
Citation: Mubanga, C.; Simuyandi,

M.; Mwape, K.; Chibesa, K.;

Chisenga, C.; Chilyabanyama, O.N.;

Randall, A.; Liang, X.; Glashoff, R.H.;

Chilengi, R. Use of an ETEC

Proteome Microarray to Evaluate

Cross-Reactivity of ETVAX®

Vaccine-Induced IgG Antibodies in

Zambian Children. Vaccines 2023, 11,

939. https://doi.org/10.3390/

vaccines11050939

Academic Editor: Yashdeep Phanse

Received: 17 February 2023

Revised: 2 April 2023

Accepted: 20 April 2023

Published: 04 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Use of an ETEC Proteome Microarray to Evaluate Cross-Reactivity
of ETVAX® Vaccine-Induced IgG Antibodies in Zambian Children
Cynthia Mubanga 1,2,* , Michelo Simuyandi 1 , Kapambwe Mwape 1,3, Kennedy Chibesa 1,4,
Caroline Chisenga 1, Obvious Nchimunya Chilyabanyama 1, Arlo Randall 5, Xiaowu Liang 5, Richard H. Glashoff 2

and Roma Chilengi 1

1 Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia,
Lusaka P.O. Box 34681, Zambia

2 Division of Medical Microbiology, Department of Pathology, Stellenbosch University & National Health
Laboratory Service, Tygerberg Hospital Francie van Zijl Drive, P.O. Box 241, Cape Town 8000, South Africa

3 Water and Health Research Center, Faculty of Health Sciences, University of Johannesburg,
P.O. Box 17011, Doornfontein 2028, South Africa

4 Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Free State,
205 Nelson Mandela, P.O. Box 339, Bloemfontein 9300, South Africa

5 Antigen Discovery Inc., 1 Technology Dr., Suite E309, Irvine, CA 92618, USA
* Correspondence: cynthia.mubanga@cidrz.org

Abstract: Developing a broadly protective vaccine covering most ETEC variants has been elusive.
The most clinically advanced candidate yet is an oral inactivated ETEC vaccine (ETVAX®). We
report on the use of a proteome microarray for the assessment of cross-reactivity of anti-ETVAX® IgG
antibodies against over 4000 ETEC antigens and proteins. We evaluated 40 (pre-and post-vaccination)
plasma samples from 20 Zambian children aged 10–23 months that participated in a phase 1 trial
investigating the safety, tolerability, and immunogenicity of ETVAX® adjuvanted with dmLT. Pre-
vaccination samples revealed high IgG responses to a variety of ETEC proteins including classical
ETEC antigens (CFs and LT) and non-classical antigens. Post-vaccination reactivity to CFA/I, CS3,
CS6, and LTB was stronger than baseline among the vaccinated compared to the placebo group.
Interestingly, we noted significantly high post-vaccination responses to three non-vaccine ETEC
proteins: CS4, CS14, and PCF071 (p = 0.043, p = 0.028, and p = 0.00039, respectively), suggestive of
cross-reactive responses to CFA/I. However, similar responses were observed in the placebo group,
indicating the need for larger studies. We conclude that the ETEC microarray is a useful tool for
investigating antibody responses to numerous antigens, especially because it may not be practicable
to include all antigens in a single vaccine.

Keywords: antibody cross-reactivity; microarray; ETEC; ETVAX®

1. Introduction

Enterotoxigenic E. coli (ETEC) is a significant cause of moderate-to-severe diarrhoea
(MSD) in children under five years of age in low-to-middle-income countries (LMICs)
and is a leading cause of diarrhoea in travellers to endemic areas including tourists and
military personnel [1–4] The highest incidence and mortality are reported in children below
two years of age [1,3]. ETEC is estimated to be responsible for approximately 75 million
episodes of diarrhoea in under-five years of age children annually, resulting in more than
18,700 deaths [1,5,6]. Data from a Zambian study looking at the aetiological agents of MSD
in Zambian under-five years of age children confirm the significant contribution (40.7%) of
ETEC to diarrhoeal disease [7].

