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Abstract: Oral vaccines are gaining more attention due to their ease of administration, lower invasive-
ness, generally greater safety, and lower cost than injectable vaccines. This review introduces certified
oral vaccines for adenovirus, recombinant protein-based, and transgenic plant-based oral vaccines,
and their mechanisms for inducing an immune response. Procedures for regulatory approval and
clinical trials of injectable and oral vaccines are also covered. Challenges such as instability and
reduced efficacy in low-income countries associated with oral vaccines are discussed, as well as recent
developments, such as Bacillus-subtilis-based and nanoparticle-based delivery systems that have the
potential to improve the effectiveness of oral vaccines.
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1. Introduction

The development of vaccines was one of the most important breakthroughs in health-
care and medicine. Preceding Edward Jenner’s creation of the smallpox vaccine [1], in-
fectious diseases had killed countless people. Since then, vaccines have had a profound
impact, saving millions of lives by eradicating the spread of devastating diseases such as
polio [2], measles, and diphtheria [3]. As a result, vaccines have been considered among
the most effective public health interventions.

Despite being efficient at preventing diseases, conventional vaccine delivery tech-
niques using injections through intramuscular and intravenous routes also come with a
variety of drawbacks [4], for example, requiring qualified medical staff, storage of vaccines
at low temperatures, and pain at the injection site [5,6]. Researchers have focused on the
creation of alternate, less invasive vaccine delivery systems, such as oral vaccinations, to
overcome these issues [7–10].

A milestone in vaccine history occurred with the introduction of the first oral vac-
cinations in the 1960s; the oral polio vaccine (OPV) was applied in the fight to eradicate
polio [11]. After the success of OPV, numerous oral vaccines were developed and proven
to be effective in preventing diseases including cholera, rotavirus, and typhoid [12–15].
With administration into the gut directly, the primary target of oral vaccines would be
the gut-associated lymphoid tissue (GALT), a crucial region for vaccination-induced im-
mune responses [16]. The ease of administration and simple manufacturing procedures
are also advantages of oral vaccine administration over conventional injection-type vac-
cines [17] (Table 1). Moreover, oral vaccinations are a desirable alternative for individuals
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with weakened immune systems, because the blood vessels and circulatory system are
avoided [18,19].

Table 1. Comparison between oral vaccines and injection vaccines.

Oral Vaccines Injection Vaccines

Administration Route Oral (non-invasive) Mostly intramuscular or
subcutaneous (invasive)

The Site Producing a
Protective Response Mucosal and systemic Systemic

Secretory Immunoglobulin Mainly IgA IgG

Cost Relatively low High

Manufacturing Procedure
Relatively simple and do not

require an extensive
purification process

Extensive purification process
needed with higher standard

aseptic equipment

Distribution Easy to distribute
Professional healthcare

workers and specific locations
required

Dosage
Higher doses due to

degradation in the stomach
and intestine

Relatively accurate

Although there have been significant advancements in the development of oral vac-
cines recently, there are still numerous obstacles that must be overcome in order to fully
harness their potential [20,21]. This review aspired to deliver a comprehensive analysis
of the present status of oral vaccines, and to delve into the potential opportunities and
impediments linked to their advancement and implementation.

2. The Mechanism of Inactivated Virus/Bacteria Oral Vaccines

Oral vaccines function differently than other vaccine routes, allowing the gut-based
mucosal immune system to be exposed to antigens, such as inactivated viruses or bacteria,
and provoke a localized response specifically in the gut, the primary entry site for many
pathogens [22]. The antigens of oral vaccines then decline due to degradation in the
stomach and intestine [23].

The antigen uptake by gut-dwelling antigen-presenting cells, such as dendritic cells or
specialized M cells, launches the transcytosis process, with M cells playing a vital role in
antigen capture and subsequent presentation to the underlying T cells, which act as a master
controller in guiding the immune response [24]. Upon recognizing the antigen, T cells
activate and differentiate into effector T cells. These cells then migrate to the site of infection
and release cytokines, which stimulate the production and differentiation of other immune
cells, such as B cells. The B cells subsequently mature into plasma cells, which generate IgA
and IgG to evoke mucosal and systemic immune responses. T helper cells facilitate B cell
differentiation into memory B cells for memory responses [25]. In addition, activated T cells
neutralize pathogens directly while recruiting other immune cells, including natural killer
cells and macrophages, assisting pathogen destruction [26]. The gut mucosa, saturated
with native bacteria and particular immune cells, is the primary location for oral vaccines
to trigger the immune response [27]. The GALT contains a significant number of immune
cells, including T cells, B cells, and plasma cells, which provide mucosal immunity [28].
Peyer’s patches, a collection of lymphoid follicles inside the small intestine’s epithelium,
identify antigens from pathogens, symbiotic bacteria, and food proteins in order to enable
immune cells to generate a response to these antigens and protect the individual from
infection, while instilling tolerance [22].
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The Dominance of Secretory IgA in the Oral Vaccine-Induced Immune Response

