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Abstract: Rotavirus vaccination was introduced in high-income countries starting in 2006, with
no recommendation for optimal implementation. Economic evaluations were presented before
launch projecting potential impacts. Few economic reassessments have been reported following
reimbursement. This study compares the short- to long-term economic value of rotavirus vaccination
between pre-launch predictions and real-world evidence collected over 15 years, proposing recom-
mendations for optimal vaccine launch. A cost-impact analysis compared rotavirus hospitalisation
data after the introduction of vaccination between pre-launch modelled projections and observed
data collected in the RotaBIS study in Belgium. A best model fit of the observed data was used to
simulate launch scenarios to identify the optimal strategy. Data from other countries in Europe were
used to confirm the potential optimal launch assessment. The Belgian analysis in the short term
(first 8 years) indicated a more favourable impact for the observed data than predicted pre-launch
model results. The long-term assessment (15 years) showed bigger economic disparities in favour
of the model-predicted scenario. A simulated optimal vaccine launch, initiating the vaccination at
least 6 months prior the next seasonal disease peak with an immediate very high vaccine coverage,
indicated important additional potential gains, which would make vaccination very cost impactful.
Finland and the UK are on such a route leading to long-term vaccination success, whereas Spain and
Belgium have difficulties in achieving optimum vaccine benefits. An optimal launch of rotavirus
vaccination may generate substantial economic gains over time. For high-income countries that are
considering implementing rotavirus vaccination, achieving an optimal launch is a critical factor for
long-term economic success.

Keywords: rotavirus vaccination; economic evaluation long-term; optimal introduction cost-impact
analysis

1. Introduction

Economic evaluations of new vaccines coming onto the market are often developed
and published prior to authorisation and launch, based on summary efficacy data from
randomised controlled clinical trials conducted in places where the vaccine will be first
administered [1–3]. Such economic assessments present potential value estimates with
assumptions made about the long-term vaccine effect [4]. They provide important infor-
mation with a cost-effectiveness analysis that influences price-setting for the new product
at market launch. The evaluations are supported by extended sensitivity analyses of the
variables subject to uncertainties. This approach is well established and recommended in
guidelines, and the evaluations are applicable in countries that wish to assess the economic
value of the new products to reimburse, as local authorities are willing to pay to the vaccine
producer a vaccine price worth its economic value [5]. However, it is surprising to observe
that these early economic evaluations are rarely challenged by data collected subsequent
to the approval and implementation of the new product [6,7]. Moreover, if the initial
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assessment is simple in its presentation, it is likely that long-term evaluations will not be
questioned [8,9].

However, effect monitoring of new vaccines in real-life settings is essential to obtain
accurate economic value estimates in the short to long term [10]. Results based on observed
data should be compared with projections made at vaccine submission when aiming for
reimbursement [11]. This is particularly relevant for preventative vaccinations, as the
potential gain could be affected by many different factors impacting the long-term benefit,
which are unknown prior to launch. Rotavirus vaccination provides a perfect example of
the need for long-lasting monitoring and evaluation.

Different vaccines are available on the market against rotavirus infection, of which
two are predominant in high-income countries: a two-dose human assorted live-attenuated
vaccine called Rotarix (GSK), and a three-dose live-attenuated human–bovine assorted
vaccine called RotaTeq (Merck) [12,13]. It is assumed that the effect over time is equiva-
lent between both vaccines [14]. Before the start of this vaccination programme against
rotavirus, it was generally considered that this disease (diarrhoea in children) was easy
to manage in high-income countries with a low mortality rate [15–17]. The vaccine had a
major positive effect on hospitalisations observed in the clinical trial data [1]. Its admin-
istration was straightforward because of its oral formulation. However, when observed,
real-world vaccine effect data were collected and scrutinised in detail, the actual impacts
of the vaccination and the disease were difficult to understand. Real-world data were
collected in a special study set up in Belgium in 2007, called the Rotavirus Belgium Impact
Study (RotaBIS) [18]. This study showed that there was seasonality in rotavirus infection
spread (mostly between January and March); a vaccine herd effect early on; and poten-
tially waning vaccine efficacy to consider when adequately fitting the observed with the
modelled data [19–22]. Moreover, a vaccine catch-up programme to immunise the entire
age group up to the age of 5 years was not possible, because the vaccine has a very low
frequency of a serious side effect (intussusception) if the doses are not given within strict
time schedules [23,24]. Therefore, continuous vaccination of new-born infants with high
coverage from the start was needed to obtain control of the infection spread. The follow-up
of the observed RotaBIS data identified two key points [22]. First, if the initiation of the
vaccination programme was not optimal, this could lead to low vaccine coverage in the
group forming the primary source of infection during the normal rotavirus peak season,
with the consequence that the herd effect could be low (15%) in the first year and could
disappear in the second year due to greater prominence of secondary sources for infection
spread [21]. Second, with suboptimal vaccination implementation, the primary source of
infection shifted after a while from very young children (less than 13 months old) to an
older age group, which may result in long-term regular seasonal peaks of the disease at a
lower frequency and height than pre-vaccination. However, the reduced herd effect and
the appearance of new smaller disease peaks after a while could be altered with optimal
initiation of the vaccination programme, with high coverage from the start (around 90%),
and an optimal start date for the vaccination programme (at least 6 months before the next
seasonal peak). These findings could be deduced from a more in-depth analysis of the
rotavirus vaccination with the RotaBIS follow-up data.

The objective of the present analysis is to evaluate the economic value of an optimal
vaccine launch, compared with a non-optimal situation such as the one observed in Bel-
gium. The analysis uses an evaluation technique that allows the simulation of different
vaccine launch scenarios, with different long-term accumulated outcome results for the
economic assessment. It may identify threshold conditions that determine whether an
initial vaccination strategy moves to optimal or less optimal long-term cost-impact results.

