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Abstract: The viral family Arenaviridae contains several members that cause severe, and often lethal,
diseases in humans. Several highly pathogenic arenaviruses are classified as Risk Group 4 agents and
must be handled in the highest biological containment facility, biosafety level-4 (BSL-4). Vaccines
and treatments are very limited for these pathogens. The development of vaccines is crucial for the
establishment of countermeasures against highly pathogenic arenavirus infections. While several
vaccine candidates have been investigated, there are currently no approved vaccines for arenavirus
infection except for Candid#1, a live-attenuated Junin virus vaccine only licensed in Argentina. Cur-
rent platforms under investigation for use include live-attenuated vaccines, recombinant virus-based
vaccines, and recombinant proteins. We summarize here the recent updates of vaccine candidates
against arenavirus infections.
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1. Introduction

Mammarenaviruses belong to the family Arenaviridae and the genus Mammarenavirus.
According to their geographic distribution and phylogenetic relationships, mammare-
naviruses are further divided into Old World (OW) and New World (NW) arenaviruses [1–3].
Several of these cause infections in humans, ranging from asymptomatic to fatal outcomes.
Lassa virus (LASV) is an OW arenavirus and the causative agent of Lassa fever (LF), a fatal
hemorrhagic fever. Outbreaks of LF are reported annually in endemic western African
countries, with high mortality in symptomatic patients [3,4]. Junin virus (JUNV) is a NW
arenavirus and causes Argentine hemorrhagic fever (AHF). AHF is also a lethal hemor-
rhagic fever with severe public health consequences. Seven other mammarenaviruses,
including lymphocytic choriomeningitis virus (LCMV), Lujo virus (LUJV), Machupo virus
(MACV), Guanarito virus (GTOV), Sabia virus (SABV), Chapare virus (CHAPV), and White-
water Arroyo virus (WWAV) have been reported to cause infectious diseases in humans,
although the numbers of reported cases are less than both LF and AHF [1,2,5]. Due to
their highly infectious nature, risk of imported cases, and use in bioterrorism, the diseases
caused by mammarenaviruses are some of the most severe public health threats. There
is a concern that the endemic areas of these viruses may expand due to climate change
and human economic activities [6]. Establishment of countermeasures are urgently needed
to overcome these threats to public health. Vaccination is one of the primary methods to
prevent infectious diseases. Even though there has been much progress recently in the
development of vaccines against arenaviruses, only the live-attenuated JUNV vaccine,
Candid#1 [7–9], is approved for use in AHF-endemic countries. There are currently no
FDA-approved vaccines against any arenavirus infections. In this review, the development
of vaccines against arenavirus infections will be described, and the mechanism of protection
of each proposed vaccine candidate will be presented.
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2. Classification and Distribution of Arenaviruses