The production of secretory Immunoglobulin A (secretory IgA) in GALT is especially
notable in an orally induced immune response. Secretory IgA can block pathogens located
on mucosal surfaces such as the gut through the secretion of secretory components into the
lumen of the gut. Conversely, when the immune system is activated by subcutaneous or
intramuscular injection, Immunoglobulin G (IgG) is predominantly created, which is dis-
tributed through the bloodstream to protect against invading organisms systemically [29].

Secretory IgA is generated by the administration of oral vaccinations as a targeted
response within the gut, the usual site of exposure to pathogens. The involvement of M
cells, a type of epithelial cell, along with other immune cells found in the GALT, allows
antigens to be taken up easily, and promotes an effective immune response. On the other
hand, with injection vaccines, a generalized response is evoked and there is a lower output
of IgG production (Figure 1).
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Figure 1. Schematic diagram outlining the immune responses in the intestine. At the inductive site,
M cells transfer the antigen to the antigen-presenting cells. Antigen-presenting dendritic cells (DCs)
facilitate naive T cells to differentiate into T helper cells. The activated T cells stimulate B cells, which
further leave the lymph nodes to enter the circulatory system. B cells migrate to effector sites and
differentiate into plasma cells, which in turn produce IgA and IgG.

Considering that pathogens frequently access the body through mucosal surfaces such
as the respiratory tract, oral vaccines are an ideal choice due to the heightened production
of secretory IgA. Secretory IgA is most commonly found in mucous secretions such as tears,
saliva, and mucus, and is a necessary element for a fully functioning mucosal immunity
system. Systemic immunity relies mainly on IgG, but mucosal immunity acts as the initial
defense mechanism at mucosal sites, warding off harmful microbes before they can reach
the other areas of the body [30].

3. Current Developed and Certificated Oral Vaccines

Immunization via oral vaccines is a form of delivery distinct from injection, and these
vaccines can be classified as an OPV, oral cholera vaccine (OCV), oral rotavirus vaccine
(ORV), or oral typhoid vaccine (OTV). Current licensed oral vaccines are summarized
in Table 2. In addition to the use of inactivated virus/bacteria-based oral vaccines, the
immune response can also be provoked orally by adenovirus-based vaccines, plant-based
vaccines, and recombinant protein-based vaccines.
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Table 2. Licensed oral vaccines.

Disease Vaccine Name Antigens References

Polio Polio Sabin Live-attenuated Sabin strains 1,2,3 [11,31]

Cholera
Dukoral

Inactivated strains (types) of V. cholerae
serotype O1 and recombinant cholera toxin

B subunit (rCTB)
[32,33]

Vaxchora Weakened cholera bacterium Vibrio cholerae
(serogroup O1) [34,35]

Rotavirus
RotaTeq Live rotavirus strains containing antigen G1,

G2, G3, G4 and P1(8) [36,37]

Rotarix Weakened human rotavirus RIX4414 strain [38,39]

Typhoid
fever Vivotif Live attenuated strain Salmonella typhi

Ty21a (1,2) [40,41]

Adenovirus-based oral vaccines utilize replication-deficient adenoviruses to transport
the antigen directly to the gut mucosa [42]. In contrast, some specific recombinant protein-
based vaccines link the antigen to an adjuvant to cause an immune response in the gut [43].
Plant-based vaccines, on the other hand, use edible plants to transfer the antigen to the
body [44].

Every vaccine above comes with its own unique pros and cons, which will be outlined
in the sections below.

