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Abstract: It has been 34 months since the beginning of the SARS-CoV-2 coronavirus pandemic,
which causes the COVID-19 disease. In several countries, immunization has reached a proportion
near what is required to reach herd immunity. Nevertheless, infections and re-infections have been
observed even in vaccinated persons. That is because protection conferred by vaccines is not entirely
effective against new virus variants. It is unknown how often booster vaccines will be necessary to
maintain a good level of protective immunity. Furthermore, many individuals refuse vaccination,
and in developing countries, a large proportion of the population has not yet been vaccinated. Some
live-attenuated vaccines against SARS-CoV-2 are being developed. Here, we analyze the indirect
dispersion of a live-attenuated virus from vaccinated individuals to their contacts and the contribution
that this phenomenon could have to reaching Herd Immunity.
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1. Introduction

In the face of the appearance in China in December 2019 of a new human infectious
disease called COVID-19, caused by the SARS-CoV-2 coronavirus [1–5], countries imple-
mented governmental measures to control the virus dispersion among the population. The
virus showed a high infection frequency in humans [6,7], and from the beginning, there
was great difficulty in containing its spread through confinement [8]. Moreover, there
was a high frequency of severe and lethal cases in elderly persons, mainly those with
comorbidities such as diabetes and hypertension [9]. SARS-CoV-2 coronavirus propagated
to several countries in February and March 2020 [10–13], and in the same year, the WHO
declared a pandemic on March 11 [14].

At the start of the SARS-CoV-2 world dispersion, some governmental leaders (in
countries from northern Europe, for example) proposed that its propagation could be
controlled by allowing the free infection of individuals, which would induce protection by
antibodies and cellular immunity in a high proportion of the population, thus achieving
herd immunity (HI). That would lead to the consequent reduction or even elimination of the
infectious agent [15]. Very soon, the proposition was strongly challenged [16–18] because
achieving collective immunity through the infection dispersion could have a high cost on
human lives and health complications caused by COVID-19 in elderly persons, mainly in
those with comorbidities [1,9]. It was observed that although the percentage of lethality
in the population was low in general, the high incidence of infection raised the absolute
number of severe and lethal cases [19–21] so, as a better option, it was decided to control
propagation through the containment of human activity to reduce the contact between indi-
viduals. Social mobility was restricted to allow only the circulation of persons dedicated to
essential activities [20–23], waiting for the identification of effective antiviral drugs to treat
infected individuals and the approval of efficient vaccines to achieve HI through massive
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vaccination [24]. In several countries, quarantine was strictly enforced, attaining a signif-
icant decrease in the number of cases during the first wave of infections [24–26]. Never-
theless, a few months after the pandemic’s beginning and with a still high incidence of
infections and high numbers of deaths, the gradual return to essential and non-essential
human activities was allowed in most countries. The decision was taken due to the popula-
tion’s demand to restart their economic activities, which would be further affected by a
quarantine extension [27–32]. After human activities were restarted, contagion increased
again in several countries, with several waves of cases at different times and places [31,32].
For this reason, in the following months, there was a partial tolerance for the realization of
economic activities, combined with partial social distancing, personal hygiene and other
protection measures [33,34]. In December 2020, the massive application of different types of
non-proliferative vaccines started in several countries [35,36]. Although in many developed
and some developing countries, several booster shots have been administered, there are
underdeveloped countries where vaccination has been delayed or is still very limited,
mainly due to economic limitations, which prevented them from accessing vaccines since
the first days after their approval [37–41]. There are still many developing countries where
a sufficient proportion of the protected population has not been reached to be near the herd
immunity threshold (HIT) against SARS-CoV-2 [39–41]. The risk of massive infections in
several countries is latent, as well as the risk of the appearance and propagation of more
dangerous and contagious mutant strains if the virus is still propagating in populations
with low immunization rates [41]. On the other hand, in several countries, a proportion of
the population opposes vaccination [42,43], which hampers the achievement of the herd
immunity threshold, in addition to the fact that in many developing and underdeveloped
countries, child vaccination is still low or inexistent [44,45].

After the massive application of vaccines, severe cases and mortality decreased sharply,
as well as recovery time for the anew infected and the re-infected. Although there is
a high proportion of immunized persons, the individual neutralizing antibody levels
decline after some time, so epidemic outbreaks keep appearing due to new virus variants,
some of which have been dispersed globally and others more locally. Nevertheless, as
vaccinated individuals and those that recovered from infection maintain a certain degree
of immunity, if they are re-infected, their symptoms are less severe, and they show lower
mortality [46–48]. All of the above make necessary the application of boosters to help
maintain protective immunity levels in the population in the face of the dispersion of new
variants [49–51].

