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Abstract: Nanoparticles include particles ranging in size from nanometers to micrometers, whose
physicochemical characteristics are optimized to make them appropriate delivery vehicles for drugs
or immunogens important in the fight and/or prevention of infectious diseases. There has been a rise
in the use of nanoparticles in preventive vaccine formulations as immunostimulatory adjuvants, and
as vehicles for immunogen delivery to target immune cells. Toxoplasma is important worldwide, and
may cause human toxoplasmosis. In immunocompetent hosts, infection is usually asymptomatic,
but in immunocompromised patients it can cause serious neurological and ocular consequences,
such as encephalitis and retinochoroiditis. Primary infection during pregnancy may cause abortion
or congenital toxoplasmosis. Currently, there is no effective human vaccine against this disease.
Evidence has emerged from several experimental studies testing nanovaccines showing them to be
promising tools in the prevention of experimental toxoplasmosis. For the present study, a literature
review was carried out on articles published over the last 10 years through the PubMed database,
pertaining to in vivo experimental models of T. gondii infection where nanovaccines were tested and
protection and immune responses evaluated. This review aims to highlight the way forward in the
search for an effective vaccine for toxoplasmosis.
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1. Introduction

Toxoplasma gondii (T. gondii), has a worldwide distribution [1]. T. gondii is an intracellu-
lar protozoan parasite of the Apicomplexa phylum, which may cause significant clinical
manifestations of toxoplasmosis, especially in immunocompromised individuals, pregnant
women, and cattle [2]. It has a complex life cycle (Figure 1) involving sexual reproduction
in cats, the definitive host, and asexual reproduction in other warm-blooded animals, the
intermediate hosts. There are three infectious development stages: tachyzoites, bradyzoites
(in tissue cysts), and sporozoites (within oocysts) [3]. The parasite can be transmitted
horizontally or vertically [4]. Parasite reactivation or primary infection during pregnancy
can cause congenital toxoplasmosis, leading to severe consequences for the fetus, such as
abortion, mental retardation, ocular disease, and hydrocephaly [5]. Immunocompromised
patients may also develop severe diseases, such as encephalitis and pneumonitis. Some
psychiatric illnesses such as schizophrenia, depression, and bipolar disorder have been
associated with T. gondii infection [6,7].

Different drugs are used in conventional toxoplasmosis treatment, such as pyrimethamine
and sulfadiazine. However, therapeutic adherence of this drug combination is still low
since it exhibits severe side-effects and is only active against the tachyzoite form, failing
to eliminate the latent forms, such as slow-dividing bradyzoites within tissue cysts [8].
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Vaccines are a good alternative to chemical therapeutics. However, it has been difficult to
achieve an effective, durable, and safe vaccine against toxoplasmosis. Nowadays, only one
vaccine, Toxovax® [9], is licensed for use in sheep and goats. This live attenuated vaccine
has some disadvantages including limited shelf life, risk of infection to humans handling
the vaccine, and possible virulence reversion [10].
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Figure 1. Life cycle of Toxoplasma gondii. 1—Consumption of meat containing cysts by the definitive
host (Felidae), followed by the release of bradyzoites, and infection of intestinal epithelial cells;
2—After intense multiplication, gametes are formed; 3—After fertilization, unsporulated oocysts are
released in the feces of the definitive host; 4—Intermediate hosts are infected by diverse means, such
as by the ingestion of sporulated oocysts (a) and consequently the sporozoites infect the intestinal
cells; 5—Conversion of sporozoites into tachyzoites, the rapidly multiplying form; and 6—Host
immune responses contribute to the conversion of tachyzoites into bradyzoites, constituting cysts, a
slowly replicating form. There are several pathways of intermediate host transmission: (a) ingestion
of oocysts present in water, vegetables, or fruits; (b) ingestion of tissue cysts present in undercooked
meat; (c) infection with tachyzoites by blood transfusion; (d) infection with cysts through tissue
transplantation; and by (e) vertical transmission.