3.1. Inactivated Virus/Bacteria Oral Vaccine

The OPV was the world’s first oral vaccine, developed by Jonas Salk in the 1950s, and
is still used in many developing nations. After gaining approval for use in the United States
in 1963, OPV rapidly became the primary polio vaccine in the country’s immunization
program during the mid-1960s [11]. Companies such as Sanofi Pasteur and GlaxoSmithK-
line produce OPV, which is a live but weakened viral vaccine containing inactivated virus
particles unable to cause illness. As it has the potential to cause vaccine-associated paralytic
poliomyelitis (VAPP), with a probability of approximately 1 in 2.4 million doses [45], an
injection-type inactivated poliovirus vaccine (IPV) has been used to replace OPV in several
countries [46].

An OCV is a live, weakened vaccine, which has been utilized since the 1990s [47] to
stave off cholera, a disease caused by the bacterium Vibrio cholera. This vaccine, which
is produced by various companies including Shantha Biotechnics and Eubiologics, has
been prequalified by the World Health Organization for use in regions with high cholera
rates, including India, Bangladesh, Pakistan, and Haiti. Despite being effective, an OCV
only provides temporary protection and requires booster doses to maintain immunity.
Additionally, OCVs have been associated with side effects, such as diarrhea and nausea [48].

The ORV used to protect against rotavirus, a leading cause of serious diarrhea in
babies and young children, was developed in the 1990s and is manufactured by a variety
of companies, such as Merck and GSK [49]. ORVs are relatively inexpensive and easy to
administer, and give protection within a few days after vaccination [50]. There are two
types of ORV available: namely, a live, attenuated vaccine and an inactivated vaccine. The
live, attenuated vaccine offers better protection, but there is a chance of viral shedding
which therefore may put immunocompromised individuals at risk. On the other hand, the
killed vaccine does not cause shedding, but does not provide as much protection [51].

The OTV is utilized to avert typhoid fever, a bacterial infection caused by Salmonella
typhi [41]; it created in the 1990s and is manufactured by various companies, such as Bharat
Biotech and Crucell. OTVs are a low-cost and easy-to-access vaccine that can protect against
typhoid within a few days after vaccination. Similar to OCVs, however, they only provide
short-term protection and multiple booster doses are required to sustain immunity [52].
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3.2. Adenovirus Oral Vaccines

Adenoviruses are a group of viruses that belong to the Adenoviridae family. They can
infect different organisms, including humans, animals, and birds. These viruses contain a
linear double-stranded DNA genome protected by an icosahedral protein shell known as a
capsid. The capsid structure enables the viruses to enter the target cells and replicate their
genome to produce the target antigen [53,54] (Figure 2).
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Figure 2. The mechanism of adenoviral vaccine-induced immune responses. The Adenovirus
vaccine is taken up through endocytosis, followed by escape from the endosome. After migrating
to the nucleus through the microtubule, the vaccine transgene antigen is transcribed. Then, the
corresponding protein is translated from mRNA and the antigen is expressed on the membrane.
Helper T cells facilitate B cells to differentiate into antibody-secreting plasma cells and generate
antibodies, along with memory B and T cells.

Molecular engineered adenoviruses have been employed as vectors for gene therapy
and oral vaccines, providing cost-effective solutions to the delivery of genes or vaccine
antigens to the target cells efficiently and effectively. They can be produced in large
quantities, and they are able to express multiple genes or antigens. Moreover, their safety
can be enhanced by the use of replication-defective or non-replicating adenoviral vectors.
Therefore, adenoviruses are ideal for oral-based vaccine delivery systems, especially to
infect various gut cells, including intestinal epithelial cells and antigen-presenting cells,
through direct delivery of vaccine antigens to the GALT to trigger mucosal immunity [55].

Serotypes refer to the distinct variations of a microorganism or virus that possess differ-
ent surface antigens [56]. Among the various adenoviruses, human adenovirus serotypes
4 (HAdV-4), 5 (HAdV-5), and 7 (HAdV-7) are commonly used as oral vaccines [42,57].
These serotypes are attractive due to their efficient infection of the GALT. For example, a
recombinant HAdV-5 expressing the spike protein of SARS-CoV-2 has been developed as
an oral vaccine against COVID-19 [57]. Preclinical studies in hamsters have also shown
that oral administration of this vaccine induces a strong immune response and provides
protection against SARS-CoV-2 infection.