ETEC is a Gram-negative, facultative aerobic, rod-shaped coliform of the genus
Escherichia with strains comprising a phenotypically and genetically diverse pathotype [8,9].
In the classical paradigm of ETEC diarrhoea pathogenesis, the disease is caused by bacterial
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adherence to enterocytes using colonisation factors (CFs) or coli surface antigens (CS) and
producing one or both of two plasmid-encoded enterotoxins: heat-labile (LT) or heat-stable
(ST) [8,10,11]. The enterotoxins mediate the deregulation of the membrane ion channels
in the epithelial cell membrane, leading to the loss of ions and large amounts of water
with ST strains being responsible for most cases of MSD [8,12]. The CFs occur at various
frequencies in different parts of the world and more than 25 have been identified, with
the most common being CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS7, CS14, CS17, and
CS21 [8]. Enterotoxigenic E. coli fimbriae are divided into classes based on the phylogenetic
relatedness of their major pilin subunits, with most of them belonging to either class 1 or
class 5 (13). Class 1 includes CS12, CS18, and CS20, while class 5 includes CFA/I, CS1, CS2,
CS4, CS14, CS17, CS19, and PCF071 [13,14]. Class 5 fimbriae are said to account for 30% of
all clinical isolates [14,15]. The CFs are also classified into three families based on shared
cross-reactive epitopes: CFA/I-like (CFA/I, CS1, CS2, CS4, CS14, and CS17), CS5-like (CS5,
CS7, CS18, and CS20), and Class 1b (CS3, CS6, CS10, CS11, and CS12) [16–19].

Apart from the classical antigens (CFs and LT), other antigens have been suggested to
be involved in infection [20–22], including two plasmid-encoded antigens, EatA and EtpA,
that seem to be conserved across the ETEC pathovar [23].

Vaccines remain the most pragmatic way of ensuring ETEC prevention and control
besides the provision of improved sanitation systems and clean water supply, which is not
readily achieved in LMICs [24]. Treatment with antibiotics also has its challenges due to the
growing problem of antibiotic resistance [3]. Several vaccines for ETEC are in development,
and these range from subunit vaccines such as multiple epitope fusion antigens and ST
toxoids, to whole-cell vaccines which include inactivated fimbriated ETEC, live attenuated
ETEC expressing CFs, and Shigella vector expressing ETEC CFs [12].

A major hurdle in the vaccine development pathway is the antigenic diversity of ETEC
strains. Hence, most candidate vaccines in development adopt a polyvalent approach
targeting multiple CFs and LT (classical antigens) to achieve broad coverage [10,25].

ETVAX®, the most advanced candidate vaccine in clinical development contains
monovalent bulks of E. coli strains developed using recombinant plasmids expressing
the entire CFA/I, CS3, CS5, or CS6 operon and that have been inactivated either by mild
formalin or mild phenol treatment [26,27]. The formulation of ETVAX® includes LCTBA,
a protein comprising the B subunit of the cholera toxin B (CTB) and the B subunit of the
E. coli heat-labile toxin (LTB). Furthermore, the double mutant LT (dmLT) toxoid developed
by John Clements serves as an adjuvant [28].

Along with other whole-cell vaccines in development, such as the ACE 527 and the
Shigella-ETEC multivalent vaccines, ETVAX® is designed to express some of the most prevalent
and clinically relevant CFs with the view that these cover over half of all clinical isolates by
inducing cross-reactive antibodies that may be able to prevent mucosal binding of both non-
vaccine and vaccine-related CFs, thereby increasing protection against ETEC strains expressing
CFs within the same family [18,23]. A study by Vidal et al. estimated that vaccines based on
the major CFs (CFA/1, CS1, CS2, CS3, CS4, CS5, CS6) may prevent diarrhoea attributed to
66% of ETEC strains expressing ST alone and those expressing both ST and LT, strains that are
largely responsible for clinical disease [12]. The ETVAX® vaccine has been previously shown
to induce cross-reactive antibodies to multiple CFs in the CFA/I and CS5 families [18,29] and
has recently undergone safety and immunogenicity assessment in Zambia.