Here we address the topic of how a massive application of LAVs vaccines could result
in the indirect dispersion of attenuated virus between non-vaccinated persons, which
could help achieve the herd immunity threshold. In addition, it could help to maintain,
for a longer time, optimal levels of humoral and cellular immunity in directly vaccinated
individuals as well as in those that get the attenuated virus indirectly. The proportion
of individuals indirectly immunized in this way might be considered for the theoretical
calculations of viral dispersion and the achievement of HI.

2. Population Immunity

Individual immunity against a pathogen is a state in which the different components
of the immunological system are prepared to protect her/him from this microorganism
by controlling or eliminating it in case of infection [52–54]. In a given population, there
is a certain proportion of individuals with immunity against one particular pathogen. If
a pathogen is new for a population, the proportion of immune individuals is probably
zero, and this population is likely to be highly susceptible to becoming infected by this
new pathogen. Herd immunity is a population condition where the pathogen dispersion
between the community members is difficult or impossible because when an infected
individual appears, the individuals surrounding her/him are immune against the pathogen,
so they do not get infected and do not transmit the pathogen to other susceptible individuals.
Besides, in a population with a high proportion of immune individuals, the probability
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of an encounter between an infected and a susceptible individual is very low [55–62].
Herd immunity threshold (HIT) refers to the fraction of the population required to be
immune against an infectious pathogen to prevent its dispersion. A population has reached
herd immunity when it has a proportion of immune individuals against a particular
pathogen equal to or above the HIT [62,63]. To calculate the proportion of the immune
population required to reach the HIT, one must consider the pathogen dispersion capacity,
which is given by the reproduction number R0, which indicates the average number of
non-immune individuals whom a sick individual infects [55–68]. The fraction of the
population required to reach HI in populations with a homogeneous immune response
elicited by highly effective vaccines is calculated by the formula 1 − 1/R0. Nevertheless,
the HIT can be calculated more precisely by considering several population factors and
vaccine effectiveness [52,60,64]. It is generally considered that 70% percent of immune
individuals against a particular pathogen in a population confers HI [52,58,65–74]. A
similar percentage has been considered necessary for the SARS-CoV-2 case considering
an R0 = 3 and a HIT = 67 [58,65–73]. This percentage might vary between countries or
regions [67,74,75]. Immunization against SARS-CoV-2 reduces susceptibility but does not
totally protect against infection or reinfection, so it is estimated that the required HIT might
be higher, reaching 95% for some populations [52,59,60,63,64,66,67,71,73,74].

A population acquires immunity and reaches the HIT in three ways: (a) through the
contagion of individuals with the wild-type strain. The individuals develop the disease
with different symptomatology degrees and develop protective immunity, (b) through
vaccination with different vaccine types, including inactivated vaccines, non-proliferative
viral vector vaccines, and live-attenuated vaccines. (c) through the combination of natural
dispersion and massive vaccination [75]. Here, we analyze an additional mechanism that
might contribute to the development of collective immunity: (d) through the dispersion
of viruses from live attenuated virus (LAVs) vaccines from vaccinated to non-vaccinated
individuals. With the wide use of these LAVs, these viruses could disseminate in the same
way as the wild-type virus causing mild symptoms while inducing an effective immunity
against the pathogenic virus [76–79].

3. Immune Response against SARS-CoV-2 Induced by the Infection

Individual immunity is due to the development of antigen-specific antibodies and
immune cells against the pathogen after surviving or clearing infection or after vaccina-
tion [80–82]. An appropriate level of humoral and cellular immunity prevents the same
pathogen from infecting the immune individual, hindering its dissemination in the pop-
ulation [80–82]. Depending on the immunological status of the host and the viral load,
her/him develops different antibody and cellular immunity levels that effectively protects
her/him for a certain time. In some cases, individual immunity induced by infection can
be sterilizing and lifelong, as is the case for smallpox [80–84].