Another example of an adenovirus-based oral vaccine applies to live attenuated
adenovirus to express cholera toxin B subunit (CTB) against cholera. Preclinical studies
have shown that oral administration of this vaccine induces a strong immune response and
further provides robust protection against cholera. Clinical trials have also assessed the
safety and efficacy of this vaccine in humans, with promising results thus far [9].

3.3. Recombinant Protein-Based Oral Vaccines

Recombinant protein-based oral vaccines employ genetically engineered proteins or
peptides to trigger a robust immune response and provoke a protective response against var-
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ious diseases, including influenza [58], nervous necrosis virus [59], and SARS-CoV-2 [60].
These vaccines are produced by expressing the targeted antigen from a suitable recombinant
expression system, such as bacteria, yeast, or mammalian cells, followed by purification
and formulation for vaccine production [61–63]. Recombinant protein vaccines can be
administered through either the injectable or oral route; for example, recombinant protein-
based vaccines include human papillomavirus (HPV) vaccines Gardasil 9 and Cervarix [64],
the hepatitis B vaccine Engerix-B [65,66], and the respiratory syncytial virus (RSV) vaccine
Synagis [67]. These vaccines have demonstrated their efficacy in protecting against their
respective diseases.

Adjuvants are a crucial factor in enhancing the efficacy of recombinant protein-based
oral vaccines. Adjuvants are compounds that increase the immune system’s response to the
antigen, which results in a stronger and more sustained immunity. This is important where
the antigen lacks substantial immunogenicity or is metabolized rapidly in the body [68,69].

Various forms of adjuvants, including cholera toxin, chitosan/aluminum, and glucan,
are commonly utilized in recombinant protein-based oral vaccines, and are well-known for
their cost-effectiveness and safety [70–72]. Another example is a squalene-based adjuvant
to elicit strong immune responses by sustained release of antigens in the body [73].

The choice of adjuvant for a vaccine is contingent upon several factors, including the
stability of the antigen, desired immune response, intended administration route, and safety
concerns. The suitability of an adjuvant for the target vaccine can be determined through
a combination of preclinical and clinical studies. With the use of adjuvants, recombinant
protein-based oral vaccines can provide enhanced protection against diseases and make a
vital contribution to public health initiatives.

3.4. Transgenic Plant-Based Oral Vaccines

Transgenic plants are an emerging and innovative platform for recombinant protein
production due to their various advantages [74,75]. Significant quantities of protein can be
produced in a cost-effective manner by altering the plant’s genome genetically to express a
desired recombinant protein [76,77]. The use of transgenic plants for the production of oral
vaccines is particularly noteworthy, as they offer a safe and reliable option for inducing an
immune response [78].

The safety of transgenic plant-based oral vaccines is their primary benefit, due to
the inherent defense mechanisms of plants, to protect against infections and minimize
the risk of contamination [79]. Moreover, the absence of animal-derived materials in the
recombinant protein production process reduces the risk of transmitting animal-borne
diseases. The use of a plant model also provides an ethical option, without any animal
origins [80].

The use of transgenic plants for recombinant protein production also provides a
highly controlled and monitored environment, reducing the potential for contamination by
pathogens [76,81]. Furthermore, the large-scale production capacity of transgenic plants
makes them ideal for emergency vaccine production, which is essential in the event of a
pandemic health crisis [82].

Studies in mice have demonstrated the efficacy of transgenic plant-based oral vaccines,
such as one produced using HBsAg-transgenic potatoes [83]. This has led to increas-
ing interest in the production of oral vaccines and recombinant proteins via the use of
transgenic plants. As a result of these benefits, the use of transgenic plants for the pro-
duction of recombinant proteins and oral vaccines is a highly promising area of research
and development.

4. Regulatory Procedures and Clinical Trials for Injectable Vaccines vs. Oral Vaccines

The approval and authorization procedures for oral and injectable vaccines are quite
alike, but there are some differences. Prior to being licensed for use by regulatory agencies
such as the U.S. Food and Drug Administration (FDA), the National Medical Products
Administration (NMPA) of China, or the European Medicines Agency (EMA), both oral and
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injectable vaccines must go through strenuous preclinical and clinical trials to demonstrate
their safety, efficacy, and stability [84]. During the preclinical phase, in vitro and in vivo
models are used to determine the safety and efficacy of vaccine candidates, and to decide
the starting dose and administering schedule for clinical studies [85].