Protection against ETEC is understood to be mainly mediated by antibodies directed
against the different CFs and LT produced locally at the gut mucosa, resulting in the
development of protective immunity against homologous strains [11]. ST does not stimulate
a strong immune response and is therefore considered poorly immunogenic even though it
is implicated in most clinical diseases [11,25]. Studies of natural and experimental infections
have revealed that the immune response to ETEC infection is more complex and more
widely focused than previously appreciated [30], involving multiple antigens in addition
to LT and CFs [31,32]. Both IgG and sIgA function as effector molecules of the mucosal
immune system in the small intestine with sIgA being more abundant, while IgG levels
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increase with infection [33]. Systemic IgG and IgA have also been shown to be Important
for protection, and it is believed that parenteral vaccine-induced serum IgG antibodies seep
onto intestinal mucosa and prevent diarrhoea due to enteric bacteria [12,30].

The exploratory study reported here used the ETEC proteomic array technology to
study IgG responses in the plasma of children participating in a randomised controlled
phase 1 trial for ETVAX® in Zambia to generate hypotheses for further studies. All the
proteins overexpressed in ETVAX®, except for CS5, are included on the array as purified
proteins. Our study evaluated whether ETVAX®-induced IgG antibodies are cross-reactive
against ETEC antigens that are absent from the ETVAX® vaccine.

2. Materials and Methods

This study utilised plasma samples collected from children aged 10–23 months participating
in a single-site, double-blind, placebo-controlled, age-descending phase 1 clinical trial examining
the safety, tolerability, and immunogenicity of an oral inactivated ETEC Vaccine (ETVAX®)
adjuvanted with dmLT. By this age, it is expected that most maternal antibodies would have
waned [34–36]. The distribution of trial participants to the different study arms is shown
in the clinical trial flowchart adapted from the trial manuscript (unpublished) (Figure S1).
The participants in this study were drawn from cohort B, which consisted of three groups of
20 participants each, receiving either 1/4 dose of the adult vaccine dose, 1/8 dose, or a placebo.
The adult dose of ETVAX constituted 150 mL of 1× effervescent buffer, 80× 109 bacteria, and
1 mg of LCTBA administered orally with 10 g of dmLT. Furthermore, 2.5 g dmLT in 10 mL of
effervescent buffer was used to administer the 1/8 and 1/4 dose.

Each participant received three doses of the allocated intervention on the first day
(D1), after two weeks (D15), and three months later (D90).

2.1. Sample Collection

Blood samples were collected at baseline prior to vaccination (D1 or V1), seven days
after the second dose (D22 or V5), and seven days after the third dose (D97 or V7). The
blood samples were centrifuged at 2000× g for 15 min, after which plasma samples were
aliquoted and stored frozen at −80 ◦C before testing.

For this study, a total of 20 participants (4 from the placebo group and 16 from the
vaccine group) were randomly selected by listing all cohort B sample IDs in an Excel
spreadsheet and then grouped by vaccine allocation, i.e., 1/4 dose of the adult vaccine
dose, 1/8 dose, or a placebo. Every third sample in each column was then picked. A
pre-vaccination (D1 or V1) and post-vaccination (D97 or V7) plasma sample from each of
these was shipped to Antigen Discovery Incorporated (ADI) in the USA for analysis.

2.2. Lab Analysis
2.2.1. Microarray Creation

The microarray was created at ADI as previously described [32]. Briefly, clones
representing 4168 selected gene features encoding known ETEC antigens and surface
proteins present in more than 40% of the ETEC isolates examined and not present in the
genomes of three common E. coli commensal isolates were expressed in a cell-free in vitro
transcription–translation (IVTT) system with each protein having a 5′ polyhistidine (HIS)
epitope and 3′ hemagglutinin (HA) epitope. The IVTT proteins were then printed on
nitrocellulose-coated glass slides using a robotic printer. The microarray and IVTT proteins
were then validated accordingly before use.