For SARS-CoV-2, infected individuals develop humoral and cellular immunity against
a large variety of its antigens. Neutralizing antibodies are directed against the S1 pro-
tein, which is the cellular counter-receptor that binds to the ACE2 protein on human
cells to initiate the infection [85,86]. Anti-S1 antibodies prevent the infection of ACE2+
cells and promote the phagocytosis of free viruses and their destruction by phagocytic
cells. Antibodies against other SARS-CoV-2 proteins are also developed, mainly against
M, E, and N antigens [85,87]. Antigen-specific cytotoxic T-cells recognize infected cells
through their specific T-cell receptors and eliminate them by cytotoxicity [88,89]. Immunity
developed by infection is both systemic [85–100] and mucosal, mainly mediated by IgA
antibodies [90–100].

4. Immune Response against SARS-CoV-2 Induced by Vaccination

During the COVID-19 pandemic’s first years, some of the given vaccines used the S1
protein as an antigen, while others used inactivated whole virus. Both induced mainly
systemic immunity as they were administered intramuscularly (IM) [101–112]. Humoral
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and cellular immunity developed by the individuals that were immunized with S1 protein-
based vaccines was directed against this antigen [102–116], whereas those that were in-
activated virus-based, induced responses against the different viral antigens [116–118],
including the S1 protein [117–123]. These same vaccines were modified for intranasal
use and are under preclinical and clinical studies to establish if they can induce effective
mucosal immunity [124–128].

Unfortunately, the immunity conferred by natural infection and the different vaccines
is not sterilizing, or the level of protective immunity diminishes after some time. For that
reason, infections or reinfections have been observed in both cases [129,130], although
with less severe symptoms [131–135]. New virus varieties keep spreading among the
populations, seriously affecting the unvaccinated or those with comorbidities [129–135],
which is an indication that herd immunity has not been achieved in the different countries,
regions, or population sectors [42,135–142]. LAVs vaccines could improve this situation as
they induce a better immunological response without causing severe disease symptoms,
and they stimulate innate and adaptive immunity, both systemic and mucosal. Some
LAVs have contributed to controlling other viral diseases, such as smallpox, measles, or
poliomyelitis, more effectively than molecular vaccines [143,144].

5. Advance in Obtaining Herd Immunity against SARS-CoV-2

During the first year of the pandemic, no vaccines were available, so in all countries,
individual immunity was induced only through infection. In December 2020, massive
vaccination started in some developed countries; bit by bit, other countries had access to
vaccines. After that, herd immunity is attained in the three ways described by Lipsitch [75]:

(a) natural dispersion of SARS-CoV-2: to obtain individual and collective immunity, the
easiest, quick, and most economical way is to allow the natural dispersion of the pathogen
while massive vaccination must wait for licensed, effective, and safe vaccines [15,75,143]. In
the first pandemic’s months, millions of people recovered from the infection and developed
immunity. Around 90% of the infected showed mild or moderate symptoms. Unfortunately,
10% to 20% showed complications, and there was any effective antiviral drug to treat these
cases. As a result, 2% to 3% of total cases became fatal. As total cases increased, the number
of mortal victims became very high. A partial but functional immunity against SARS-CoV-2
is conferred to individuals previously in contact with other low pathogenicity coronavirus
varieties with different homology degrees to SARS-CoV-2 [75]. If this immunity against
other less pathogenic coronavirus varieties could be extended among the populations, this
could help maintain an acceptable individual immunity level in most populations, and HI
could be achieved with less difficulty [75];

(b) SARS-CoV-2 vaccine application: less than a year after the pandemic, several vac-
cines became available and started to be used massively. Some are based on the S1 protein,
which is carried by other viral vectors (ChAdOx1, Ad3 and Ad5, AZD1222, SPUTNIK V,
Ad5-nCoV) [114,115]; others are based on mRNA that codifies for the S1 protein (BNT162b2,
mRNA1273) [116–118]. Others use the inactivated whole virus [119–121] or the isolated S1
protein [122–124], or virus-like particles [144–149]. These non-proliferating vaccines were
approved and licensed relatively quickly, and booster doses have been administered in
several countries;

(c) combination of natural dispersion and massive vaccination: in some countries, the
combination of natural infections and massive vaccination has resulted in a percentage
of immune persons near the one required to achieve HI, even though in several of these
countries, children have not been vaccinated [150,151] nor the individuals that oppose
vaccination [136–142]. SARS-CoV-2 LAVs are still in preclinical and clinical studies, and
it takes a longer time for their approval because more strict biosecurity criteria must be
met [152–157].
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6. Cellular and Humoral Immune Responses Induced by SARS-CoV-2
Live-Attenuated Vaccines