Variations in dosage must be considered when developing oral and injectable vaccines.
Injectable vaccines are regularly administered in one or multiple doses, and the number
of doses administered is contingent upon the vaccine being given, as well as the person’s
age, weight, and immune system [86,87]. Conversely, oral vaccines need extra testing to
investigate their resistance in the acidic milieu of the stomach, as well as their ability to stay
intact during the digestive process and their power to activate an immune reaction [27].
Usually, injectable vaccines are directly given into the muscle or bloodstream, thus making
a more compact dose adequate. Oral vaccines usually require a higher dosage due to loss
during digestion, and to ensure an adequate amount of vaccine arrives at the target site for
the immune response to occur [88]. The starting dose of an oral vaccine candidate deter-
mined from in vitro and in vivo studies during the preclinical phase may not be applicable
to clinical studies due to the low recovery of the vaccine after digestion. In addition, the
formulation of the vaccine, including other ingredients, may affect the final amount of
vaccine at the target cells as well. Application of adjuvants or other delivery systems may
increase their efficacy and reduce the amount of vaccine required for both oral-based [89]
and injection-based vaccines [69]. Vaccine bioavailability refers to the amount of the vaccine
that is absorbed and available for use by the body after administration. Generally, injected
vaccines have high bioavailability because they are directly injected into the bloodstream,
bypassing the digestive system. Oral vaccines, on the other hand, have lower bioavailability
because they must pass through the digestive system before being absorbed. Nanovesicles
can be adopted to enhance the bioavailability of oral vaccines [90,91].

Safety is a vital consideration during pre-clinical and clinical studies, and the approval
processes of national pharmaceutical agencies. Injectable vaccines are normally given
through intramuscular or subcutaneous shots and their security profile depends greatly on
the antigens and adjuvants utilized in the vaccine [92]. The most widely reported adverse
reactions related to injectable vaccines are local responses, such as pain, swelling, and
redness at the injection site, and systemic effects such as fever, malaise, and headaches.
The risk of undesirable effects is dependent on numerous factors, including the vaccine
ingredients, the person’s vulnerability status, and past medical history [93]. Local side
effects are extremely common among injected vaccines. For participants aged 18–30,
the prevalence of injection site pain, swelling, and redness is 91.8%, 17.4%, and 13.4%,
respectively, after receiving COVID-19 vaccines [94]. Similarly, the incidence of local side
effects is 83.1% in the intradermally fractionated dose poliovirus vaccine group and 59.8% in
the intramuscular full dose poliovirus vaccine group [95]. However, injection site reactions
can be avoided through oral vaccine administration. Participants may exhibit systemic side
reactions after receiving oral and injection vaccines. For example, the injectable COVID-19
vaccines with messenger RNA (mRNA) technologies from Pfizer-BioNTech and Moderna
utilize the recipients’ cells to produce a segment of the spike protein found on the surface
of the SARS-CoV-2 virus, thereby prompting an immune response and helping to protect
against the viral infection [96,97]. Despite the fact that these vaccines have indicated high
efficacy in producing antibodies, some people may experience various symptoms identified
from the immune reaction activated by the vaccine, including pain and swelling at the
injection site, exhaustion, headache, muscle pain, chills, fever, and nausea [98]. Some
individuals have reported uncommon blood clot events after the vaccination [99,100],
particularly among young women; however, the exact mechanism for this effect is still
unknown [101]. It is speculated that the translation of spikes from mRNA vaccines may
trigger an immune response that leads to clotting, prompting genuine reactions such
as stroke, deep vein thrombosis (DVT), pulmonary embolism, myocarditis, and acute
hepatitis [102].
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Oral vaccines have been developed to generate an immune response through an atypi-
cal way of administration. Unlike injectable vaccines that need to enter the bloodstream,
oral vaccines are consumed and recognized by immune cells along the GALT of the diges-
tive system, which has a significant role in the processing and introduction of antigens
to the immune system [16]. As a result, adjuvants may not be necessary for oral vaccine
formulations to initiate an immune response, whereas they are generally obligatory for
injectable vaccines to fortify the immune response.

The digestive tract is an ideal setting for the triggering of immune reactions due to its
broad surface area and large population of immune cells. By exploiting the natural handling
and exhibition of antigens by digestive system-residing immune cells, oral vaccines can
trigger a potent immune response [103].