2. Materials and Methods

Assessing the economic value of rotavirus vaccination in the short to long term,
simulating different scenarios, rests on two pillars: the data source and the model.
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2.1. Data Source

Understanding the real-world long-term economic effects of rotavirus vaccination
requires the systematic collection of observed data on items causing the high cost of
managing the disease and on which the vaccination is known to have a positive impact.
Such data were collected in the RotaBIS study, which was initiated in 2007, a year after the
vaccine was introduced and partially reimbursed by the Belgian authorities in November
2006 [19,20,25]. Data on disease-specific hospitalisations were retrospectively collected for
the years 2005 and 2006, before the introduction of the vaccine. The same information was
subsequently gathered annually for 13 years from 11 hospitals, representing the different
parts of the country. The following data were assembled for each event, in addition to
the test result and date for rotavirus detection: the date of hospitalisation; the specific age
when the disease occurred; sex; duration of hospitalisation; and nosocomial acquisition.
The full protocol of the study has been reported elsewhere [18]. The information relevant
to the present study is summarised in Table 1, showing the numbers of disease-specific
hospitalisations by age and year reported over a total period of 15 years (the pre-vaccination
years of 2005 and 2006 are reported as average values for the two years combined). Figure 1
presents these observed numbers, showing the reduction in hospitalisations over time after
the introduction of the vaccine, with the appearance of new small biennial peaks after
8 years.

Table 1. Number of rotavirus hospitalisations by age and year (m—month; Yn—year number).

Age/Yn 2005–2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

0–2 m 113 94 62 56 44 65 54 44 48 56 28 55 52 27

3–12 m 678 340 152 129 127 133 103 97 70 137 75 123 125 95

13–24 m 413 311 208 100 139 134 114 107 74 186 85 180 119 96

25–36 m 102 56 67 49 33 44 33 33 31 67 17 42 37 35

37–48 m 27 16 18 19 19 12 9 15 4 13 8 18 9 9

49–60 m 12 2 12 8 10 7 7 4 1 10 4 6 8 6

Total 1345 819 519 361 372 395 320 300 228 469 217 424 350 268
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2.2. The Model

The model needs to replicate the observed data and must include those variables
that affect the shape of the observed curve using direct and indirect vaccine effects [22].
The model splits the observation period into two linked consecutive time periods, using a
different model structure for each period (Figure 2). Full details of the model, including
sensitivity analyses, have recently been presented [22] (see Appendices A and B for further
details on the model input data and model construction).
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The first period is the vaccine uptake period that can last 5 to 8 years until a new
infection equilibrium has been reached in the target group of children aged ≤5 years. For
this period, the model uses a regression equation to characterise the shape of the curve,
in which different forces influence the regression line simulating the number of disease-
specific hospitalisations observed per year. There are two main forces in the regression
equation, each of which combines several components. The first force defines the direct
vaccine effects (effectiveness, coverage, and waning). The second force represents the
indirect effects of the vaccine (herd effect and secondary sources of infection).

The vaccine uptake period is followed by a post-uptake period, in which the dynamic
spread of the infection is simulated using a time differential equation with compartments
of susceptible, infectious, and recovered (SIR) groups linked by time-dependent rates
of transitions, starting at the hospitalisation level and the time required to replicate the
observed biennial disease peaks. The frequency and height of these peaks depend on
the entry conditions for the post-uptake period after the vaccine uptake period. These
entry conditions include the remaining infection rate in the population, the maintained
vaccine coverage rate with its net effect, the susceptible group (new-borns) entering at any
given time point, and the contact matrix for the at-risk population (see Appendix B). It is
important to note that the initial primary source of infection pre-vaccination shifted in the
post-uptake period to an older age group developed during the vaccine uptake period, if
the vaccine coverage and the timing of initiating the vaccination were not optimal.

2.3. Cost-Impact Analysis

A cost-impact analysis (CIA) was used for this analysis instead of a cost-effectiveness
analysis (CEA), because impact evaluation covers the whole vaccinated and unvaccinated
at-risk population in which the vaccine has direct and indirect effects, and which is com-
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pared with a situation prior to the initiation of the vaccination programme (pv) [26]. The
calculation for CIA is the same as for CEA using the following formula, in which the
cost and effect, once the vaccine is introduced, is the sum of the costs and effects for the
unvaccinated (uv) group and the vaccinated group (v):

CIA =
∆C
∆E

∆C = (Cpv − (Cuv + Cv))

∆E = (Epv − (Euv + Ev))

∆ = difference; C = cost; E = health effect often expressed in quality-adjusted life-years
(QALYs); pv = pre-vaccination; uv = unvaccinated; v = vaccinated

This contrasts with CEA, which evaluates the initially intended vaccinated population,
considering the effectiveness of the direct and indirect positive effect of the vaccine such as
the herd effect in the control group from within the vaccinated population (the test-negative
controls) [27]. Here, the negative indirect effect of the vaccination in the whole population
was identified and added in the evaluation when new primary sources of infection in older
age groups were created when the vaccination start was not optimal. It makes reference to
the impact assessment, as presented by Germaine Hanquet et al. from an epidemiologic
perspective, but now applied from an economic view [28].

2.4. The Belgian Data

Two comparative CIAs were reported for the Belgian data: one compared the economic
results projected prior to market launch with those obtained from the observation of the
vaccine uptake period in the RotaBIS study [20,21]; the second compared the predicted
data with the long-term observations from the RotaBIS data [19,22]. It should be noted
that the pre-marketing economic assessment was developed using a cohort model [29],
whereas the comparisons with observed data have a population structured assessment.
To make a fair comparison between these two datasets and their model structures, it was
necessary to transfer the cohort design into a population model design over time using a
multi-cohort approach (see Appendix A). This can be easily achieved for the vaccine uptake
period but is challenging for the post-uptake period. It assumes continuity of the effect in
the pre-marketing prediction model over time. Simulating small peaks in the post-uptake
period would be difficult in a multi-cohort model because of the restriction imposed by the
model construct, following individuals in a cohort and not as members of a population.
However, the key question is the difference in the reported cost-impact results between
pre-launch estimates and post-launch observations. Is the difference the consequence of
a real difference in numbers (hospitalisations), an effect of model design (cohort versus
population), or due to other factors?