New approaches are needed for human toxoplasmosis prevention. With the rapid de-
velopment of nanotechnology in biomedicine, nanoparticles (NPs) have become attractive
and strong candidates for the prevention of infectious diseases, such as COVID-19, hepatitis
B, and toxoplasmosis, among many others [11,12]. In some cases, NPs are immunogenic by
themselves, without the need for adjuvants to activate the immune system [13,14]. This
literature review aims to provide an update on nanoparticles, the benefits of preventive
nanovaccines, to present knowledge on the type of host immune responses developed
against T. gondii infection, and give an overview of the most recent advances in experimental
in vivo studies testing nanovaccines against T. gondii infection. Overall, this work aims to
establish future directions in the search for an effective nanovaccine to prevent toxoplasmosis.
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2. Revisited Host Immune Responses against T. gondii

A balance is established between the immune response developed by the host against
the parasite and the evasion strategies triggered by the parasite in such a way that both
organisms coexist. Any interference with this balance can lead to a decrease in or even a
loss of the functional immune system, such as is the case of T. gondii and AIDS co-infected
individuals, resulting in uncontrolled parasite replication which may lead to encephalitis
and even death [15].

T. gondii is usually acquired orally. After ingestion of T. gondii tissue cysts or oocysts,
bradyzoites or sporozoites, respectively, are released in the small intestine where the
intestinal epithelial cells constitute the first line of defense against this parasite [15]. Soon
after ingestion and invasion of the intestinal epithelium, chemokines are released by the
infected enterocytes which consequently attract neutrophils, dendritic cells (DCs), and
monocytes/macrophages to the site of infection [16]. The interaction between these cells
plays an essential role in the initiation of the immune responses, leading to the development
of adaptive immunity [17].

The early infected DCs, macrophages, and neutrophils stimulate the synthesis of IL-12
and induce NKs and T lymphocytes to synthesize INF- γ, which is responsible for the
control of infection (Figure 2) [18].
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Figure 2. T. gondii immune response. Neutrophils and macrophages phagocytize and kill the parasite
by releasing antimicrobial compounds and by producing ROI and NO. Macrophages produce IL-12
activating NK cells and T cells to produce INF-γ. DCs phagocyte the parasite and migrate to lymphoid
organs where they present their antigens via MHC I or II to CD8+ cytotoxic T lymphocytes or CD4+

helper T cells, respectively. CD8+ CTL will kill the infected cells by apoptosis, and CD4+ T cells
undergo activation and maturation towards a strong Th1 or Th17 response, through the production
of IL-17, IL-21, or IL-22. NK, CD8+ T cells and Th1 cells produce IFN-γ, controlling infection. Th2
cells secrete cytokines that stimulate B lymphocytes and consequently the production of antibodies,
allowing tachyzoite phagocytosis.
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Neutrophils are the first phagocytic cells recruited to the place of infection [17]. They
secrete pro-inflammatory chemokines and cytokines that act on the Th1 cell surface re-
ceptors, stimulating and attracting other T cells to the infection site [15]. The depletion
of neutrophils, during early infection, leads to a Th2 response, since the decreased levels
of IFN-γ, IL-12, and tumor necrosis factor- α (TNF-α) lead to a weaker Th1 response, in-
creasing susceptibility [19]. The elimination of the parasites by neutrophils is dependent on
IL-17 signaling; the main cytokine responsible for their development and recruitment [20].

DCs are one of the initial antigen-presenting cells at the site of infection, and their
maturation and activation are essential in the control of infection. DC’s maturation is
characterized by an up-regulation of activation marker expression that leads to naïve T
cell activation, proliferation, and differentiation [21,22]. DCs are also able to phagocyte
parasites and thereafter migrate to lymphoid organs, where antigen presentation occurs,
driving the polarization of the Th response towards Th1, for instance through the produc-
tion of IL-12 [23]. IL-12 release by DCs is believed to be initiated by the Toll-like receptor’s
(TLRs)/IL-1R adaptor protein MyD88. During murine T. gondii infection, TLR11 is critical
for regulating IL-12 production through TLR11 and MyD88 pathway. It was found that
TLR2 and TLR4 are also activated by T. gondii with parasite anchors glycosylphosphatidyli-
nositol (GPI) regulating TNF responses and cytokine production, respectively [24].

Macrophages are capable of controlling parasite proliferation through a nitric oxide
(NO) dependent mechanism [25]. However, the parasites that manage to resist will pene-
trate directly into the DC and in this way cross and invade the circulatory and lymphatic
system, and disseminate throughout the organism. IFN-γ acts synergistically with TNF-α
and increases the production of NO and reactive oxygen species (ROS) in macrophages.
IFN-γ is also able to induce iron deprivation essential for parasite multiplication, activate
Guanosine triphosphate hydrolase (GTPases), which exposes the parasite to cytosol, and
induce tryptophan deprivation preventing parasite growth [18,26].