2.2.2. Sample Analysis

Test plasma samples along with control samples were added to the microarray and
incubated. In addition to the study samples, additional arrays were probed following
the same protocol with both negative and positive controls. The negative control was
buffer only with no serum added. If any spots were reactive against the negative control,
it indicated the cross-reactivity of the secondary antibody with the expressed protein.
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The positive control was a pool of reactive samples probed on each day of probing to
assess the consistency across days. The antibody–antigen reaction was then detected and
quantified by the GenePix® 4300 Microarray Scanner (Molecular Devices, San Jose, CA,
USA). All arrays were scanned and quantified, and then automated data extraction and
QC was performed using R [37]. The raw signal for each spot was obtained by taking the
raw intensity and subtracting the local background intensity. Normalized signals were
obtained by first calculating the ratio of the raw spot signal to the sample-specific median
of IVTT control spot signals, and then applying the base-2 log transformation. For purified
recombinant proteins that do not have background signals from the IVTT system, raw
signals were transformed by applying the base-2 log transformation.

From the raw data, automated QC metrics were calculated using R [37] for each array
to identify arrays with unusual variation in control spots, spots with lower reactivity than
IVTT control spot median, unusual background variation, and signal saturation.

2.2.3. Data Analysis

IVTT-expressed protein data were separated into subsets by first identifying reactive
antigens and filtering non-reactive spots from subsequent analysis (raw and normalized data
for all spots were still retained). Reactivity filtering was performed by defining seropositivity as
a normalized signal of 1.0 or greater. This corresponded to twice the sample-specific median
IVTT control spot signal, i.e., background. Antigens were categorized as reactive and carried
forward for statistical analysis if at least 1 sample was seropositive among any participant dose
group. It is worth noting that raw and normalized data were still retained and published in
a repository for all array spots. For purified protein, the normalization was only applying the
base-2 log transformation. No reactivity sub-setting was performed on the purified proteins
and all 39 spots were carried forward for statistical analysis.

2.2.4. Statistical Analysis

Paired t-tests of visit 1 (pre-vaccination) and visit 7 (post-vaccination) samples were
performed to assess the vaccination effect in each treatment group separately using R
statistical software [37]. Independent t-tests comparing the means of different treatment
groups at specific visits, as well as the increases (deltas) from visits 1 to 7, were used to
assess differences between groups. The p-values reported in the abstract, text, and figures
are all based on paired or independent t-test. Tables S3 and S4 contain additional results
including the group means, area under the receiver operating characteristics (ROC) curve
(AUC), and p-value of non-parametric Wilcox ranks testing. All reported p-values are raw
and are not corrected for multiple testing [38].

3. Results

Twenty randomly selected participants aged between 10 and 23 months were included
in this study. Of these, 16 received the ETVAX® vaccine (a vaccine consisting of four
inactivated E. coli bacterial strains over-expressing the colonisation factors CFA/I, CS3, CS5,
and CS6, respectively, the toxoid LCTBA, and dmLT serving as an adjuvant) and 4 received
the placebo. A total of eight vaccinees received one-quarter of a dose while the other eight
received one-eighth of an adult dose. Table S1 gives more information on the characteristics
of the study participants.

3.1. Responses to Purified Proteins

Microarray Responses to ETVAX® Antigens and Non-ETVAX® Antigens

The ETEC microarray contained purified proteins including full native fimbriae, as
well as major and minor colonization factor antigen (CFA) domains, putative colonisation
factors, and fimbrial surface antigens as listed in Table S2 [39] Notably absent from the
array is CS5 and members of the CS5-like family [17–19]; however, all other proteins
overexpressed in ETVAX are present.
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Figure 1 shows the IgG responses to all purified proteins present on the array with
the class 5 fimbriae ordered by subclass and the remaining proteins ordered alphabetically.
EtpA (exoprotein adhesin), YghJ (metalloprotease), and CS3 (native fimbriae) had the high-
est average signal intensities considering the pre- and post-vaccination samples across all
subjects. Nearly all subjects have very high antibody levels against EtpA (N-terminal) and
YghJ, while the pre-vaccination antibody levels against CS3 exhibit much more variation.
Similarly, pre-vaccination antibody levels against other CFs vary widely across subjects:
around half of the subjects have very high levels against CFA/I, and less frequent high
levels are observed for CS17, CS19, CS2, CS14, and CS6.
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Figure 1. The heatmaps present the base-2 logarithm of the individual reactivity levels at Day 0 in the left
panel and Day 97 in the centre panel. The delta values (change from Day 0 to Day 97) are shown in the
right panel. The heatmap colouring of the “delta” panel highlights both decreases (green) and increases
(red) within a range of [−2, 2]. Values outside the range are set to the range limit for the heatmap. The
class 5 fimbriae are ordered first by subclass, and then proteins are ordered alphabetically. The subjects are
ordered by group where blue corresponds to placebo, red to 1/8 dose, and green to 1/4 dose.

