ib [42] trials. BK-SE36 malaria vaccine was safe and well-tolerated
as well as highly immunogenic when given to healthy semi-immune children under 5 years
old [42]. Phase II clinical trial has to be designed in order to verify its effectiveness.

6. Nucleic Acids in Malaria Vaccine Development

As previously mentioned, the Mosquirix vaccine has shown significant success in
reducing severe malaria cases and lowering child mortality, and currently, more than one
million children living in areas with moderate-to-high malaria transmission have received
the vaccine, marking its widespread use [1]. However, Mosquirix has encountered certain
limitations, including lower efficacy in specific age groups besides children, lack of durable
immune responses and the necessity of three to four booster doses to achieve reasonable
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efficacy [29,43]. Consequently, the search for a more robust and effective malaria vaccine is
still ongoing.

The high demand for implementation of fast-track stages in vaccine research and
development introduced early the idea of considering nucleic acids as a tool for the evolu-
tion of third-generation vaccines [44]. Using genetic technology to develop DNA or RNA
vaccines has been introduced 30 years ago in basic research, and the advantages of such
technology have been outlined compared to conventional methods. The approach of nucleic
acid vaccine development consists of isolating pathogens in the field, gene sequence and
in silico recognition of antigens, evaluation of vaccine efficacy and efficiency, production
and clinical trials [45]. Improvements in genetic engineering, bioinformatics and computa-
tional approaches provide an immense boost in the rapid antigen design [45,46]. However,
at first, the production of mRNA vaccines against infectious diseases faced significant
controversy due to concerns surrounding RNA instability, challenges in large-scale manu-
facturing, vaccine reliability, and potential implications [44,45]. Hence, the first attempts at
third-generation vaccine development focused on DNA.

6.1. DNA Vaccines

To address the challenges associated with malaria treatment and vaccination, such
as drug-resistant malaria and the complex cell cycle of the malaria parasite, the versatile
DNA vaccine technology has gained attention. This technology enables the convenient
production of vaccines capable of targeting multiple antigens from both the preerythrocytic
and erythrocytic stages of the malaria parasite [5]. Simultaneously, DNA-based vaccines
are being recognized as highly promising due to their straightforward production, cost-
effectiveness, extended shelf-life, independence from a cold chain, and capacity to stimulate
both humoral and cellular immune responses [5].

Several Plasmodium proteins have been in the spotlight for exploitation in the form of
DNA vaccines in preclinical trials. The most potent one, CSP, has been widely examined
by different research groups in order to optimize the appropriate codon modifications,
gene sequence tag additions, regime alterations and route of administration that could
stimulate the desired immune response and protective immunity [47–50]. Nevertheless,
the process of codon optimization did not yield the expected strong CD4+ and CD8+ T
cell responses, suggesting that the impact of mammalian codon optimization may vary
depending on the antigen. In the context of vaccines designed to induce T cell-dependent
protective immunity in this malaria model, it did not appear to confer any advantages [48].
Consequently, immunization of experimental models of mice in different studies with
Plasmodium CSP resulted in in vivo antibody production and decreased the parasitic levels
in the liver depending on the method of administration and the construct [51,52].

The induction of a specific immune response is essential for establishing protective
immunity against Plasmodium parasites. Particularly, CD8+ T cells have been identified
as the primary effectors in the fight against malaria. Therefore, the initial hypothesis
that scientists sought to test was whether DNA vaccines could elicit this type of immune
response. Wang et al. immunized primates (rhesus monkeys) with four plasmid DNAs
expressing pre-erythrocytic (sporozoite/liver) stage proteins. These proteins individually
have been previously shown to be immunogenic in mice, namely the Pf CSP, Pf sporozoite
surface protein 2, Pf protein exported protein 1, and Pf liver-stage antigen 1. Upon
immunization, the monkeys exhibited antigen-specific cytotoxic T lymphocytes, which
were attributed solely to CD8+ T cells [53], proving that this strategy is highly promising to
be implemented in humans.

Numerous other antigenic proteins have been identified as antigenic and potent vaccine
candidates, either in vitro or in silico, and their corresponding DNA vaccine candidates have
been evaluated in vivo (i.e., Pf sexual stage surface antigen s25, GPI8p transamidase-related
protein, merozoite surface protein-1). However, the assessment of these DNA vaccines has
been limited to preclinical studies conducted in murine experimental models [5,54,55].
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6.2. Malaria Vaccines in mRNA Era