NKs are also very important in early resistance to T. gondii since they recognize and
kill infected cells. They are the principal source of IFN-γ early in infection and therefore
induce the classical activation of macrophages [27].

CD4+ and CD8+ T cells contribute to host defense against T. gondii through the pro-
duction of IFN-γ, TNF-α, IL-6, and IL-1. CD8+ T cells are effector lymphocytes against the
parasite, while CD4+ T cells regulate immune responses [15].

CD8+ T cells are important mediators involved in the control of chronic infection
and prevention of T. gondii infection reactivation. This cell population produces IFN-γ,
IL-17, and IL-27, associated with the down regulation of the inflammatory response to T.
gondii [18]. T. gondii stimulates the production of CD8+ cytotoxic T lymphocytes (CTLs)
that can lyse infected cells by apoptosis [28].

To withstand the parasite, a strong T helper 1 cell (Th1)-triggered immune response
is required, leading essentially to the production of IFN-γ, IL-12, and IL-23. In contrast, T
helper 2 cells (Th2) increase susceptibility to infection involving interleukins such as IL-4, IL-
5, and IL-13. The Th2 response is then negatively regulated by IFN-γ and the Th1 response is
negatively regulated by IL-4, allowing for a balance in the immune system [26,29]. T helper
17 cells (Th17) are also important because they contribute to the inflammatory response
during parasite infection by producing cytokines such as IL-17, IL-21, and IL-22. The
cytokine IL-17 is considered one of the main cytokines involved in neutrophil recruitment
and is known to regulate neutrophil influx during T. gondii infection [30,31]. The cytokine
IL-10 can be produced by Th1, Th2, Th17, and regulatory T cells (Treg). IL-10 is an anti-
inflammatory cytokine and when produced by Th2 cells can regulate the Th1-triggered
immune response associated with downregulation of the pro-inflammatory cytokine IFN-
γ. Therefore, by regulating innate and adaptative responses, these cytokines establish
homeostasis in the organism, which is essential to controlling T. gondii infection [32–34].
Transforming growth factor (TGF)-β, another key regulatory cytokine, is critical in the
regulation of the pathogenic responses that occur during oral infections. TGF-β production
downregulates the transcription of pro-inflammatory mediators such as IFN-γ, iNOS, and
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TNF-α in the intestine as well as modulating the pro-inflammatory responses of lamina
propria lymphocytes [35].

The humoral response induced by T. gondii results in raised levels of immunoglobulins
(IgA, IgM, IgE, and IgG) [36]. Among antibodies, IgM is not only the best activator
of the complement system, but also has an excellent ability to agglutinate particulate
antigens. Consequently, IgMs have a high level of cytotoxicity against pathogens and can
also be used in serological diagnostic techniques. IgG1, IgG2, and IgG3 subclasses are
predominantly produced during infection, one of their main roles being to protect the
fetus with their ability to cross the placenta in the event of infection during pregnancy [37].
Immunoglobulin A (IgA) is the predominant antibody isotype in the mucosal immune
system, which widely exists in the gastrointestinal tract, respiratory tract, vaginal tract,
tears, saliva, and colostrum [38]. The IgA comprises two isotypes, IgA1 and IgA2, found
predominantly in the serum and digestive tract, respectively [39,40]. There are few studies
done regarding IgE, since its appearance is random and associated with the beginning
of complications, such as, adenopathy and chorioretinitis due to T. gondii reactivations in
immune-depressed individuals [41].

These antibodies act on extracellular tachyzoites released by the lysis of infected cells
and limit their replication by lysing them in the presence of complement factors, helping
opsonization and macrophage phagocytosis [42].

3. Nanoparticles Overview

The term NPs refers to particles that, regardless of their constitution, shape, molec-
ular interaction, and therapeutic application, are measured at the nanometer scale (1–
100 nm) [43,44]. However, in the scientific literature (especially in biology and medicine),
the term is commonly used to describe particles with an average size below 1000 nm [45–47].
Indeed, for non-biomedical applications, NPs are considered particles of nanometer size,
while in the biomedical sciences they encompass particles from nanometers (10−9 m) to mi-
crometers (10−6 m) in size, which are biologically active by themselves, or have the ability
to target and deliver drugs [48]. One of the areas to benefit most from nanotechnology is
medicine. Nanomaterials are useful as contrast agents in imaging and pathology diagnosis,
and as a means of modulating cell behavior beneficial to the treatment of several patholo-
gies, such as allergies, cancer, autoimmune diseases, and Alzheimer’s disease [47,49,50].
Examples include drug carriers and preventive or therapeutic vaccines in cancer con-
trol [51,52]. NPs therefore enable targeted therapeutics delivery, surpassing biological
barriers and causing less damage to healthy cells [52].