Figure 2 presents the results of three different pairwise comparisons in panels A, B,
and C with the top 10 purified protein spots ranked by absolute mean difference. The
identifier for each protein is followed by the p-value. The vaccinated individuals generally
had stronger IgG responses post-vaccination (V7) compared to pre-vaccination (V1) with
all but CS6 having V7responses that were significantly higher than V1 (p < 0.05) (Figure 2A).
The amount of increase varies widely across individual subjects. In general, the largest
increases are observed for subjects starting from very low pre-vaccine levels and subtle
increases are observed when pre-vaccine levels are already high. This is seen most clearly
in row 2 of the heatmap (Figure 1) focusing on the CFA/I responses in the one-quarter of a
dose group where the three rightmost subjects have clearly the lowest starting antibody
levels (left panel) and the increases for these three subjects are from 16 to 32-fold (rightmost
panel), whereas the other five subjects are very high pre-vaccination and have increases
of four-fold or less. See also Table S3, which contains the statistics for these comparisons.
Vaccine antigens CFA/I, CS3, CS6, and LTB, and non-vaccine antigens CS4, CS14, and
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PCF071 were the top 10 proteins in the vaccine group. The presence of strong IgG-increased
responses to CS4, CS14, and PCF071 in the vaccine group is suggestive of vaccine-induced
cross-reactive antibodies to these proteins.
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In the placebo group (Figure 2B), the top 10 purified proteins included CfaEad (CFA/I
adhesin domain truncate), CS1, CS3, CS4, CS14, CS17, CS19, LTA, and CsbDad (CS17:
adhesin domain truncate), of which only CFA/I and CS3 are highly expressed by the
vaccine bacteria. LTA is also covered in the dmLT administered in the vaccine. V7 responses
were higher than V1 for all antigens except CfaEad; however, unlike with the vaccine group,
none of these differences were statistically significant, and the higher averages are driven
by a single high outlier (S087).

Figure 2C shows the comparison of purified protein antibody mean deltas (increase
from V1 to V7) difference among all placebo and all vaccinated individuals for the top
10 antigens. Generally, the largest delta mean differences can be observed in the vaccinated
compared to the placebo group with vaccine antigen responses tending to have more
positive delta values (see Table S4) with the exception of CS19 and CS17 for which the
placebo group had positive delta changes.

The error bars for CFA/1, CS6, and CS3 major CstG are not overlapping, with p values
of less than 0.05, suggesting the possibility that these post-vaccination responses could be
attributed to the vaccine.

3.2. Microarray Responses to Other ETEC Proteins

The microarray included other proteins in addition to the fimbriae-purified proteins
listed in Table S2. These comprised cell surface proteins, enzymes, structural proteins, and
transmembrane proteins, among others. The heatmaps in Figure 3 show the changes in IgG
antibody intensities to selected IVTT proteins that have previously been reported to show
increases in ALS IgA following a challenge with ETEC H10407 [10,32]. We observed that
the IgG responses to some of these proteins appeared to decrease substantially between V1
and V7. We attribute this to the possible waning of maternal antibodies that could have
been detected at baseline.
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red to 1/8 dose, and green to 1/4 dose.
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4. Discussion

The development of a broadly protective ETEC vaccine has been a challenge due to
the huge diversity in ETEC pathovars. This study thus reports an evaluation on the ability
of ETVAX®, the most clinically advanced ETEC vaccine candidate, to induce cross-reactive
IgG antibodies against non-vaccine antigens.