2.5. Simulated Scenario Data

This model mimics the hospitalisation rates during the vaccine uptake period and the
post-vaccine uptake period of the RotaBIS study. It was used to simulate selecting a better
time to start the vaccination programme (August instead of November in the year before
the next seasonal disease peak) and immediately reaching a very high vaccine coverage rate
(90% instead of 66%). This scenario leads to a higher herd effect during the first year of the
vaccine introduction, making it more difficult for the virus to activate secondary infections
that produce the small disease peaks later. This is the optimal vaccination introduction
scenario (optimal) that should produce substantially improved results compared with
the initial launch in Belgium. An intermediate launch scenario was considered with a
launch in October and an initial vaccine coverage rate of 67% to evaluate intermediate
effects (intermediate) in contrast to the optimum launch strategy (optimal) or the borderline
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cost-impact results (Belgium). Launch data from other countries in Europe, Finland, the
UK, and Spain, [30–32] could help to assess these simulations.

2.6. Data Input and Output

The input data used to estimate the cost and QALY-loss impact of hospitalisation
are presented in Table 2. The cost data are those used when the vaccine was launched
in 2006 when it received its reimbursement price in Belgium, which has not changed
since. Discounting is applied for costs but not for the QALY health gain associated with
vaccination [33,34]. Input values for critical variables that define the shape of the curve
during the vaccine uptake period are presented in Table 3 for the observed Belgian data
(Belgium), an improved scenario (intermediate), and an optimal design (optimal).

Table 2. Cost and QALY loss input data used to measure the cost impact of rotavirus vaccination
over time.

Variable (Name) Unit Value Number Total Reference

Hospitalisation Pre-vaccination cost €1467 7 days €10,269 [35]
Hospitalisation Post-vaccination cost €1467 5 days €7335 [25]
Vaccine cost (Rotarix) €70/dose 2 €140/vaccination [34]
QALY-loss Pre −0.47/hospital day 7 days −0.009 [36]
QALY-loss Post −0.47/hospital day 5 days −0.006 [25]
Target population to vaccinate
pre-vaccination 5% 791 15,820 [19]

Discounting cost 3% [37]

Table 3. Critical input data values for the uptake period of Belgium, intermediate scenario and
optimal scenario.

Variable (Name) Code Belgium Intermediate Optimal

Vaccine efficacy VE 0.95 0.95 0.95
Vaccine coverage focused VCF 0.66 0.67 0.88
Vaccine coverage routine VCR 0.86 0.87 0.95
Herd effect non-indicated Hn 0.41 0.42 0.68
Secondary infection source herd SIh 0.10 0.06 0.01
Start month vaccination Sm Nov Oct Aug

Focused: during the first months of vaccination prior to reaching the routine coverage; routine: reaching the
normal coverage of child vaccination; herd effect non-indicated: herd effect amongst those who could not receive
the vaccine.

The output obtained is the incremental cost–impact ratio (ICIR) achieved using dif-
ferent modelling approaches with different scenarios for vaccine launch, listed in Table 4.
The launch data from Finland, the UK, and Spain were integrated into the Belgian model
of the observed data to estimate ICIR differences with the different launch scenarios in
those countries (Table 4). However, it is difficult to compare economic evaluations between
countries for obvious reasons, e.g., the price-setting of the vaccine and the hospital cost
may differ between countries, and comparisons should be made with caution.

Table 4. Different scenarios for calculated ICIR, in which the comparator is no vaccination.

Scenario Number Scenario Cases Period Evaluation Reference

1 Belgium prediction
pre-launch

Estimated with
multi-cohort model 8 years [29]

2 Vaccine uptake period Observed data (RotaBIS) 8 years 1 with 2 [20,21]

3 Belgian prediction
pre-launch

Estimated with
multi-cohort model 15 years
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Table 4. Cont.

Scenario Number Scenario Cases Period Evaluation Reference

4 Vaccine uptake and
post-uptake period Observed data (RotaBIS) 15 years 3 with 4 [19]

5 Vaccine uptake and
post-uptake period

Optimal simulation
from RotaBIS data 15 years 4 with 5 [22]

6 Finland (2009) Observed data 6 years 4 with 6 [30,38]
7 UK (2013) Observed data 5 years 4 with 7 [31]
8 Spain (2013) Observed data 5 years 4 with 8 [32]

3. Results
3.1. The Belgian Uptake Period

The pre-launch predicted hospitalisation reduction, observed hospitalisation reduction
data, and predicted hospitalisations with no vaccination are presented for the vaccine
uptake period (first 8 years) in Figure 3. The pre-launch prediction for rotavirus vaccination
in Belgium is based on the cohort model initially used. For this analysis, a vaccine uptake
period was added in a multi-cohort model construction. The model does not capture any
herd effect but decreases the vaccine effect over time based on the efficacy trial results
from the first versus the second year [1]. The vaccinated birth cohorts are evaluated each
year over a 5-year time frame. The accumulated results are compared with the continuous
pre-vaccination period where vaccination did not occur (red line in Figure 3). The observed
data from the vaccination programme are shown over the same duration of 8 years, but
the significant difference from the pre-launch model design is that the full uptake of the
vaccination is now included in the data. This shows the effects of the indirect forces of
vaccination, related to the herd effect and the presence of secondary sources of infection
attenuating the vaccine effectiveness to result in a net effect.
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Figure 3. Comparing the hospitalisation reduction data of the pre-launch estimate and the observed
data during the uptake period.