Types of Nanoparticles Used in Vaccination

There are two main categories of NPs used in biomedicine: manufactured (designed
for human need and therapeutic applications) and naturally produced (from human and
animal tissues, eukaryotic or prokaryotic cells, insects, and plants) [53]. In biomedicine,
both types are widely used; however, one of the main differences between natural and man-
ufactured NPs is the fact that the latter exhibit controlled physicochemical properties, since
they are purposely designed [53]. Some of the types of nanoparticles used in vaccination
are described in Table 1.
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Table 1. Different types of nanoparticles used in vaccination.

Type of NPs Constitution Advantages References

Inorganic Gold, carbon, silica, calcium phosphate
(CaP), among others.

Rigid structure, controlled synthesis,
low production cost, reproducibility,

and safety.
[54–57]

Polymeric

Synthetic polymers like poly
(lactic-co-glycolic acid) (PLGA) and poly
(lactic acid) (PLA); and natural polymers

like pullulan, alginate, inulin, and chitosan.

Easy to produce, biodegradable,
biocompatible, exhibit low cytotoxicity
and their surface properties are easily

adjusted as required.

[54,58]

Liposomes

Spherical structures of spontaneous
synthesis, formed by biodegradable and
non-toxic phospholipids and cholesterol

around an aqueous nucleus.

Transport of hydrophobic molecules
wrapped in the phospholipid bilayer, or
hydrophilic molecules incorporated in
the aqueous core. Liposomes can also

be modified, when they are conjugated
with target ligands or by adding

cholesterol on their surface, optimizing
their ability to bind to a target cell and
their entry into it. These NPs can also

incorporate glycoproteins of a viral
envelope, creating virosomes.

[54,59–61]

Solid lipid nanoparticles
(SLN)

Solid lipid dispersed in an aqueous
solution that contains a stabilizer. The lipid

matrix composed of lipids such as
triglycerides, phosphoglycerides, fatty

acids, hard fats, and waxes.

Controlled drug release and targeted
drug release with increased stability. [62,63]

Virus like particles (VLPs)

Assembled viral proteins that do not
contain genetic viral material. Despite that,
they still have an antigenic character like
parental viruses, as they mimic them in
shape and structure. Concerning VLP

synthesis, first the viral structural genes are
cloned. Then, viral structural

self-assembling proteins are expressed in
prokaryotic (bacteria or yeast) or

eukaryotic (baculovirus, plant and
mammalian cells) expression systems.

Finally, to obtain purified VLPs,
purification steps like chromatography or

ultracentrifugation are needed.

Ideal systems for nano-based vaccines
since they display immunogenic
properties, avoiding infectious

components.

[46,64,65]

Dendrimers

Three-dimensional, mono-dispersed,
highly branched, star-shaped

macromolecules with nanometre scale
dimension, made up of a mixture of amines
and amides. Their molecular architecture

consists of three different domains: a
central core; branches; and terminal

functional groups, in the outer surface.

High loading capacity, high
bioavailability of the attached drug and
high penetrability of biological barriers

and cell membranes.

[54,66,67]

Inorganic NPs are almost exclusively derived from unnatural sources, which confers
them with characteristics that can be explored and modified according to the intended
immunological applications [68]. Some biocompatible inorganic NPs such as gold, carbon,
and silica have been explored in vaccine delivery studies with different medical applications,
such as targeted drug delivery and enhancing antibody response [55–57]. Polymeric-based
NPs can have natural or synthetic origin and are currently one of the most investigated
types of NPs [54]. A wide range of synthetic polymers are used, such as poly (lactic-co-
glycolic acid) (PLGA) and poly (lactic acid) (PLA). Natural polymers such as pullulan,
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alginate, inulin, and chitosan, have also been used as adjuvants [58]. Liposomes are
spherical structures of spontaneous synthesis [59]. These NPs are considered the second
most researched vehicle for the delivery of drugs and vaccines in nanomedicine after
polymeric NPs [46,54]. Solid lipid NPs (SLN) were developed in the early 1990s as an
alternative to traditional liposomes and polymeric NPs [69]. This type of NP includes a
lipid matrix composed of lipids such as, triglycerides, phosphoglycerides, fatty acids, hard
fats, and waxes, reducing the risk of acute and chronic toxicity [62,63]. Virus-like particles
(VLPs) are ideal systems for nano-based vaccines since they show immunogenic properties,
thus, avoiding infectious components [46]. Polypropyleneimine (PPI) and polyamido
amine (PAMAM) are the most used dendrimers for vaccine delivery [54]. A dendrimer
encapsulated with multiple antigens was able to produce a strong antibody and T-cell
response against T. gondii in mice [70].