Firstly, the results from our study affirm the high and early exposure to ETEC and possi-
bly other pathogenic E. coli among Zambian children. This can be seen in the high intensities
of IgG antibodies to many ETEC antigens and proteins at baseline (pre-vaccination) in the
vaccine group and pre-and post-vaccination time points in the placebo group (Figure 1).
ETEC has been previously reported to be one of the earliest symptomatic enteric illnesses
among children in endemic areas [1,40]. While we acknowledge that the observed IgG
responses may be due to the presence of maternal antibodies, various studies have shown
that maternal antibodies rapidly wane beyond the age of six months, and therefore safely
assume that the antibodies detected in this study, particularly at V7, are likely due to the
children’s natural exposure to ETEC [34–36,41]. In Table S1, we do see that a few of the
participants did have a positive ETEC colony PCR test during the study period, and, in
Figure 2B, we observe general increases in IgG to the 10 most reactive proteins in the
placebo group. These results therefore show the need to vaccinate children younger than
6 months as they may benefit more from the vaccine, as this may provide early protection
from infections.

The immunodominant purified proteins with very high IgG responses included EtpA,
EatA, YghJ, CFA/I, CS1, CS2, CS3, CS4, CS6, CS14, CS17, CS19, PCF071, LTA, and LTB. The
CFs here are compared to those observed in a previous Zambian study [17]. Most of the
immunodominant CFs are members of class 5 fimbriae (both major and minor subunits)
which are involved in the adherence of the ETEC bacteria to the enterocytes [18]. Unlike the
rod-like structure of class 5 fimbriae, CS3 are fine flexible fibrillae, while CS6 is afimbriae
and featureless [12,42,43]. These CFs are common and occur in many clinical isolates [12].

We also see that the A subunit of LT is immunodominant (Figures 1 and 2B) de-
spite some potential vaccines only including the B subunit of the LT toxin (LTB), which is
presumed to be more immunogenic in their formulations [44]. A study by Norton et al.
demonstrated that the two subunits are immunogenic and acted synergistically in neu-
tralizing the LT toxin action [44]. Therefore, the addition of dmLT which contains LTA to
ETVAX® enhances its coverage [28,45,46].

EatA, a serine protease autotransporter involved in mucin degradation enabling
bacteria access to the epithelium [23]; EtpA, a secreted exoprotein adhesin that functions
as a molecular bridge between the bacterial surface and its appendages; and YghJ, a
metalloprotease that digests intestinal mucin, are all highly immunodominant [23]. These
proteins seem to be conserved across various ETEC strains and other pathogenic E. coli and
have been reported to be involved in ETEC pathogenesis with the potential for inclusion in
vaccines [23,32,47–49].

We also observed that three non-vaccine CFs (CS4, CS14, and PCF071) which belong
to class 5 fimbriae were among the top ten reactive antigens in the vaccinated group.
Post-vaccination responses were statistically significantly higher than pre-vaccination for
all three with p-values of less than 0.05 (p = 0.0039 for PCF071, p = 0.028 for CS14, and
p = 0.043 for CS4). While CS4 and CS14 were also among the top ten antigens in the
placebo group, we believe that the responses observed in the vaccine group may have been
vaccine-induced as CS4 and CS14 belong to the same class of fimbriae as CFA/I, making
the cross-reactivity of antibodies highly likely. However, it is difficult to conclude given the
small study sample size.

A similar study by Leach et al. reported that the cross-reactivity of ETVAX® de-
rived antibodies against non-vaccine CFs, namely CS1, CS14, CS17, and CS7, of which
CS1, CS14, and CS17 are members of class 5 fimbriae [14,18]. Another similar study by
Svennerholm et al. also reported the cross-reactivity to CFA/I family CFs (CS1, CS14, and
CS17) in faeces among CFA/I responders, and they also observed high responses to CS7
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among CS5 responders [29]. In our case, CS17 and CS1 did not make the top 10 antigens in
the vaccine group, likely due to the small sample size, and therefore possible cross-reactivity
could not be detected.