The family Arenaviridae is divided into four different genera: Antennavirus, Hart-
manivirus, Reptarenavirus, and Mammarenavirus. According to the latest International Com-
mittee for the Taxonomy of Viruses (ICTV) report, the genus Mammarenavirus currently
includes 42 virus species. The Mammarenavirus species are further classified into OW
and NW arenaviruses based on their phylogenetic relationships and their geographic dis-
tribution (Figure 1) [1,2,10,11]. OW arenaviruses are distributed predominantly on the
African continent, with the exception of LCMV, which has been isolated from laboratory
mice (Mus Musculus) worldwide. LASV is the etiological agent of LF and is endemic in
West African countries including Guinea, Liberia, Sierra Leone, and Nigeria (Figure 2),
corresponding with habitats of its natural rodent host, Mastomys natalensis [3]. Mopeia
virus (MOPV) is also found in this rodent throughout Mozambique and Zimbabwe, but
has not been shown to cause human disease [12–14]. LUJV caused a small outbreak of
Lujo hemorrhagic fever (LHF) in 2008 in Zambia and South Africa (Figure 2); the natural
host of LUJV is still unknown [15–17]. The NW arenaviruses are distributed throughout
the South and North American continents and are further divided phylogenetically into
four clades: Clade A, B, C, and A/Rec (D) (Figures 1 and 2). The Clade B group includes
human pathogenic viruses JUNV, MACV, GTOV, SABV, and CHAPV, as well as the Tacaribe
virus (TCRV), which is isolated from Artibeus bats and is not known to cause human
disease [11,18,19]. Hemorrhagic fevers caused by JUNV, MACV, GTOV, SABV, and CHAPV
are known as Argentine Hemorrhagic Fever (AHF), Bolivian Hemorrhagic Fever (BHF),
Venezuelan Hemorrhagic Fever (VHF), Brazilian Hemorrhagic Fever (BzHF), and Chapare
Hemorrhagic Fever (CHF) respectively, referring to the areas where they occur. LASV,
LUJV, JUNV, MACV, GTOV, SABV, and CHAPV are identified as Risk Group 4 pathogens
by the World Health Organization (WHO), since they cause severe hemorrhagic diseases
and have no approved vaccines and limited therapeutics. NW arenaviruses include other
non-pathogenic viruses, such as Pichinde virus (PICV) belonging to the Clade A group
and human-pathogenic WWAV belonging to the Clade A/Rec (D). Recently, CHF cases
were reported in Bolivia in 2019 [20], BzHF cases caused by a novel strain of SABV were
also reported in Brazil in 2020 [21], and a seasonal epidemic of VHF was documented in
Colombia in 2021 (Figure 2) [22]. In addition, novel mammarenaviruses have been detected
in rodents worldwide [13,23], but the pathogenic potential of these viruses for humans has
not been verified.
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Figure 1. Phylogenetic relationships and classification of arenaviruses. The New World (NW) are-
naviruses are subdivided into clade A (light green), clade A/Rec (green), clade B (orange), and clade 
C (blue). The phylogenetic tree is based on a nucleotide comparison of the NP genes. Red stars fol-
lowing virus names indicates the ability to infect humans. The virus names in boldface indicate 
Lymphocytic choriomeningitis virus and those that cause fatal hemorrhagic fevers in humans. The 
phylogenetic tree was drawn using MEGA11: Molecular Evolutionary Genetics Analysis version 1 
[24]. The scale bar indicates substitutions per site. Accession numbers for reference sequences are: 
NC_010253.1 (Allpahuayo virus), NC_006447.1 (Pichinde virus), NC_010757.1 (Flexal virus), 
NC_010756.1 (Parana virus), NC_005894.1 (Pirital virus), NC_010256.1 (Bear Canyon virus), 
NC_010701.1 (Tamiami virus), EU123328.1 (Skinner Tank virus), EF619034.1 (Tonto Creek virus), 
EF619035.1 (Big Brushy Tank virus), NC_010700.1 (Whitewater Arroyo virus), NC_005081.1 (Junin 
virus, XJ13), D10072.2 (Junin virus, MC2), NC_005078.1 (Machupo virus, Carvallo), AY624355.1 (Ma-
chupo virus, Chicava), JN897398.1 (Ocozocoautla de Espinosa virus), NC_004293.1 (Tacaribe virus), 
NC_010254.1 (Cupixi virus), NC_010247.1 (Amapari virus), NC_005077.1 (Guanarito virus), 
NC_010562.1 (Chapare virus), NC_006317.1 (Sabia virus), MG976578.1 (Xapuri virus), NC_010758.1 
(Latino virus), NC_010248.1 (Oliveros virus), AY847350.1 (Lymphocytic choriomeningitis virus), 