4. Benefits of Using Nanoparticles in Vaccination

NPs are used as an antigen delivery tool and/or as an immune-stimulant adjuvant
to enhance immunity against several pathogens such as Mycobacterium tuberculosis and T.
gondii [54,71].

In traditional vaccines, the formulation is distributed without a specific target in the
body. NPs as a vehicle may alter the active substance distribution in vivo, since they can
be covered with antibodies on their surface, which are capable of recognizing cell-specific
receptors, thus, allowing targeted delivery to a desired cell population and preventing
potential damage to other cells, and consequently to other tissues [72]. Additionally, these
NPs have a depot effect, when administered by intramuscular route, keeping the antigen
in the tissue area adjacent to the administration site long enough to exert the necessary
function. This allows a gradual release of the antigen, thereby increasing the exposure time
to the immunogen by antigen-presenting cells (APCs). Therefore, APCs will increase their
ability to present the antigen and induce an efficient T-cell response [73,74].

Adjuvants are chemical or biological compounds that stimulate the immune system
against the administered antigen, thus, increasing the effectiveness of the vaccine [75].
Among the most common adjuvants, aluminum (Alum)-based compounds, such as amor-
phous Alum hydroxy-phosphate sulphate (AAHS), Alum hydroxide, Alum phosphate,
and potassium Alum sulphate, are the most used in conventional human vaccines [76].
Synthetic oligodeoxynucleotides (ODNs) are also adjuvants; they contain unmethylated
CpG motifs and can trigger cells expressing TLR9 inducing a Th1 response and proin-
flammatory cytokines. Overall, ODNs improve APC function and boost the humoral and
cellular vaccine-specific immune responses [77]. However, these adjuvants have several
disadvantages, such as the need to be stored at low temperatures or the possibility of aller-
gic reactions at the injection site [78]. NPs are an alternative to the use of such adjuvants,
with equal or high immune system-stimulating ability [75,79].

Since NPs share structural and size characteristics with viruses and bacteria they can
mimic the process of a natural infection increasing the uptake of antigens by APCs, and
consequently immune response initiation [72]. Studies have shown that macrophages
and DCs are capable of capturing cationic NPs since their positive charge is attracted
by the negative charge of the membrane surface of these cells [80]. The NPs can also be
conjugated with antibodies specific to cell receptors, as previously mentioned, enabling NP
internalization, as was shown for Herceptin-coated gold NPs endocytosed after interaction
with the membrane HER2 receptor, used in breast cancer [81].

NPs are also used to improve the solubility of hydrophobic compounds, thus, obtain-
ing a solution for parenteral administration, preventing antigen degradation and allowing
the stabilization of a wide range of therapeutic agents such as proteins, peptides, and
nucleic acids, which leads to a reduction in doses of effective vaccines [75].
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5. Recent Advances in the Use of Nanoparticles for T. gondii Vaccination

A search using the terms “Nanoparticles”, “Vaccine”, and “Toxoplasma gondii” and the
filter “last 10 years” enabled 40 articles to be identified. Among these, 16 corresponded to
reviews concerning experimental NPs tested for the diagnosis and treatment of toxoplas-
mosis. We found 24 articles detailing studies focused on the development of nanovaccines
against T. gondii infection.

Several studies have been carried out into the development of a vaccine against T.
gondii (Table 2). However, an effective vaccine able to confer effective immunity against
latent infection (elimination of tissue cysts) remains a challenge [82]. Recently, new ap-
proaches have been made in vaccination strategies, such as the use of NPs, which have been
assessed mostly in rodents, showing promising results [83]. An ideal vaccine to control
toxoplasmosis and prevent the development of chronic tissue cysts should induce a Th1-
type immune response, since it has been shown that the INF-γ-secreting CD8+ T lympho-
cyte is the main immune cell population involved in the long-term protective immunity
against this disease [82]. Mucosal immunization routes, such as intranasal and/or intraoral,
have been shown to induce effective protection when compared to systemic immunization
routes, such as intramuscular or intravenous [84].