The two studies above differ from our study in that they had larger sample sizes and
mucosal IgA responses were measured using ELISA; while, in our case, plasma/systemic
IgG responses were measured using a protein microarray. Nonetheless, in all three studies,
the cross-reactivity to non-vaccine antigens belonging to the same class of fimbriae or
family can be seen.

The use of the microarray in this study allowed us to efficiently screen a range of
proteins and identify other ETEC proteins that are highly immunogenic and possibly
play a role in ETEC pathogenesis apart from the classical antigens. Among them were
putative membrane proteins, conserved hypothetical proteins, putative transmembrane
proteins, putative antigen43 precursor, adhesin autotransporter, peptidoglycan-associated
lipoprotein, and putative flagellin (Flic H11). While these proteins, particularly EtpA, EatA,
and YghJ, exhibit some protection in preclinical/animal studies, their role as protective
antigens in human infection is yet to be clearly shown [6,32]. We also observed drops in the
IgG to fliC, antigen 43, and some other IVTT proteins (Figure 3) among several participants,
possibly due to the waning of maternal antibodies that may have been present before
vaccination [34,36,41,50].

Our study, though exploratory, provides an extensive look at the IgG response to
ETEC infection (pre-vaccination/placebo) and vaccination, and it is the first study from a
disease-endemic area to report the use of the ETEC microarray. However, our study had
several limitations. Firstly, due to funding constraints, we had a very small sample size and
therefore the results of this study are inconclusive and may not be generalizable. Secondly,
the microarray used did not include CFs from the CS5-like family, i.e., CS5, CS7, CS18,
and CS20, and therefore possible cross-reactivity from CS5 could not be assessed. Another
limitation was the lack of assessment of secretory IgA responses which are regarded as
paramount in ETEC infection. However, we believe the IgG responses do still enable us
to answer our main question of whether ETVAX® induces a cross-reactive response. In
addition, we observe that plasma IgG and IgA responses to LTB measured by ELISA in the
clinical trial were significantly higher in the vaccine group compared to the placebo group
as observed in this study (Table S5, Figure S1). Given the long duration between pre-and
post-vaccination assessments, it is difficult to rule out the influence of natural infection
responses on the observed post-vaccination responses. Our post-vaccination sample was
collected 7 days after the third dose and this may have been too soon to accurately measure
a vaccine-induced IgG response in view of ongoing background infections.

For future studies, we would recommend a larger sample size with substantial num-
bers of participants in both the vaccine and placebo groups to be able to come up with an
effective evaluation of vaccine-induced response. We would also recommend that studies
of this nature conducted in an endemic area include in their study design systems such as
having substantial numbers in the control group to control for background responses that
may be due to natural infection.

5. Conclusions

In conclusion, we have shown that the ETEC microarray is a tool that can be used to
study/analyse antibody responses to numerous antigens from complex microorganisms
such as ETEC. We observed that ETVAX® has potential to induce IgG antibodies that are
cross-reactive against some ETEC antigens that are not overexpressed in the vaccine, even
though our results are not conclusive due to the small sample size and call for the need for
a bigger study [18].

Not much is known about the ETEC strains that occur in our setting. However, this
study provides information about the plasmid-encoded proteins such as CFs, EtpA, and EatA
that occur in the strains in Zambia, thereby providing information for vaccine developers.
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We have also shown that various other proteins are involved in ETEC pathogenesis
and may be investigated for their role in protection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vaccines11050939/s1. Figure S1: The figure shows the clinical
trial flowchart showing the distribution of trial participants and their allocation to the different
treatment groups. Table S1: General characteristics of study participants. Table S2: Description
of purified proteins included in the microarray. Table S3: Group averages for the top 10 antigens
ranked by absolute mean difference in the all-vaccinated group. Table S4: Delta changes in group
averages for the top 10 antigens in all vaccinated individuals compared to the placebo group at visit 1
and visit 7. Table S5: Plasma antibody responses after 2, 3, and 2 or 3 doses (≥4-fold and ≥2-fold
and ≥2 or 4-fold) in cohort B children 10–23 months given 1/8 and 1/4 dose of ETVAX + dmLT or
placebo (OEV124).
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