Even though some oral vaccines (e.g., OPV) may have mild side effects, such as headache,
fever, vomiting, and diarrhea, the effects are generally minor and transient [18,104]. In rare
cases, vaccine-associated paralytic polio has been reported following the administration
of OPV [105]. Considering factors such as ease of administration and the avoidance of
invasive needle injections, oral vaccines are a favorable option for many applications,
especially in circumstances where needle-based delivery is not feasible [48].

Oral vaccines can be cost-effective in certain situations. For example, the injectable
polio vaccine is much more expensive than the oral polio vaccine. The price of the IPV
ranges from USD 1.00 to USD 3.28 per dose, while the price of the OPV is USD 0.12–USD
0.18 per dose [105]. Although the majority of countries offer vaccines to their citizens free of
charge, the vaccination rate in impoverished countries is low because they cannot afford to
purchase enough vaccines [106]. As low-income countries encounter difficulties accessing,
delivering, and utilizing vaccines, oral vaccines could help to overcome the above obstacles.
From a developmental cost perspective, oral vaccines are an attractive choice for small
business owners who have limited resources [27].

Cost of Clinical Trials: Injectable Vaccines vs. Oral Vaccines

The disparity in the cost of clinical trials and regulatory procedures between injectable
and oral vaccines can be attributed to a number of factors. In general, the administration
process of injection-type vaccines, which involves direct introduction into the bloodstream,
requires a larger sample size in clinical trials to provide sufficient data for efficacy and safety.

Injectable vaccines may contain live viruses or bacteria in a condensed solution, which
requires specialized facilities and/or equipment for dilution to prevent contamination and
ensure proper handling of the diluted vaccines [27].

There is an additional cost for injection-type vaccines to be distributed into single-
dose vials or syringes to ensure consistent dosing and to prevent contamination. The
thermostability of a vaccine is critical in ensuring its effectiveness and safety [107]. Most
vaccines require a cold-supply chain to maintain their potency during transportation,
which may increase the cost of the vaccines by 80% [108]. Unlike oral vaccines, which are
generally stored at room temperature, injectable vaccines may require specific refrigeration
storage conditions to maintain their stability and efficacy, hindering the feasibility of their
distribution in mobile locations [109]. For the COVID-19 vaccines, Pfizer-BioNTech and
Moderna must be stored at −80 ◦C and −20 ◦C, respectively, and have a 6-month shelf
life. When the above vaccines were stored at 2–8 ◦C, the shelf life dramatically decreased
to 30 days [110]. However, oral vaccines maintain high stability at room temperature for
months [60].

Clinical trials and regulatory procedures for oral vaccines may incur lower costs, due
to their less complex administration process. The manufacturing costs of oral vaccines are
generally lower than those of injectable vaccines, as injectable vaccines typically require
more complex production processes, including the purification and formulation of the
vaccine antigens [111]. However, it is essential to remember that the actual cost of each
type of vaccine is subject to the design of the vaccine and its clinical trial programs.
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5. Challenges of Oral Vaccines

Many challenges need to be overcome in order to address infectious diseases by
using oral vaccines. First of all, the vaccines must tolerate the extreme environments of
the highly acidic stomach, a wide range of pH values throughout the GI tract, and the
presence of proteolytic enzymes that can break down proteins, without a reduction in
potency [112]. While numerous immune adjuvants have been utilized in injectable vaccines
to boost immune activity, there are a limited number of mucosal adjuvants available for oral
immunization. This is because the majority of adjuvants intended for injection are unable to
withstand the gastrointestinal mucosal environment. Novel oral vaccine adjuvants which
are safe and resistant to harsh environments are required [27].

Secondly, similar to some injectable vaccines, many oral vaccines require multiple
doses to elicit a sustained immune response, which makes their use more challenging for
people with limited access to healthcare services [113].

Thirdly, as the antigen level in oral vaccines is generally lower than in injectable
vaccines, the immune response elicited by oral vaccines is lower. A higher amount of
antigen is needed to trigger an immune response compared to typical injection vaccines.
Larger doses increase the possibility of inducing tolerance instead of prompting a protective
response [27]. Individuals in sensitive groups with a weakened immune system or other
underlying health issues may give a substandard response [114].