The success of COVID-19 mRNA vaccines has paved the way for companies to utilize
this technology in the development of RNA-based vaccines for various infectious diseases,
including malaria. The obstacles associated with mRNA vaccines, which previously arose
from the complexities of advancements in RNA biology and chemistry, are currently
being successfully addressed. This progress is facilitating the broad adoption of this
technology. The breakthroughs in self-amplifying mRNA vaccines and the development of
lipid-based formulations (Figure 3A) represent a disruptive innovation, introducing a novel
approach to vaccine production. In contrast to the existing mRNA vaccines produced for
COVID-19, which introduce a limited amount of non-replicating mRNA, self-amplifying
RNA vaccine technology includes the necessary replication machinery (self-amplifying
RNA vectors containing the nonstructural protein genes that encode a viral replicase, 5′ and
3′ sequences important for replication, and a subgenomic promoter derived from alphavirus
vectors) [56] (Figure 3B). This enables intracellular RNA amplification and consequently
results in abundant protein expression. The novel mRNA technology approach utilizes a
straightforward, synthetic, rapid, and cell-free process, potentially enabling the creation of
numerous advanced products in the future. These advancements hold promise to surpass
the technology employed in mRNA COVID-19 vaccines [45,57,58].
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Figure 3. Schematic representation of potential self-amplifying mRNA-LNP vaccine components.
(A) Schematic representation of an LNP formulation. The membrane consists of neutral lipids,
polyethylene glycol lipids (PEGylated lipids), cholesterol and ionizable cationic lipids. For the
self-amplifying mRNA-LNP vaccine, in the formulation the target mRNA must be included along
with RNA-dependent RNA polymerase (RdRP) complex which will enable the intracellular RNA
amplification and the consequently abundant expression of the target protein upon the immunisation
of the host. (B) The target self-amplifying RNA encodes 5′ and 3′ CSE (conserved sequence element)
sequences, a subgenomic promoter and the vaccine immunogen.

Thus, leveraging the recent achievements in vaccine development for COVID-19, RNA
technology is now being utilized to develop hopeful antimalarial candidate vaccines. For
instance, the self-amplifying RNA technology has been used for the development of a
vaccine that targets the antigen Plasmodium macrophage migration inhibitory factor (PMIF),
which is secreted by the parasite and serves to suppress the host’s inflammatory response to
the infection, particularly targeting the T-cell response [59]. Immunization of mice resulted
in the stimulation of enhanced differentiation of memory CD4 T-cells and liver resident
CD8 T-cells, as well as an elevation in antibody levels targeting the parasite. Ultimately,
this leads to protection against reinfection and provides defense against both liver and
blood-stage infections [60]. With these promising outcomes, there is a possibility that
human clinical trials will be conducted in the near future to assess preliminary safety and
immunogenicity. Very recently, a self-amplifying mRNA vaccine packaged in cationic
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liposomes has been developed targeting the blood-stage antigen reticulocyte binding
protein homologue 5 (Pf RH5) of P. falciparum. Mice immunized with the vaccine elicited
antibodies that recognized the native protein expressed in P. falciparum schizont extracts
and inhibited the growth of the parasite in vitro [56]. Mallory et al. used the Pf CSP in order
to incorporate its mRNA in lipid nanoparticles before being administrated to mice [59].
Due to the insufficient production of protective antibodies, following immunization, it
was determined that a booster immunization was necessary to induce a robust immune
response. As a result, mice that were vaccinated with mRNA-lipid nanoparticle (LNP)
demonstrated partial protection against the disease and exhibited improved survival rates
following parasitic infection, particularly after a 6-week immunization schedule [59]. The
Pf CSP mRNA-LNP vaccine exhibits the ability to disrupt malaria infection in mice at a
stage prior to the parasite entering the red blood cells, resulting in complete protection
against the disease. This remarkable outcome positions it as a promising candidate for a
pre-erythrocytic malaria vaccine.

Based on the same hypothesis, Hayashi et al. conducted an experiment using murine
models, where mRNA- LNP vaccines containing antigens Pf s25 and Pf CSP were admin-
istered either individually or in combination. The immune responses generated by the
mRNA-LNP vaccines surpassed those induced by the corresponding DNA vaccine formu-
lation immunization [61]. Pf s25 mRNA-LNPs induced antibody responses that effectively
prevented malaria transmission to mosquitoes, and four immunizations with Pf CSP mRNA-
LNP protected mice against sporozoite challenge [61]. The current endeavor advocates
for a combined approach, utilizing vaccines that target both the infectious stage and the
sexual/midgut stages of malaria. This approach is anticipated to play a crucial role in dis-
rupting malaria transmission, which is essential for achieving the goal of elimination [61].

The highly secreted and conserved protein amongst Plasmodium species, Cell-Traversal
protein for Ookinetes and Sporozoites (CelTOS), has been identified as a potential protective
antigen [62,63]. Consequently, various research groups have assessed the effectiveness
of CelTOS vaccines and demonstrated their ability to trigger robust immune responses,
both humoral and cellular, that can confer functional immunity [4,64–66]. For instance,
Waghela et al., upon optimization of the mRNA modifications, performed a three-dose
regimen of CelTOS mRNA-LNP immunization in mice, which induced antigen-specific
cellular cytokine responses accompanied with a sufficient capability to mount Pf CelTOS-
specific antibody responses [4]. Consequently, the aforementioned efforts emphasized the
importance of optimizing antigen modifications to achieve the most effective design for the
development of a malaria vaccine.