NP development has emerged as a novel vaccine platform, currently constituting a
strategy to protect antigens from proteolytic degradation, ensuring a successful uptake
by cells and inducing an effective immune response [83]. Different NP antigen delivery
strategies have been studied, such as DNA and ribonucleic acid (RNA) vaccines, as well
as protein and recombinant subunit vaccines [83]. Nowadays, DNA and RNA vaccines
have been shown to be the most efficient platforms, able to induce anti-T. gondii immune
responses, and easily produced at a low cost [85]. Indeed, calcium phosphate NPs (CaPNs)
encapsulated with DNA or RNA coding for dense granule protein 14 (GRA14) have been
shown to increase T. gondii specific IgG1 and IgG2a antibody responses and lymphocyte
proliferation [86]. Similar NPs coding dense granule protein 7 (GRA7) also showed a strong
cellular immune response, with a higher IgG2a-to-IgG1 ratio and higher IL-12 and INF-γ
production [87]. Immunization using the mice model, with a modified dendrimer vac-
cine with mRNA replicons encoding dense granule protein 6 (GRA6), rhoptry protein 2A
(ROP2A), rhoptry protein 18 (ROP18), surface antigen 1 (SAG1), surface antigen 2 (SAG2)
and apical membrane antigen 1 (AMA1), led to protection against lethal infection [70]. It
has been shown that a significant percentage of mice immunized with lipid nanoparticles
encapsulated with nucleoside-triphosphatase II (NTPase II) survived post-challenge with T.
gondii parasites [88]. Other similar lipid nanoparticles encapsulated with a plasmid encod-
ing GRA15 led to a significantly higher production of specific IgG1 and IG2c antibodies and
consequently higher survival rate compared to the controls [89]. Cocktail DNA vaccines
of pcROM4 + pcGRA14 coated with CaPNs boosted immune responses and increased the
protective efficacy against acute toxoplasmosis compared to cocktail DNA vaccine without
CaPNs [90].

Protein and recombinant subunit vaccines are also extremely safe with low side effects
since proteins are highly purified. A wide array of antigens has been tested, ranging from
antigenic epitopes to total T. gondii antigenic extract (TE) [83]. Mice immunized with porous
NPs containing TE have been shown to induce a Th1/Th17 immune response able to pro-
long mouse survival and drastically reduce brain cyst counts [91]. Polymeric NPs loaded
with T. gondii histone H2A1 conferred mice with protection against infection, prolonging
their survival and the production of Th1 cytokines [92]. A similar study using PLGA NPs
containing T and B cell epitopes of AMA1, GRA4, ROP2, and SAG1, adjuvanted with
potassium Alum sulphate, induced a stronger Th1 immune response in mice, compared to
immunization solely with antigens [93]. Another study showed that intranasal immuniza-
tion of mice with maltodextrin-based NPs (DGNPs) containing TE conferred significant
protection against chronic and congenital toxoplasmosis [94]. This vaccine was later shown
to induce protection against latent toxoplasmosis and transplacental transmission using
the sheep model [95]. Some immunization studies with different types of nanoparticles
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(CaPNs, PLGA, and Chitosan) encapsulated with a variety of T. gondii recombinant proteins,
namely MIC3, ROP8, and SAG1, showed similar results, with higher levels of specific IgA
and IgG2a, leading to a Th1 response and consequently increased survival rate [96–100].
In addition to the use of parasite membrane proteins, the excretory secretory antigens
(ESA) of T.gondii have also been used for vaccine development, since they have proved
to play important roles in the immune escape and pathogenesis of the parasite, and the
results showed increased levels of IFN-γ and IgG, as well as a reduction in the parasite
load [101–103].