The cost-impact results are shown in Table 5 for the predicted and observed data,
compared with no vaccination.
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Table 5. Cost-impact results comparing the days of hospitalisation regarding no-vaccination, pre-
launch predicted data, and vaccinated observed data for the vaccine uptake period.

Item

Undiscounted Discounted

Age Group No
Vaccination

Pre-Launch
Predicted

Vaccinated
Observed Age Group No

Vaccination
Pre-Launch
Predicted

Vaccinated
Observed

H
os

pi
ta

ld
ay

s

0–2 m 904 168 467 0–2 m 904 168 467
3–12 m 5424 1010 1151 3–12 m 5424 1010 1151
13–24 m 3304 1339 1187 13–24 m 3304 1339 1187
25–36 m 816 482 346 25–36 m 816 482 346
37–48 m 216 155 112 37–48 m 216 155 112
49–60 m 96 76 51 49–60 m 96 76 51

Total 10,760 3231 3314 Total 10,760 3231 3314

C
os

t Hospital cost €15,784,920 €3,385,608 €3,472,599 Hospital cost €14,266,180 €3,112,588 €3,213,999
Vaccine cost €15,503,600 €14,219,016 Vaccine cost €13,988,287 €12,769,962

QALY QALY-loss −96.99 −20.80 −21.34 QALY-loss −96.99 −20.80 −21.34

ICIR €40,747 €25,204 ICIR €37,208 €22,707

m: month; QALY: Quality Adjusted Life year; ICIR: Incremental Cost Impact Ratio; €: Euro.

There is a difference in the ICIR results in favour of the observed data because of
a lower use of the vaccine, compared with the pre-launch model. The predicted results
reach a similar plateau level in hospitalisations as the observed data, mainly because
of the imposed reduction in vaccine effect over time, whereas the plateau level in the
observed data is explained by the initial small herd effect, the vaccine coverage rate, and
the appearance of secondary sources of infection, while the vaccine effect is maintained
at the same level over the period. The observed results therefore broadly achieved the
predicted effect on hospitalisations, but at a lower vaccine coverage rate with consequently
lower vaccine costs, resulting in a more favourable ICIR than predicted.

3.2. The Belgian Long-Term Period

The next analysis compares the whole period of the observed data with the results
from the extension of the pre-launch prediction model, assuming the effect observed after
8 years in the vaccine uptake period is maintained. The observed data differ from the
pre-launch prediction by the appearance of small hospitalisation peaks at 9- and 11-years
post-vaccine introduction that negatively impact the vaccine effect over time, as shown in
Figure 4 and Table 6.

Table 6. Cost-impact results comparing the days of hospitalisation regarding no vaccination, pre-
launch predicted data, and the vaccinated observed data of the whole period.

Item
Undiscounted Discounted

Age Group No
Vaccination

Pre-Launch
Predicted

Vaccinated
Observed Age Group No

Vaccination
Pre-Launch
Predicted

Vaccinated
Observed

H
os

pi
ta

ld
ay

s

0–2 m 1469 258 685 0–2 m 1469 258 685
3–12 m 8814 1567 1706 3–12 m 8814 1567 1706
13–24 m 5369 1954 1853 13–24 m 5369 1954 1853
25–36 m 1326 703 544 25–36 m 1326 703 544
37–48 m 351 229 169 37–48 m 351 229 169
49–60 m 156 112 85 49–60 m 156 112 85

Total 17,485 4823 5042 Total 17,485 4823 5042

C
os

t Hospital cost €25,650,495 €5,054,124 €5,283,296 Hospital cost €21,613,510 €4,353,844 €4,568,730
Vaccine cost €25,470,200 €25,403,756 Vaccine cost €21,410,855 €21,161,515

QALY QALY-loss −157.60 −31.05 −32.46 QALY-loss −157.60 −31.05 −32.46

ICIR €38,513 €40,247 ICIR €32,803 €32,896

m: month; QALY: Quality Adjusted Life year; ICIR: Incremental Cost Impact Ratio; €: Euro.
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Figure 4. Comparing the hospital reduction data of the pre-launch estimate and the observed data of
the whole period.

These results now show that the ICIR is more favourable in the predicted data, in
contrast with the results for the vaccine uptake period. This difference is explained by
the appearance of the hospitalisation peaks in the observed data, causing a marginal
gain in the ICIR results for the predicted model. Extrapolation of the observation period
beyond 13 years of vaccination with the inclusion of modelled regular biennial peaks
over time results in larger changes in the cost-impact results in favour of the extended
prediction model. At 18-years post-vaccine introduction, the ICIR results are, respectively,
€57,080 for the modelled pre-launch prediction and €65,797 for the observed simulated data,
undiscounted (data not shown). The discounted results significantly reduce the difference
in the ICIR results (€45,450 and €50,045, respectively).

3.3. The Belgian Optimal Evaluation

Using the model constructed from the observed data, the vaccination introduction
was adjusted by starting vaccination in August instead of November with an immediate
coverage rate of 90% instead of 65% (optimal). These adjustments result in a much higher
herd effect during the first years of the vaccination programme, which in turn hinders
the development of new primary sources of infection in an older age group causing
the later disease peaks. Depending on the level of increased herd effect simulated at
the start, this scenario produces smaller and less frequent (every 4 years) disease peaks
that begin earlier (after 5 years) than those in the observed data (Figure 5). The earlier
appearance results from the lower level of infection present in the at-risk population,
which means that a new infection equilibrium is reached more quickly. The reduction in
hospital events avoided over the period compared with the observed data is impressive
(5042 − 1276 = 3766 hospital events or >20% improvement) (Table 7). The high vaccine
coverage and consequent vaccine cost mean that the hospitalisation reduction does not
produce cost savings compared with no vaccination; however, the total cost is lower
compared with the observed data (€30,687,052 − €27,249,792 = €3,437,259 (11% cost gain)).
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Table 7. Cost-impact results of comparing the overall observation period between no vaccination,
vaccinated observed data, and simulated vaccinated optimal introduction.