The mosquito saliva protein AgTRIO has also been used for the generation of an
mRNA-LNP vaccine. Upon immunization of mice with AgTRIO mRNA-LNP, a robust
humoral response was evoked, including AgTRIO IgG2a isotype antibodies. Moreover,
immunized mice had reduced hepatic parasitic load after Plasmodium berghei-infection and
thus manifested increased survival [67]. A mosquito AgTRIO mRNA vaccine contributes
to immunity against malaria [67]. Another approach to prevent malaria infection, using
mRNA vaccines, was attempted by Ganley et al., who immunized mice in order to induce
liver tissue-resident memory T cells (Trm cells) cells to prevent malaria. More specifically,
vaccination of mice with mRNA encoding the model antigen chicken ovalbumin (OVA) and
the malaria antigen RPL6, incorporating an active fluorescent derivative of αGC, BODIPY-
αGC (αGCB), induced memory T cell response with strong Trm cells production in the
liver. Moreover, vaccinated mice upon challenge with P. berghei sporozoites that target the
liver, demonstrated high level protection from blood-stage infection [68].

Finally, another study identified Plasmodium falciparum glutamic acid-rich protein
(Pf GARP) as a potential candidate that was tested using an mRNA-based vaccination
strategy. Pf GARP is present on the surface of infected red blood cells and can be identified
by antibodies found in children who exhibit relatively higher resistance to P. falciparum
infection, as they induce programmed cell death in the red blood cells. In a study performed
by Raj et al., the effectiveness of the mRNA-LNP Pf GARP vaccine was assessed in Aotus
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monkeys. Three doses of vaccine reduced parasitemia in Aotus monkeys upon challenge
with RBCs infected with blood-stage P. falciparum FVO strain [69].

Both mRNA and self-amplifying RNA vaccines have the potential to be the next-
generation malaria vaccines. Self-amplifying RNA vaccines have been shown to be signifi-
cantly more immunogenic in comparison with mRNA formulas. Due to this advantage,
maybe there would not be the need for multiple booster doses that are more cumbersome
to administer, especially outside of routine vaccination schedules in resource-limited areas.

In light of the recent achievements with mRNA-based vaccines targeting SARS-CoV-2,
along with the endeavors of numerous researchers who have embraced a similar approach
for developing vaccines against malaria, the field is now ripe for pharmaceutical companies
to pursue an mRNA strategy in the fight against malaria and other infectious diseases.

7. Challenges and Future Perspectives in Malaria Vaccine Development

Malaria vaccine development has been challenging throughout the years primarily
due to the complex biology of the parasite and the intricate host immune response re-
quired for protection but also due to the evolution of resistant parasites, which escape
treatment and vaccine protection. Furthermore, as socioeconomic factors undergo constant
changes worldwide and climate change continues, parasitic diseases such as malaria ex-
hibit adaptability and evolution, allowing them to exploit these newly emerged factors to
their advantage.

The introduction of the Mosquirix malaria vaccine and the advancements in mRNA
vaccine technology have paved the way for a more promising future in the battle against
this devastating disease [14]. Although mRNA vaccine technology seems to be the an-
swer to antimicrobial resistance and fast-tracking vaccine developments [70,71], it also
has limitations, namely poor stability and difficulties in delivering in areas of interest.
Moreover, excessive immunogenicity should be avoided in order to overcome a possible
host inflammation or autoimmunity [72].

Advances in nanoparticle-based mRNA delivery and, more specifically, the use of lipid-
based nanoparticles have allowed mRNA-based therapeutics to become more clinically
viable and relevant as a strategy for hepatotropic infectious diseases such as malaria [72,73].
The self-amplifying mRNA vaccine approach has instilled hope in surpassing the high
immunogenicity observed in conventional mRNA vaccines. This method entails adminis-
tering a small initial dose of mRNA that can be amplified upon insertion in the cells, and
it will potentially reduce the necessity for multiple vaccine boosters [6]. Hence, there is
an attempt to use the self-amplifying mRNA strategy for the development of a malaria
vaccine. It is noteworthy that BioNTech, leveraging its success in creating the SARS-CoV-2
vaccine, has announced the commencement of clinical trials for mRNA vaccines targeting
malaria. More specifically, BioNTech company has already developed the BNT165b1 vac-
cine, a ribonucleic acid (RNA)-lipid nanoparticle (LNP) encoding for part of the Pf CSP and
Phase I clinical trial for assessing its safety, tolerability, and immunogenicity has already
been designed (NCT05581641) [74]. This approach holds promise for the future due to
its ability to forgo the need for freezer storage, making it more feasible for delivery and
administration in infectious diseases endemic regions [6,72].

Overall, malaria vaccine development efforts have shown accelerated progress in the
last few years. The RTS S/AS01 vaccine has been approved, and there are promising candi-
dates, such as R21 and Pf SPZ. Development should continue with the aim of generating a
malaria vaccine with high efficacy and improved durability of protective response. In this
regard, the commitment of necessary resources such as regulatory approval, implementa-
tion, and financing are becoming increasingly important for eliminating malaria.
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