Finally, the efficacy of oral vaccines can be affected by the gut-associated microbiome,
which has an intimate symbiotic relationship with the host. Gut-associated microbiomes
regulate the local immune response and can reduce the ability of oral vaccines to trigger
the designated immune response [28,115].

Although significant efforts in research and development are required to overcome
the above obstacles, it is a worthwhile pursuit when considering the potential benefits
of oral vaccines, such as their easier administration, reduced costs, and increased acces-
sibility. Bacillus subtilis (B. subtilis), yeast-based, and nanoparticle-based oral vaccines
are potential candidates for partially overcoming the above-mentioned challenges. Nu-
merous studies have utilized modified B. subtilis, yeast, and nanoparticles in oral vaccine
development [60,116,117]. The budding yeast and B. subtills spore is able to survive the
extreme environment of the gastrointestinal tract [118,119] and stimulate immunity in
the human body [120,121]. Chitosan nanoparticle vaccines are resistant to the simulated
gastrointestinal environment, and the antigen is stable under enzyme degradation. In
addition, the immune response was shown to be induced in mice when fed the chitosan
nanoparticle vaccine [122]. Therefore, B. subtilis, yeast, and nanoparticles are ideal future
vaccine vectors for eliciting the desired immune response and for vaccine delivery.

6. Recent Development of Oral Vaccines

In recent years, oral vaccines have become a topic of interest as they offer a convenient
and accessible alternative to traditional injectable vaccines [123,124]. The objective of
current oral vaccine development is to enhance antigen delivery to the GALT, thereby
triggering a robust immune response [27]. The advancement in oral vaccine technology
involves the utilization of innovative platforms, such as recombinant bacteria and viruses,
as well as nanoparticle-based delivery systems. The purpose of these platforms is to
overcome the barriers to traditional oral vaccines, which include low antigen stability and
insufficient antigen delivery to the GALT [125]. These developments are promising for the
prevention and control of infectious diseases, offering a convenient and accessible option,
particularly in resource-limited settings.

6.1. Bacillus-Subtilis-Based Oral Vaccines

Bacillus subtilis (B. subtilis) is generally recognized as safe (GRAS) by the FDA, due to its
safety profile and a long history of use as a probiotic and food additive [126]. Certain strains
of the species are employed as a well-known platform for heterologous protein expression,
because of their fast growth rate, inexpensive genetic engineering in molecular cloning, and
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efficient utilization of codons [127]. Furthermore, the highly stable recombinant B. subtilis
plasmids are ideal for the large-scale production of recombinant proteins [128].

The resistance to environmental stress of B. subtilis spores make them an option for
vaccine delivery [118]. The spore is capable of persisting in the small intestine for extended
periods of time, which could facilitate the induction of mucosal immunity in the GALT via
a recombinant antigen displayed on the surface of the spore [129,130]. The potential of B.
subtilis spores in oral vaccines for various diseases, such as SARS-CoV-2 [60] (Figure 3),
Mycobacterium tuberculosis, and Clostridium tetani, has been explored and studied, and the
results of the antibody levels and effective neutralization of disease-causing antigens were
positive [60].
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Figure 3. The structure of the Bacillus subtilis vaccine (a), dendrimer vaccine (b), liposome (c), and
lipid nanoparticle vaccine (d). (b) Dendrimers are water-soluble nanoscale macromolecules with a
highly branched, tree-like structure. Their size ranges from 1 nm to 10 nm. Lipid nanoparticles (c)
and liposomes (d) are vesicle-like supramolecular structures of 50–500 nm size. Both liposomes and
lipid nanoparticles can be designed to be soluble in water or oil, depending on the composition of the
lipid bilayer.

In studies of SARS-CoV-2 [60] (Figure 3), spike proteins of SARS-CoV-2 were expressed
and displayed on the surface of B. subtilis spores. Clinical studies have shown that the oral
administration of three doses of these B. subtilis spores resulted in a significant elevation of
both IgG and IgA antibodies against the spike proteins. On the other hand, it was shown
that the serum collected from volunteers was able to neutralize the pseudovirus expressing
the spike protein from both wild-type and D614G variants of SARS-CoV-2 [60].