Figure 1. Phylogenetic relationships and classification of arenaviruses. The New World (NW) are-
naviruses are subdivided into clade A (light green), clade A/Rec (green), clade B (orange), and clade C
(blue). The phylogenetic tree is based on a nucleotide comparison of the NP genes. Red stars following
virus names indicates the ability to infect humans. The virus names in boldface indicate Lymphocytic
choriomeningitis virus and those that cause fatal hemorrhagic fevers in humans. The phylogenetic
tree was drawn using MEGA11: Molecular Evolutionary Genetics Analysis version 1 [24]. The scale
bar indicates substitutions per site. Accession numbers for reference sequences are: NC_010253.1
(Allpahuayo virus), NC_006447.1 (Pichinde virus), NC_010757.1 (Flexal virus), NC_010756.1 (Parana
virus), NC_005894.1 (Pirital virus), NC_010256.1 (Bear Canyon virus), NC_010701.1 (Tamiami virus),
EU123328.1 (Skinner Tank virus), EF619034.1 (Tonto Creek virus), EF619035.1 (Big Brushy Tank virus),
NC_010700.1 (Whitewater Arroyo virus), NC_005081.1 (Junin virus, XJ13), D10072.2 (Junin virus, MC2),
NC_005078.1 (Machupo virus, Carvallo), AY624355.1 (Machupo virus, Chicava), JN897398.1 (Ocozo-
coautla de Espinosa virus), NC_004293.1 (Tacaribe virus), NC_010254.1 (Cupixi virus), NC_010247.1
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(Amapari virus), NC_005077.1 (Guanarito virus), NC_010562.1 (Chapare virus), NC_006317.1 (Sabia
virus), MG976578.1 (Xapuri virus), NC_010758.1 (Latino virus), NC_010248.1 (Oliveros virus),
AY847350.1 (Lymphocytic choriomeningitis virus), EU136038.1 (Dandenong virus), NC_039009.1
(Ryukyu mammarenavirus), NC_018710.1 (Lunk virus), NC_039012.1 (Souris virus), NC_023764.1
(Merino Walk virus), NC_027135.1 (Okahandja virus), NC_027134.1 (Mariental virus), NC_007905.1
(Ippy virus), NC_038367.1 (Solwezi virus), NC_026018.1 (Wenzhou virus), KC669694.1 (Carda-
mones virus), NC_004296.1 (Lassa virus, Josiah), GU481078.1 (Lassa virus, Nig08_A47), GU830848.1
(Gbagroube virus), GU830862.1 (Menekre virus), NC_026246.1 (Gairo virus), NC_007903.1 (Mobala
virus), NC_016152.1 (Luna virus), DQ328874.1 (Mopeia virus), NC_013057.1 (Morogoro virus), and
NC_012776.1 (Lujo virus).
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brane [2]. The L-segment encodes multi-functional matrix protein (Z) and RNA-depend-
ent RNA polymerase (L). NP and L are required for viral genome synthesis and transcrip-
tion. The S- and L-segment encode their respective proteins using an ambisense encoding 
strategy, with the coding regions separated by noncoding intergenic regions (IGRs). Virus 
entry into cells is initiated by binding GP1 to cellular receptors. LASV, LCMV, and the 
Clade C NW arenaviruses utilized α-dystroglycan as their cellular receptors [25]. The cel-
lular surface receptor of LUJV is neuropilin-2, and the Clade A, B, and A/Rec NW arena-
viruses mainly use transferrin receptor 1 as their receptor [25]. The T-cell immunoglobulin 
and mucin receptor (TIM) family, phosphatidylserine-binding receptors of the 
Tyro3/Axl/Mer (TAM), C-type lectins, and voltage-gated calcium channel (VGCC) subu-
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Figure 2. Geographic distribution of human pathogenic arenaviruses. The OW arenaviruses are
mainly distributed in the African continent, with the exception of LCMV, which is found worldwide.
LASV is endemic in West African countries including Guinea, Liberia, Sierra Leone, and Nigeria, and
LUJV is endemic in Zambia and South Africa. The NW arenaviruses are distributed mainly in South
America, with JUNV in Argentina, MACV in Bolivia, GTOV in Venezuela and Colombia, CHAPV in
Bolivia, and SABV in Brazil. WWAV is found in North America.