Item
Undiscounted Discounted

Age Group No
Vaccination

Vaccinated
Observed

Vaccinated
Optimal Age Group No

Vaccination
Vaccinated
Observed

Vaccinated
Optimal

H
os

pi
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ay

s

0–2 m 1469 685 351 0–2 m 1469 685 351
3–12 m 8814 1706 281 3–12 m 8814 1706 281
13–24 m 5369 1853 431 13–24 m 5369 1853 431
25–36 m 1326 544 144 25–36 m 1326 544 144
37–48 m 351 169 44 37–48 m 351 169 44
49–60 m 156 85 25 49–60 m 156 85 25

Total 17,485 5042 1276 Total 17,485 5042 1276

C
os

t

Hospital cost €25,650,495 €5,283,296 €1,336,632 Hospital cost €21,613,510 €4,568,730 €1,190,656
Vaccine cost €25,403,756 €25,913,160 Vaccine cost €21,161,515 €21,410,855

Cost
difference
(Ob-Op)

€3,437,259 €3,128,733

QALY QALY-loss −157.60 −32.46 −8.21 QALY-loss −157.60 −32.46 −8.21

ICER

ICIR
(NV-Op) €40,247 €10,705 ICIR

(NV-Op) €32,896 €6,613

ICIR
(Ob-Op) −€141,746 ICIR

(Ob-Op) −€129,023

m: month; QALY: Quality Adjusted Life year; ICIR: Incremental Cost Impact Ratio; €: Euro; NV: no vaccination;
Op: optimal; Ob: observed).

3.4. Scenario Analysis

The simulation is further used to identify thresholds for vaccination launch parameters
that determine when the vaccination produces better cost-impact results overall compared
with the observed data. This is illustrated in Figure 6. Three scenarios are modelled, one
simulating the observed Belgian data (observed), one using an optimal vaccination intro-
duction (optimal), and one using an intermediate vaccination introduction (intermediate).
For each of these scenarios, ranges are applied to key parameters, as specified in Table 8,
based on the first-year results of the net effect of the vaccine introduction (indicated by the
yellow box in Figure 6). As shown in Figure 6, the long-term hospitalisation reduction level
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differs considerably between the three scenarios with little overlap, indicated by the blue
box (Category A, Belgian observed data); green box (Category B, intermediate vaccination
introduction); and red box (Category C, optimal vaccination introduction). The first year
determines the category reached in subsequent years because of the correlation between the
herd effect in the first year and the appearance of disease peaks due to secondary sources
of infection in the subsequent years.
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Figure 6. Presenting 3 categories of cost impact (A,B,C) for the rotavirus vaccination long-term effect
conditional on its introduction.

Table 8. Threshold value ranges of critical parameters in first and subsequent years in category A, B,
and C with summary results per category.

Variable Input Values Category A Category B Category C

Time Type of Variable Code Base
Case Min Max Base

Case Min Max Base
Case Min

First year Vaccine coverage VCF 0.66 0.49 0.75 0.67 0.38 0.73 0.88 0.74
Herd effect Hn 0.41 0.20 0.52 0.42 0.06 0.50 0.68 0.50

Subsequent
years

Vaccine coverage VCR 0.86 0.81 0.87 0.87 0.85 0.89 0.95 0.89
Secondary infection Siv 0.10 0.08 0.05 0.06 0.09 0.05 0.01 0.03

Results Category A Category B Category C

Remaining hospital events 5042 6120 4546 3259 4371 2798 1275 2623
% reduction 71% 65% 74% 81% 75% 84% 93% 85%

Incremental cost–impact ratio (ICIR)
(undiscounted) €42,356 €56,403 €39,216 €26,920 €37,424 €22,838 €10,700 €21,400

Min: minimum value; Max: maximum value; ICIR: incremental cost impact ratio; No maximum values are
presented for Category C because, with the high baseline values of VE (see Table 3), VCF, and VCR, it is difficult
to further increase these values in reality.

The accumulated reduction in hospitalisations after 13 years of vaccination differs
between the categories, reaching at least 65% to 74% (Category A, Belgian observed data);
75–84% (Category B, intermediate vaccination introduction); and >85% (Category C, opti-
mal vaccination introduction). The ICIR is considerably more favourable for the optimal
introduction scenario (€10,700) compared with the intermediate introduction scenario
(€26,920) and the Belgian situation (€42,356) (Table 8).
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3.5. Other Countries

Countries across Europe have launched rotavirus vaccination programmes that differ
from the Belgian launch in their initial vaccine coverage rates and date of initiating the
vaccination programme. Figure 7A shows hospitalisation rates in the vaccine uptake period
in three other countries in Europe that introduced rotavirus vaccination and for which
data were available in the public domain [30–32]. Figure 7B shows the results when these
data are applied in the model for the full 13-year period. Finland and the UK introduced
the vaccine systematically in 2010 and 2013, respectively, starting earlier in the year than
Belgium (September and July, respectively) and with very high immediate vaccine coverage
rates. In Spain, the vaccine has been recommended since 2012 but is still not reimbursed,
with a consequently wide range of vaccine coverage rates across the country and by year.
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Figure 7. Reporting the annual % of remaining rotavirus hospitalisations for Finland, UK, and Spain
(A), and reporting the absolute numbers when those % are applied in the Belgian model (B), issuing
potential cost-impact results in one of the 4 categories of non-ABC, A, B, and C.