Vaccination with LAVs has shown to be more effective than vaccination with molecular
vaccines. Its application causes mild disease symptoms while inducing an immune response
similar to the one induced by the original pathogen. Vaccinated individuals develop a
specific adaptive cellular and humoral immunity against a wide variety of viral antigens
at the systemic and mucosal levels. Besides, due to its similarity with the wild virus, it
also stimulates innate immunity [109,152–154,157–166]. Immunity induced by LAVs could
allow the control of infections with new variants, avoiding severe infection symptoms
and reducing the time of viral dispersal [109,149,167,168], leading to the reduction of new
cases. Of the non-proliferating vaccines applied during the first two years of the pandemic,
some of them induce systemic immunity only against the S1 protein, while those based
on inactivated viruses induce a response to a wide array of antigens. However, in both
cases, immunity, although systemic, decays after some time and induces a low mucosal
immunity, allowing a certain degree of infections and re-infections [109,169].

7. Features of LAVs against SARS-CoV-2

LAVs vaccines are more effective than inert vaccines, because, like the wild virus,
they can replicate inside the cells of the vaccinated individual, resulting in better systemic
and mucosal innate and adaptive immune responses [170,171]. Usually, only one dose is
necessary, although, in the case of SARS-CoV-2, the vaccination scheme with LAVs is still
under evaluation and could be applied annually. In addition, to immunize against the new
variants of SARS-CoV-2, attenuated viruses could be generated from already approved
LAVs with the appropriate S protein gene inserted from the new mutant strain to generate
updated LAVs that express the S protein mutations, which is feasible, as is commented by
Yoshida et al. about a LAVs platform developed by them [154].

The development and application of these vaccines must be carefully monitored as the
attenuated viruses can revert to pathogenic ones that might cause symptomatic problems
at the application site, usually the nasal cavity for SARS-CoV-2 [171,172]. LAVs should
not be applied to individuals who might be highly susceptible to viral infections, such as
those with a genetic or acquired immunodeficiency, those receiving immunosuppression
treatment after a transplant, or receiving anti-proliferative medication or radiotherapy,
or individuals infected with the human immunodeficiency virus (HIV) [173,174]. It is
also recommended that these individuals should not be in contact with LAVs vaccinated
individuals as they might acquire the attenuated virus, which could proliferate unchecked
under a depressed immune system causing severe health problems [173,174]. Other sus-
ceptible groups are the elder and those prone to developing “Long COVID”. Older adults
(75 years old or older) should be immunized with non-proliferative vaccines to develop
immunity, preferably mucosal immunity, against SARS-CoV-2, before the application of
LAVs vaccines in the community. The elders suffering from one or more comorbidities
should take measures to avoid contact with LAVs and with persons recently vaccinated
with LAVs. Before these vaccines are licensed, it must be determined for how many days the
vaccinated with LAVs can spread the attenuated virus to establish for how long they should
avoid contact with persons from the susceptible groups, including the elders. Long COVID
is generally present in persons with an immunological dysregulation, which makes them
unable to control and eliminate the viral infection efficiently. Individuals with obesity, type
2 diabetes, hypertension, above 50–60 years old, and who are malnourished, among other
stressful situations, are the most susceptible to developing it. They must be immunized
with non-proliferative vaccines and receive advice and treatment to correct the pathologies
that make them more susceptible, such as exercise, weight loss, hypoglycemic treatment, a
balanced diet, and correction of vitamin deficiencies, among others. These interventions
would contribute to improving their immunological status. Another option is to treat those
that develop Long COVID caused by an attenuated virus from the LAVs with antivirals
effective against SARS-CoV-2, such as redemsivir.
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Some LAVs against SARS-CoV-2 are under preclinical and clinical essays [172–176].
These vaccines have the advantage that their storage and distribution require only refriger-
ator temperatures (02 to 08 ◦C) [177].