Studies concerning T. gondii describing the use of VLPs are limited. Nevertheless, some
VLP-based vaccines are already commercially available for several human viral diseases,
such as Epaxal® for hepatitis A virus, Gardasil® for human papillomavirus, and GenHevac
B® for hepatitis B virus, among others [104]. The advantages of VLPs described include:
safety; small size, allowing rapid traffic into the lymph nodes and consequent induction of a
prompt immune response; and their repetitive antigen presentation, promoting a powerful
immune response [105]. It has been shown that immunization with VLPs containing T.
gondii inner membrane complex subcompartment protein 3 (IMC ISP3) with influenza
matrix protein 1 (M1) as a core protein conferred mice with protection against T. gondii
ME49 infection [106]. Thereafter, multiple studies have shown the efficacy of VLP vaccines
containing different antigens in enabling protection against the ME49 strain. Finally, VLPs
expressing ROP4 or ROP13 conferred complete survival against the challenge with the
ME49 strain and reduced cyst numbers [107]. It must be highlighted that these VLPs were
developed containing the self-assembling viral protein M1 determinant for VLP generation
in which M1 is the main force for viral budding and particle formation. It is assumed that
T. gondii proteins will be on the surface of VLPs [106,107].

It is important to mention that almost all studies of nanovaccines in toxoplasmosis
used the mouse as a study model. Therefore, future pre-clinical trials should be extended
to other animal models. There should also be a harmonization of the immune parameters
assessed in these studies in order to support the studies carried out.

Table 2. Recent studies carried out using NPs for the development of vaccines against T. gondii infection.

Type of NPs Antigen Doses Administration
Route

Animal/Cell
Model Outcome Reference

Dendrimers

mRNA replicons
encoding GRA6,
ROP2A, ROP18,

SAG1, SAG2A and
AMA1 proteins

1 IM C57BL/6 and
BALB/c mice

Induction of CD8+ T cell
responses [70]

CaPNs or Alum pcGRA14 and
rGRA14 3 SB and IM BALB\c mice

High levels of IgG, IgG2a
and IFN-γ for CaPNs

immunization and high
levels of IgG1 and IL-4

for Alum hydroxide
immunization

[108]

PLGA or Chit rTgH2A1 1 SB
Institute of

cancer research
(ICR) mice

High levels of IgG2a [92]

PLGA Peptide sequence
of SAG1 - -

Gastric adeno-
carcinoma

(AGS) cell line

Molecular docking of
peptide and MHC

molecules
[109]
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Table 2. Cont.

Type of NPs Antigen Doses Administration
Route

Animal/Cell
Model Outcome Reference

DGNP TE 3 IN CBA/J mice

Induction of Th1/Th17
immune responses.

Higher levels of total IgG
detected

[91]

PLGA and
Alum

Recombinant
fusion protein with
epitopes of SAG1,
AMA1, ROP2 and

GRA4

3 IP BALB\c mice

Higher levels of IgG2a
for PLGA NPs and

higher levels of IgG1 for
Alum NPs

[93]

CaPNs pcROM4 +
pcGRA14 3 IM BALB\c mice

Higher levels of INF-γ
and IgG2a and

prevalence of Th1
immune response

[90]

DGNP TE 2 IN and ID

Sheep breeds
Préalpes du

Sud

Specific Th1 cellular
immune response (IFN-γ

and IL-12); IL-10
regulated the Th1

response for ID but not
IN vaccination; IN

vaccination conferred
protection against latent

toxoplasmosis

[95]

CaPNs Plasmid encoding
GRA14 3 IM BALB\c mice

Increased levels of IgG1
and IgG2a. High levels
of IFN-γ; Decrease of
parasite load in mice

tissues

[86]

CaPNs
Multi epitope

MIC3, ROP8 and
SAG1

3 SB BALB\c mice Survival increase [96]

VLPs IMC proteins 2 IN BALB\c mice

Reduced cyst load and
size in the brain. IgA and

IgG detection in feces
and intestines; Mixed

Th1/Th2 cytokines and
CD4+/CD8+ T cells

[106]

PLGA rROP18 3 IN Swiss Webster
mice

Elevated responses of
specific IgA and IgG2a [97]

Lipid NPs
RNA vaccine

encoding T.gondii
NTPase-II protein

2 IM BALB\c and
ICR mice

High IgG antibody titters
and IFN-γ production [88]

PLGA rSAG1 3 IN Swiss Webster
mice

Elevated responses of
IgA and IgG2a [98]

PLGA rSAG1 and TLR
ligands 2 SB CBA/J mice

Potentiated Th1 humoral
response; Brain cyst

reduction
[99]
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Table 2. Cont.