Countries that started vaccination early in the year and with a very high coverage rate
from the start (Finland and UK) saw a greater fall in hospitalisations than countries with a
less stringent vaccination policy (Belgium and Spain). Finland and the UK appear to be on
track to reach the region of the Category C scenario in the model. Long-term vaccination
impact is now more difficult to assess because of the effect of preventative measures
introduced in response to the COVID-19 pandemic, such as lockdowns, which caused an
important additional impact on rotavirus hospitalisations, as observed in Belgium [39].
However, if the modelled predictions of long-term vaccine effect hold, Finland and the
UK should expect quite impressive cost-impact results over the long term, which does not
appear to be the case for Spain (Figure 7B).

4. Discussion

Rotavirus vaccination is an interesting case study to illustrate that there may be
potentially important differences in economic value between pre-launch model predictions
compared with real-world observational data over time. At the beginning, performing
a cost-effectiveness analysis for rotavirus vaccination was considered a straightforward
exercise, even with the use of dynamic models, to estimate the potential health gain and
price-setting [40,41]. The reality observed in Belgium by the RotaBIS study indicated
much greater complexity in infection spread and the vaccine effect. The vaccine launch in
Belgium was, by chance, an intriguing case because it was not optimally implemented, but
this was not known at the time of reimbursement in November 2006 [42–44]. Comparing
observed and predicted data made it possible to identify issues in virus spread in the
child population, with primary and secondary sources of infections that early rotavirus
disease models did not include [11]. Most models assumed a single source of infection that
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reduced over time with vaccination [45,46]. In addition, the seasonality of the infection
implied that there were clear, annual periods of intense virus transmission that should
be targeted at the start of the vaccination programme with a very high vaccine coverage
of the population transmitting the infection. This was not achieved in Belgium, with
the now known consequences [19]. Finally, the vaccination programme did not allow
for a catch-up strategy, such as vaccinating a whole age group up to 3 years old at the
beginning, because of vaccine safety concerns [23]. This had the consequence of not
achieving immediate control of virus spread in children who were older than the target age
for vaccination. It was the reason for splitting the evaluation into two periods: a vaccine
uptake and a post-vaccine uptake period [22]. All these elements show the importance of a
detailed understanding of the pre-vaccination infectious disease situation and patterns of
infection spread, before introducing a new vaccine. The vaccine administration process
and the potential constraints and safety concerns should be well-known at the start of the
vaccination campaign.

Modelling these elements has helped to clarify the indirect effects of the vaccine that
increase or reduce the herd effect, influencing the net vaccine effect and explaining the
appearance of new disease peaks over time with a shift to older children as the primary
source of infection [22]. The data from Spain confirm the findings in Belgium with a sub-
optimal launch of rotavirus vaccination [32,47]. The data from Finland and the UK may
prove that initiating the vaccine programme earlier in the year and with an immediately
high coverage achieves greater reductions in hospitalisation, compared with what was
observed in Belgium [38,48,49]. This suggests that Belgium could have obtained better
results by starting the programme differently, although this was not known at the time.
After reaching the stage of the post-vaccine uptake period, the modelling results indicate
that it would be very difficult to substantially improve the results unless a massive, new
intervention shock happened. By chance, such a shock occurred with the lockdowns
introduced due to the COVID-19 pandemic in 2020 and 2021, and the rotavirus peaks
during those years disappeared in Belgium [39]. This striking result would have been
very difficult to achieve without the lockdowns, as increased vaccine coverage does not
immediately reduce the primary infection source that shifts to an older age group not
directly under the effect of the vaccine. Only the very young ages are vaccinated. This
is critical information because when the vaccine programme is not well initiated, it has
long-term negative consequences that are difficult to adjust. It is also the situation of the
rotavirus vaccination results currently observed in the US [50,51].

A few additional questions could be asked in relation to this economic evaluation. One
is about the economic value this vaccine should have pre-launch that defines its price of
reimbursement at launch, with a better understanding of the importance of how the vaccine
programme is introduced. Analyses relying on simpler models, without taking into account
the new knowledge of the optimal method of introducing the vaccination programme,
as was carried out in Belgium, may produce a range of cost-effectiveness results in the
sensitivity analysis that includes the optimal result. However, such an analysis would not
be able to indicate how to achieve the optimal result if not all the necessary details were
included in the model construct. In this case, the absence of information on an optimal
vaccine introduction to define the price-setting at launch is a risk for both the producer and
the paying party. Either may find that they are paying or being paid too much or too little
for a vaccine, and it is difficult to readjust the vaccination programme after a non-optimal
introduction because of the limitations of readjustment interventions, such as increasing the
vaccine coverage rate. Therefore, it is very important to refine the vaccination programme
at its introduction to maximise the efficiency of the programme in the long term. Thus,
the recommendation is that an economic submission for reimbursement should evaluate
different scenarios of vaccine introduction that consider the differences in cost-effectiveness
and cost-impact analyses related to the vaccine coverage rate, and the time selected for
vaccine introduction, in relation to the expected seasonal disease peak. This approach,
with an emphasis on obtaining initial high coverage ahead of the next expected seasonal
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peak, could be applicable to other diseases with marked seasonality and high contagion.
If COVID-19 becomes an endemic disease in infants with seasonal peaks, these findings
may be relevant to future research on the design of a potential COVID-19 vaccination
programme in this age group. Could this have been foreseen in the Belgium submission
file for the rotavirus vaccine? This would have been difficult if the full infection spread
was not well understood at the beginning, having identified the importance of an optimal
introduction of the vaccination and having discovered the age shift in the primary source
of infection after a sub-optimal introduction. In this respect, one should remember that
the European randomised controlled trial (RCT) conducted for Rotarix in 2004–2006 had
a randomisation process of two vaccinated children for one placebo child [1]. This type
of randomisation increased the herd effect in the placebo group, as the randomisation
occurred at local level and not by a cluster site. In cluster site randomisation, regions are
divided into clusters. The clusters are randomised to vaccination or no vaccination, thereby
reducing the chance of a herd effect occurring in the unvaccinated clusters. In contrast, in
local randomisation, the control group is subject to herd effects, resulting in an apparently
decreased vaccine effect in the second year of the evaluation. This was not considered when
the analysis was conducted and reported because of the lack of baseline information prior
to the vaccine introduction. It is also possible that other, additional factors may influence
the observed local results, such as the organisation of day-care centres and their potential
function as a hub of local epidemics, which would not have good infection control and
have poor vaccine coverage. However, there are limitations on the complexity of models
that can be constructed and applied in practice. Factors that do not have critical effects
on vaccine impact or do not cause important costs or health changes may add little to the
economic value generated by the more complex model. The right balance needs to be found
between the feasibility of collecting and analysing sufficient data and the wants and needs
of the paying parties and producers. The precise balance is likely to vary between specific
interventions and settings.