8. Indirect Dispersion of Live-Attenuated Virus Vaccines

The transmission of the live attenuated virus from LAVs vaccinated persons to close
unvaccinated individuals induce in them a protective immune response. This event was
observed during the use of live attenuated vaccines against poliomyelitis in children in
the middle of the XX century. Children who received the live attenuated vaccine virus
dispersed the virus to their schoolmates (institutional dispersion) and to their contacts at
home (familial dispersion) that had not been vaccinated [178,179]. Several studies on this
matter were carried out in the URSS and in the United States of America [179–185]. The
application of this vaccine allowed to contain the pathogenic virus dispersal in a much
more significant proportion than with the inactivated virus vaccine [179–181,184–186].
Studies were carried out in closed human communities to analyze the indirect dispersion
of attenuated vaccine viruses. It was found that the propagation is between around a 10%
to 30% [179,181,184–187], which, although variable, contributes to the increment of HI
as it helps to immunize unvaccinated persons and might also help to increase protective
immunity in persons with a single dose of vaccine, working in this case as a booster
vaccine [187].

It is essential to maintain two key characteristics of the virus used for LAVs in the indi-
viduals that acquired them indirectly: their attenuation and their immunogenicity [165,187].
To be sure that the attenuated virus does not recover its pathogenicity, German Todorov
and Vladimir N. Uversky propose that varieties of the SARS-CoV-2 virus that induced mild
symptomatology must be attenuated by multiple passages [188] or attenuated strains could
be developed through genetic engineering [152,153,168,172,175,187,189]. There are several
techniques to generate attenuated viruses, such as the insertion of high replication genes
and genes that prevent excessive mutations [157,178–180]. A good strategy to facilitate the
indirect dispersion of the SARS-CoV-2 LAVs between individuals would be to seek that the
attenuated virus maintains a degree of replication and contagion similar to the pathogenic
virus in order to increment its dissemination.

The indirect propagation of attenuated virus from these vaccines is mainly through
the respiratory tract, as is the case of the wild virus, so its degree of contagion could be
similar to the pathogenic SARS-CoV-2 variants [188–191].

Several individuals infected with the SARS-CoV-2 virus are asymptomatic or show
mild symptoms. Although the mild symptoms are attributed to a robust immune system,
it is also possible that some of these individuals were infected with a low pathogenicity
virus variant, and so could be the source of virus strains that already have a certain degree
of attenuation. These strains could be a good starting point for developing an attenuated
virus useful for a vaccine [173–178].

Some vaccines against SARS-CoV-2, currently under development, use as vectors
of the S1 protein, an attenuated virus that protects against other diseases. Among them
are vaccines against measles, influenza, modified vaccinia Ankara (MVA), and yellow
fever [191–205]. Nevertheless, these vaccines use vectors that are of low dispersion, so
their contribution to the achievement of herd immunity against SARS-CoV-2 is very low
or non-existent. Rhinoviruses are highly infectious in humans and cause the common
cold with mild symptoms in most of the infected individuals. Their low pathogenicity
and high contagion rate could make them suitable vectors for viral vaccines, such as for
SARS-CoV-2 [206]. Another possibility is to develop LAVs vaccines based on a seasonal
cold coronavirus with high homology to SARS-CoV-2. Immunogenic sequences of the
SARS-CoV-2 S1 protein could be inserted into this virus. Theoretically, as for the case of
attenuated SARS-CoV-2, it would be more effective than the non-proliferative vaccines
used during the first two years of the pandemic and probably better than vaccines based
on vectors that immunize only against one or two SARS-CoV-2 antigens. Indirect dispersal
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of LAVs is another way that could contribute to achieving HI against SARS-CoV-2 (Table 1;
Figure 1). Studies of the indirect dispersion of LAVs from vaccines can be carry-out in
animal models [207–214] and could give an idea of how this indirect dispersion would
behave in human populations [209–216].

Table 1. Pathways that contribute to HI against the SARS-CoV-2 coronavirus.

a. Spread of SARS-CoV-2 between immunized and non-immunized individuals [75].
b. Immunization by direct vaccination with any type of vaccine [75].
c. Exposure to other coronaviruses with some degree of homology to SARS-CoV-2 [75].
d. Indirect exposure to attenuated SARS-CoV-2 viruses by contact with individuals vaccinated with LAVs.
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Figure 1. Proportions of immune individuals achieved by dispersal of the pathogenic microorganism
and non-mandatory immunization with non-proliferative vaccines (A) compared to proportions
achieved by non-mandatory application of proliferating LAVs (B). The transmission of the live
attenuated virus from LAVs vaccinated persons to close unvaccinated individuals induces in them a
protective immune response increasing the proportion of immune individuals favoring HI.