6.2. Nanoparticle-Based Delivery System for Oral Vaccines

Nanotechnology is a novel and attractive platform for oral vaccine delivery [131,132].
The use of nanoparticles as vaccine-delivery vehicles greatly enhances the stability of
antigens and the efficacy of immunity induction. The efficiency of antigen delivery is
significantly influenced by various factors, including particle size, charge, surface functional
groups, and shape [117]. Recently, nanoparticles such as liposomes, lipid nanoparticles,
dendrimers, and inorganic nanoparticles are the most widely studied nanoparticles for oral
vaccine delivery [133,134].

Both liposomes and lipid nanoparticles are nanoscale vesicle-like supramolecular
structures, consisting of lipid molecules and/or cholesterols and other organic molecules.
Liposomes are spherical and have a lipid bilayer that encapsulates a mixture of core ingre-
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dients, including proteins, RNA, or other biomolecules [135]. Lipid nanoparticles are even
smaller than liposomes and can more easily penetrate the cell. Both types of nanoparticles
are flexible and effective for the protection and encapsulation of antigens from degrada-
tion by stomach acid in the gut, thereby increasing their immunogenicity [135]. An oral
vaccine delivered by liposomes against rotavirus demonstrated safety and effectiveness
in the induction of an immune response [136]. PLGA (Poly(lactic-co-glycolic acid)) poly-
meric nanoparticles are composed of biodegradable and biocompatible polymers with
the ability to encapsulate antigens and protect them from degradation in the gut [137].
These nanoparticles can be designed to target specific cells or tissues and increase vaccine
efficacy by coupling with adjuvants or other immune-stimulating molecules. A PLGA
nanoparticle-based oral vaccine coated with M cell homing receptors was able to elicit
protective immune responses in vivo [138]. The acid-resistant PLGA nanoparticle oral vac-
cine, designed against Helicobacter pylori infection, induced T-cell responses and antibody
production in mice after oral vaccination [139].

Dendrimers are nano-size, highly branched macromolecules that can couple with
antigens and adjuvants for the induction of an immune response [140] (Figure 3). In
addition, specific ligands can be assigned to dendrimers to bind to corresponding receptors
on the surface of immune cells for specific cell or tissue delivery. Oral vaccines delivered by
dendrimers against Salmonella, Shigella, and Helicobacter pylori (H. pylori) have been shown
to elicit significant immunogenicity and efficacy [141]. However, there are still challenges
to the use of dendrimers for oral vaccine delivery to be addressed, including toxicity and
production cost.

Inorganic nanoparticles are small particles made of non-organic materials, such as
metals, metal oxides, or semiconductors. They possess unique properties due to their small
size and high surface-to-volume ratio [142]. Carbon nanoparticles and silica nanoparticles
have been extensively utilized in the development of oral vaccines. A carbon nanoparticle-
based oral vaccine produced a similar level of IgG as the intramuscular injection route.
Additionally, mucosal IgA was detected, indicating an effective immune response had been
initiated [143]. When administered orally, a silica nanoparticle vaccine elicited mucosal
and systemic immune responses in vivo [144].

Nanoparticle-based oral vaccines offer several advantages compared to traditional
vaccine delivery methods. Nanoparticles provide a protective coating for the vaccine
components, preventing degradation in the harsh gastrointestinal environment. In addition,
the bioavailability of vaccine antigens is enhanced by facilitating absorption through the
intestinal epithelium. Currently, challenges such as toxicity and large-scale production are
major hurdles to their application in oral vaccine delivery.

Although nanoparticle-based oral vaccines are still in the early stages, they have shown
promise in animal tests and the early phases of clinical trials [117]. Nanoparticle-based oral
vaccine delivery systems have the potential to revolutionize the field of vaccine development.

7. Conclusions

Oral vaccines demonstrate immense potential for combating contagious diseases
worldwide. The advantages of this immunization approach are evident in the simplified
delivery method, enhanced adherence, and cost-effectiveness. Given difficulties such as
instability and low potency in poverty-stricken nations, advanced innovations in oral
vaccines, such as the utilization of Bacillus subtilis and nanotechnologies, look likely to
combat these difficulties and enhance their efficacy. Ongoing studies and medical trials
are necessary to fully unlock the ability of oral vaccines to fight infectious diseases. With
advanced technology and dedication to health worldwide, these immunizations have the
capacity to surpass limitations and lay the foundation for a brighter immunization future.

8. Patents

Patents resulting from the work reported in this manuscript were filed: Chinese (patent
number: 202111143384.9), Hong Kong (patent number: 32021042343.2), and PCT.
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