Finally, is this economic model also applicable to other settings such as non-high-
income countries? Some critical points that are essential for the optimal functioning of the
vaccine in high-income countries but that could be absent in other countries include the
seasonality of infection spread, easy contact patterns among very young children (such as
day-care centres) that facilitate virus transmission, and the hospitalisation of severe cases
leading to a high healthcare cost. It would be a challenge to apply the current model if any
of those conditions were not fulfilled. Nevertheless, this analysis indicates that rapidly
achieving high coverage at the start of a rotavirus vaccination programme is essential
for maximising the health benefit of the vaccine, as this minimises the development of
secondary sources of infection that persist over time and are very difficult to correct at a
later stage.

The analysis presented here has some limitations. Some cost items, such as first-line
support and indirect costs, were not considered, and not all the QALY losses at different
disease stages were included in this evaluation. However, the focus of the analysis was
to demonstrate that quite different economic value results could be obtained for a vaccine
from a predicted pre-launch value assessment and real-life data observations. Vaccination
needs data monitoring on its effect over time once approved and implemented, in order
to capture deviations from what could be considered an optimal launch. The economic
analysis is an additional tool to help in the selection of a vaccine strategy. For instance,
some countries like to produce price–volume contracts when introducing new vaccines.
These results suggest that such a policy would be a disaster for rotavirus vaccination if the
volume is fixed at 40% or 50% for the first year of implementation followed by progressive
increases in vaccine coverage over time. With a start at 40–50% vaccine coverage across
a country, the present model suggests that it is likely that a limited effect will be seen on
hospitalisation reduction, limiting the total value of the vaccine in the short to long term.
Conversely, this model suggests that obtaining immediate very high vaccine coverage
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ahead of the next expected seasonal disease peak would maximise both the health benefit
of rotavirus vaccination and its cost impact over the long term.

5. Conclusions

Pre-launch economic assessments of new vaccines against rotavirus in high-income
countries should be considered very carefully, as modelling based on observational data
from Belgium indicates that the long-term vaccine benefit strongly depends on the details
of the vaccination introduction. Issues such as changes in the infection spread and the
consequent effects on vaccine impact make rotavirus vaccination assessment much more
complex than initially thought, with quite disparate economic results depending on whether
the initial vaccine introduction was optimal or sub-optimal.
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Appendix A. Transforming the Cohort Model Design into a Population
Model Structure

The initial economic assessment of rotavirus vaccines, published around the period of
approval and launch in Europe in 2006, used a static Markov cohort model as a reference,
published by Melliez et al. [52] and applied to Belgium [29] and many other countries in Eu-
rope (including the UK [40], France [2], Italy [53], the Netherlands [54], and Germany [55]).
The evaluation was performed as if the vaccine was assessed after a period of vaccine
uptake where the at-risk population (children ≤ 5 years old) was followed from birth until
the age of 5 years (the at-risk period). Pre-vaccination, the rotavirus hospitalisation rate in
high-income countries was known to be concentrated in the age group up to 2 years old,
following a Weibull distribution (Figure A1).

The effect of the vaccine in the vaccinated cohort was predicted and modelled by only
three variables: vaccine effect (VE), vaccine coverage (VRC), and vaccine waning (Wa). The
last element was heavily promoted by academic research groups based on the reduced
effect of the vaccine reported in the RCT when comparing the first and second year [1].
There was, however, no evidence that vaccine waning was really occurring very early
on after its introduction. After 5–6 years of following the vaccine effect annually using
a standard approach of registering disease-specific hospitalisations, it was seen that the
hospitalisations were reaching a plateau over time after 3 years of vaccination (RotaBIS
study) [20,21]. The level of plateau formation could not be explained by a process of vaccine
waning, as suggested by early assessments on the vaccine effect. Waning should happen
very early and with a dramatically high level that did not match the model constructed to
simulate the observed data.

Other effects could better explain the plateau formation than vaccine waning. These
include other forces of the vaccine effect such as the herd effect and the activation of
secondary or other sources of infection than the primary one, not covered by the vaccination.
To illustrate the presence of those other forces causing the plateau formation, a dataset
that demonstrated those effects was needed, and it became clear that a population model
instead of a cohort approach was the right design to illustrate those new effects [56].
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Since the data assembled in the RotaBIS study could be easily presented as a population-
structured design (a cross-sectional annual evaluation of the at-risk population subdivided
into different age groups), the initial cohort model design needed to be transformed into
a population design to be capable of making a fair comparison between predicted and
observed results.

Figure A2 uses a hypothetical example to show how this model was constructed. In
the initial cohort design, only the cells in yellow were assessed and included in the model.
Group 1 was the no-vaccination group and Group 2 was the vaccinated cohort group in
which the level of vaccine waning was adjusted in each age group, while the vaccine effect
and coverage remained the same. For the population model approach, the full length of the
model structure was used from Year 1 (Y1) until the last year of observation in the RotaBIS
study (Y13). Therefore, it included the vaccine uptake period as a necessary condition for
the comparison between the prediction approach and the observed data.