9. Immunity Induced by the Indirect Acquisition of Attenuated SARS-CoV-2 Virus

Immunity induced by the indirect acquisition of live attenuated poliomyelitis virus
is similar to the one induced by vaccination, both in non-immune individuals and in
individuals already immunized [186,187,217], and a similar situation could be considered
for the case of SARS-CoV-2. LAVs vaccines against SARS-CoV-2 in preclinical phases are
given by the nasal or oral route. The virus replicates in the tissues of these places inducing
immunity against all the attenuated viral antigens and is potentially retransmitted to other
individuals by the airborne transmission of aerosol or saliva particles. In case a SARS-
CoV-2 LAVs vaccine is approved for human use, the process of indirectly acquiring the
LAV would not be risky as the vaccine should comply with all the biosafety requirements
to be approved. The degree of immunity it would induce would depend on the capacity
of immune response of each individual, the replication rate of the virus, as well as the
initial virus load. According to the observations on the vaccination with LAVs against
SARS-CoV-2, in the direct recipients of the vaccine, it stimulates the components of innate
immunity. Adaptive mucosal and systemic immunity is also developed against all the
attenuated virus antigens, and this immunity confers resistance against the SARS-CoV-2
infection [159–162,164–169].

10. Effect of the LAV’s Indirect Dispersion on Individual and Population Immunity

A LAV-based vaccine against SARS-CoV-2, considering the great proportion of the
directly and the indirectly vaccinated, could help to maintain an efficient immune response
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in the individuals for several months, would help to control the viral dispersion or keep
it at very low levels. That, and an aggressive combination of a booster vaccination with
the existing vaccines and antiviral treatment for individuals with high viral load, might
contribute to the virus’ eradication. Besides, a society culture on how to help achieve
HI must be promoted to help contain and eradicate this infectious disease [218,219]. The
application of LAVs with a certain frequency, for example, yearly, could be a way to
maintain a high level of individual immunity enough to keep reinfections at bay. In
addition, each vaccination campaign would allow the indirect dispersion of the LAV,
increasing the proportion of immune individuals and favoring the HI (Figure 2).
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Figure 2. Schematic representation of the HI achieved with the non-proliferative vaccine application
(A) compared with the hypothetical HI achieved with LAV application (B). Non-proliferative vaccines
induce immunity in individuals who receive them; LAV vaccines induce immunity in individuals
who receive them, as well as those contacts in whom the attenuated virus spreads, increasing the %
of the immune population. The spread of the pathogenic SARS-CoV-2 in a population with 60–70%
immune individuals is still possible (C), but it would be more difficult or would no longer occur in a
population with a higher of immune individuals (D).

So far, the different mathematical models to calculate the number of individuals
required to reach HI do not include the proportion of the population that would be inad-
vertently immunized through the indirect spread of LAVs. Its inclusion in the predictive
models would contribute statistical data that might be useful if these vaccines are used
massively. Several aspects about the use of LAVs must be studied: the percentage of
population that is indirectly immunized, propagation of the virus in different age groups,
its propagation between previously vaccinated individuals with other anti-SARS-CoV-2
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vaccines, duration of the attenuated virus infection, attenuation conservation, LAVs muta-
tions while they are spreading in the population and the kind of immunity induced in the
indirect recipients; to name some.

11. Conclusions

SARS-CoV-2 vaccines based on LAVs could induce better innate and adaptive immu-
nity in the same way as other LAV-based vaccines against other pathogenic viruses. The
indirect dispersion of attenuated virus could help to increase the collective immunity by
allowing the infection of individuals in contact with vaccinated individuals who would
develop an immunity similar to those that were directly vaccinated. The development
of high contagiousness attenuated virus vaccines against SARS-CoV-2 could significantly
increase the proportion of the immunized population through the indirect immunization
of individuals who do not receive any kind of vaccines for any reason.

There are already methodologies to avoid the appearance of viruses that recover
their pathogenicity, so it is possible to develop attenuated immunogenic viruses with this
characteristic. In the face of the persistence of natural infections with different variants of
SARS-CoV-2, even in immunized individuals, due to a gradual decline in the protective
immunity and the variability of immune response between different groups of individuals,
it is necessary to keep a high immunity level through frequent and massive vaccination,
trying to reach a 100% vaccination ideally. We think that the application of LAVs vaccines
against SARS-CoV-2 with a certain level of contagiousness should be considered once they
comply with the efficacy and biosafety requirements to be used in humans. The use of LAVs
vaccines and their indirect dispersion could help face other pathogens in future pandemics.
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