Type of NPs Antigen Doses Administration
Route

Animal/Cell
Model Outcome Reference

Alginate T.gondii ESA 3 IP Swiss albino
mice

Reduction in mice
mortality;

Increased levels of INF-γ
and IgG antibody

[101]

Lipid NPs Plasmid encoding
GRA 15 3 SB C57BL/6J

Higher survival rate;
Higher production of
specific IgG1 and IG2c

antibodies

[89]

CaPNs Plasmid encoding
GRA 7 3 - BALB\c mice

Elevated levels of IgG;
Higher IgG2a-to-IgG1

ratio; Elevated IL-12 and
IFN-γ production and
low IL-4 levels; Higher

level of splenocyte
proliferation and a

significantly prolonged
survival time and
decreased parasite

burden

[87]

Chit rSAG1 3 SB BALB\c mice

Th1/Th17 biased cellular
and humoral immune
responses; Increased
production of IFN-γ,

IL-17, IL-12, IL-4,
IFN-γ/IL-4 ratio, IgG,

IgG2a; Increased
survival time.

[100]

PLGA and Chit Plasmid encoding
TgSDRO 2 IM BALB\c mice

Induced Th1/Th2
cellular and humoral

immunity; Promoted the
maturation and MHC
expression of dendritic
cells, and enhanced the

percentages of CD4+ and
CD8+ T lymphocytes

[110]

SAPNs ToxAll 3 IM HLA mice

High IFN-γ secretion;
Reduced parasite

numbers in the brains;
Enhanced survival

[111]

Mannose-
modifed

nanoliposome
ESA 2 - BALB\c mice

Increased IL-12
expression; Increased

survival rates
[102]

Liposome ESA 3 IP BALB\c mice

Increased IgG antibody;
Parasite load reduction
in the blood and brain

tissue

[103]
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Table 2. Cont.

Type of NPs Antigen Doses Administration
Route

Animal/Cell
Model Outcome Reference

DGNPs TE 2 IN CBA/J mice

Placental cellular Th1
response; Pups born to

vaccinated infected dams
had significantly fewer

brain cysts, no
intraocular inflammation

and normal growth

[94]

CaPNs: calcium phosphate nano-adjuvant; Alum: aluminum hydroxide nano-adjuvant; Chit: chitosan; DGNP:
porous maltodextrin-based with lipid core nanoparticles; pcGRA14: GRA14 plasmid clones; rGRA14: GRA14
recombinant protein; rTgH2A1: recombinant T. gondii H2A1 histone; TE: total extract of T. gondii antigens;
pcROM4: ROM4 plasmid clones; IMC: inner membrane complex; ESA: Excretory–secretory antigens; rROP18:
ROP18 recombinant protein; NTPase-II: nucleoside thiophosphate hydrolase II; rSAG1: SAG1 recombinant protein;
TgSDRO: T. gondii oxidoreductase from short-chain dehydrogenase/reductase family; ToxAll: five CD8+ T cell
eliciting HLA-A*11:01 binding protective epitopes, one CD8+ HLA-B*07:02, four CD8+ HLA-A*02:01, a pan-allelic
CD4 epitope, and a MIC1 B cell epitope; SAPNs: self-assembling protein nanoparticles; IM: intramuscular; SB:
subcutaneous; IN: intranasal; IP: intraperitoneal; ID: intradermal.

6. Concluding Remarks

Development of a vaccine against toxoplasmosis can be challenging, as is proved by
the fact that a vaccine for clinical use is still unavailable. The use of multi-antigenic vaccines
appears to be more efficient compared to single antigen ones [83]. Therefore, the use of
highly immunogenic antigens combined with NPs that might be used as adjuvants and
delivery systems appears promising for the future development of an effective vaccine. In
addition, the immunogenicity of these nano-formulations can be improved by conjugating
them with immunostimulatory molecules, such as mannose or CpG oligonucleotides,
which can facilitate their recognition and uptake by APCs. NPs can also be designed for
non-invasive administration, such as intranasal immunization, the efficacy of which has
been proved in several studies [112–114]. Furthermore, NPs provide a prolonged delivery
of vaccine antigens, and the possibility of a single-dose vaccine. Currently, the development
of nanovaccines aims not only to target immune cells to prevent disease but is also able to
exert an effective therapeutic activity in already established diseases.

In recent years, a wide variety of NPs have been used in the production of vaccines
against toxoplasmosis. Polymeric NPs have been investigated most in this field since they
are easy to prepare, biocompatible, very stable, have low cytotoxicity and allow surface
properties to be adjusted as necessary. Within the different polymers used, PLGA is the
most common, and several in vitro and in vivo studies prove its strong immune-stimulatory
property. Therefore, the proven advantages of polymeric NPs make them good candidates
for further preventive and therapeutic applications.
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