1 
 

 
Figure A2. The difference in cohort modelling and population modelling structure applied in
rotavirus vaccination assessment with the variable assessment. m: month; VE: Vaccine Efficacy; VCR:
Vaccine Coverage Rate; Wa: Waning rate (1 after 1 year; 2 after 2 years; 3 after 3 years; 4 after 4 years).

Appendix B. Developing the Model Structure to Assess the Disease Burden and
Vaccine Impact in the Short to Long Term

Capturing the indirect effect of a vaccine in a model, causing what is called the herd
effect (protecting unvaccinated individuals by a lower circulation of the infectious agent
due to vaccination), can be easily demonstrated with the development of a compartmental
dynamic model, in which a critical element obtains data about the contact matrix by which
the virus transmission can be quantified over time. This approach was applied after the
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first cohort models were published, with the additional sophistication that individuals
could be reinfected over time, with a better immune response the more times they had been
infected [45,46,57,58].

Including the herd effect (Hn) in the model was important, but this additional element,
besides vaccine effect (VE), coverage (VCR), and waning (Wa), was not sufficient to fully
explain the observed effects if the conditions of the vaccine implementation were not
optimal, as was the case for Belgium [21]. If the vaccine launch had been optimal in
Belgium, it would not have been possible to discover that there was another element
playing a critical role in the observed data, which was the presence of secondary sources of
rotavirus infection. Those secondary sources manifested themselves indirectly by reducing,
in the second year after the introduction of the vaccine, the level of herd effect that would
have been expected. This issue of herd effect disappearance in the second year could only
be explained if some other source of rotavirus infection was present to contaminate the
unvaccinated population that would otherwise have been protected by the herd effect. This
was called cannibalisation, as those individuals normally protected by the herd effect were
suddenly unprotected and were attacked and infected by a new infection group within the
at-risk group that differed from the primary source of rotavirus infection. This phenomenon
was temporarily present as long as the potential herd effect across unvaccinated age groups
was not covered by the normal vaccine procedure. It took 5 years in total for the whole
population to be covered by vaccination.

The secondary sources of rotavirus infection grew to become an ongoing new source
of infection, causing new peaks at a lower frequency and height than pre-vaccination.
To incorporate this process of cannibalisation into a dynamic compartmental model is a
challenge, as more data and more specific interaction data are required that are not easy
to assemble. Moreover, the type of statistical analysis needed to solve the more complex
time-differential equation was not straightforward to compute. A simpler solution was
therefore followed to model the effects during the vaccine uptake period, using a regression
equation in which each of the elements affecting hospitalisations during that period was
specified by its effect for each sub-period, as defined in Figures A3 and A4, and Table A1.

Table A1. Input values for the simulation fitted to the observed Belgian data (value BE), for an ‘ideal’
or optimal simulation maximising the reduction in hospitalisation (value ideal).

Variable/Force Uncertainty Value
Ideal Source

Code Value BE Min Max

Vaccine efficacy VE 95% 95% 99% [34]
Vaccine coverage 1st year Cov1j 52% 49% 54% 85% [7,24,35]

Vaccine coverage subsequent years Covij 83% 82% 85% 98% [7,24,35]
Herd effect (0–2 m 1st year) HEA 15% 13% 17% 50% [7]

Herd effect (older unvaccinated 1st year) HEB 31% 29% 33% 83% [7]

Herd effect (older unvaccinated
subsequent years) HED 33% 30% 45% 87% Assumption

Herd effect (0–2 m subsequent years) HEC 75% 60% 80% 80% Assumption
Secondary infection source (2nd year older) SIA 35% 30% 45% Assumption
Secondary infection source (0–2 m
subsequent years) SIB 27% 25% 35% Assumption

Waning cohort Wn 12% 5% 20% Assumption
Effect variables Effnj Binary variables (0,1) that activate or disactivate part of the equation

BE, Belgium; m, month. Bold text indicates parameter values directly obtained from the RotaBIS data. Italic text
indicates best estimates taking a conservative approach.
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Figure A4. The applied regression equation and input data used to replicate observed hospitalisations
during the vaccine uptake period. i = year, j = age − group, y = rotavirus hospitalisations post −
vaccination, x0j = rotavirus hospitalisations pre − vaccination. Other codes are explained in Table A1.

The model grid structure is split into eight different areas. Area 1: no vaccination,
limited herd effect of the first year vaccine coverage; area 2: no vaccination, herd effect
under the vaccine coverage of subsequent years; area 3: no vaccination, herd effect under
vaccine coverage first year; area 4: no vaccination, herd effect and secondary sources of
infection appearing; area 5: vaccination first year with vaccine effect in the cohort over
two additional years; area 6: vaccination first year with vaccine effect and vaccine waning
starting in year four post-vaccine introduction; area 7: vaccination under vaccine coverage
of subsequent years; area 8: vaccination at vaccine coverage of subsequent years with
vaccine waning.

Once a new infection equilibrium was reached with vaccine effect and coverage
forming a regular pattern, it was then possible to apply a more straightforward dynamic,
time-differential, compartmental model (susceptible, infectious, recovered). This was
conditional on the presence of the infection level reached at the end of the vaccine uptake
period, which was applied at the start of the post-vaccine uptake period developed in the
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model construct [22]. The model output of the post-vaccine uptake period indicated that
the frequency and height of the long-term disease peaks depend on the level of infection
present in the group.

The present manuscript adds the new finding that the appearance of the infection
equilibrium level may develop sooner with a lower infection level at equilibrium. There
are reasons to believe that if less virus is circulating, the infection equilibrium is more easily
reached and may be reached more rapidly. This hypothesis needs to be confirmed by real
observed data. However, ultimately, the economic end-result may not be strongly affected
by whether those very small new peaks appear sooner or later.
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