3. Structure of Arenavirus and Its Relevance to Vaccine Development

Mammarenaviruses are enveloped viruses with bi-segmented, single-stranded, negative-
sense RNA as their viral genome (Figures 3 and 4) [2,3]. The segmented genome consists
of small (S) and large (L) segments. The S-segment encodes the nucleoprotein (NP) and
glycoprotein precursor (GPC). GPC is cleaved during post-translational modification into
a stable signal peptide (SSP), GP1, and GP2 to form a trimer on the viral membrane [2].
The L-segment encodes multi-functional matrix protein (Z) and RNA-dependent RNA
polymerase (L). NP and L are required for viral genome synthesis and transcription. The
S- and L-segment encode their respective proteins using an ambisense encoding strategy,
with the coding regions separated by noncoding intergenic regions (IGRs). Virus entry into
cells is initiated by binding GP1 to cellular receptors. LASV, LCMV, and the Clade C NW
arenaviruses utilized α-dystroglycan as their cellular receptors [25]. The cellular surface
receptor of LUJV is neuropilin-2, and the Clade A, B, and A/Rec NW arenaviruses mainly
use transferrin receptor 1 as their receptor [25]. The T-cell immunoglobulin and mucin
receptor (TIM) family, phosphatidylserine-binding receptors of the Tyro3/Axl/Mer (TAM),
C-type lectins, and voltage-gated calcium channel (VGCC) subunits are also involved in
viral entry into cells [25]. Following attachment to the cell surface, viruses are internalized
mainly by endocytosis. Conformational changes of GPC are triggered by acidic conditions
in late endosomes, promoting fusion between the viral envelope and the endosomal mem-
brane through the function of GP2. The result is release of viral genomes and replication
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complexes into the cytosol. During membrane fusion, LASV and LUJV need to switch
receptors to the endosomal receptors lysosomal-associated membrane protein (LAMP1)
and CD63, respectively [25]. Replication complexes composed of NP and L are released
into the cytoplasm where they initiate replication, transcription, and the translation of the
viral genome. Transcription of viral genes begins at the 3′ ends of viral RNA (sense genomic
RNA; vRNA) and complementary RNA (anti-sense genomic RNA). A secondary stem-loop
structure within IGRs of the S and L segments is responsible for transcription termination.
NP and L coding regions are located on the 3′ ends of the vRNA, and mRNAs encoding
these viral proteins are transcribed directly from the vRNA. Thus, NP and L, as products of
early infection, further promote replication and translation of the viral genome. GPC and Z
are transcribed from anti-sense vRNA. The anti-sense vRNA serves as a template for newly
synthesized vRNA. Z protein negatively regulates the replication, transcription, and trans-
lation processes through interaction with L and therefore controls the expression of viral
proteins [26–28]. GPC is translated in the endoplasmic reticulum and undergoes N-linked
glycosylation and cleavage of SSP by cellular signal peptidase (SPase). GPC is further
cleaved into GP1 and GP2 by Subtilisin Kexin Isozyme 1/Site 1 Protease (SKI-1/S1P), and
finally matures into SSP, GP1, and GP2 in the trans-Golgi network. Z protein utilizes the
host endosomal sorting complex required for the transport (ESCRT) pathway to drive the
transportation and assembly of viral components such as NP, L, and replication complexes
at the plasma membrane. Z protein also interacts with GPC, mediating the incorporation
of viral RNP complexes into GPC containing particles and leading to the release of progeny
virus from infected cells [29].
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Figure 3. Structure of arenavirus virion and genome. (a) Structure of arenavirus virion showing
surface glycoprotein complex (GPC,), nucleoprotein (NP), Zinc finger matrix protein (Z), and RNA-
dependent RNA polymerase (L). (b) The genome of arenaviruses is bi-segmented, single-stranded,
negative-sense RNA. The segmented genomes consist of small- (S) and large (L)-segments flanked
by 5′ untranslated regions (UTRs) and 3′ UTRs. The L segment encodes Z and L, and the S segment
encodes GPC and NP. The S- and L-segment encode their respective proteins using an ambisense
encoding strategy, with the coding regions separated by the noncoding intergenic regions (IGRs).
Figure created with BioRender (https://app.biorender.com, (accessed on 9 March 2023)).

Arenaviruses promote viral life cycle efficiency in host cells by disturbing the host
immune response. There are well-summarized articles on the host immune suppression
by arenavirus NP and Z proteins [30,31]. NPs interact with retinoic acid-inducible gene I
product (RIG-I), melanoma differentiation-associated (MDA5), serine/threonine kinases
IκB kinase ε (IKKε), and other factors, leading to the suppression of the type-I interferon
(IFN) response as well as control of the host protein translation. LCMV, LASV, MOPV,
TCRV, and PICV NPs have exonuclease (ExoN) activities which also contribute to decreased
type-I IFN production by degrading dsRNA in infected cells. The ExoN activity of NPs is
associated with the DEDDh (Asp-Glu-Asp-Asp) motif in the C-terminal domain. Indeed,
recombinant LASV, MOPV or PICV with mutations in the active site of the ExoN domain
cause higher IFN-I responses compared to wild-type recombinant viruses. It should be
noted that such recombinant viruses with mutations in the ExoN domain are investigated
as vaccine candidates [32–34]. JUNV NP has also been revealed to contain the DEDDh
motif; however, it is considered incomplete without ExoN activity. The Z protein also serves

https://app.biorender.com
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as an inhibitor of immune response suppressing IFN-β production by binding RIG-I and
MDA5. The surface GPC trimer is a target of neutralizing antibodies and T-cell immunity
induced by viral infection or vaccination [35,36]. LASV GPC-specific non-neutralizing
antibodies have also been suggested to contribute to protection from LF [37]. Since the
induction of humoral and cell-mediated immunity is critical for effective vaccines, GPC
has been engineered in various approaches as a pivotal element in vaccine development,
as described below. NP is also thought to induce T-cell immunity similarly to GPC, and
cross-reactive vaccine candidates based on epitope prediction have been investigated [38].
Understanding the sophisticated survival strategies of both viruses and host immune
responses is an important factor that can be applied in vaccine development.
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Figure 4. Life cycle of arenavirus. Virus entry into cells is initiated by binding GP1 to cellular receptors
(1). Following attachment to the cell surface, viruses are mainly internalized by endocytosis (2). Confor-
mational change of GPC triggered by acidic condition in the late endosomes promotes fusion between
the virus and endosome membrane, leading to the release of viral genomes and replication complexes
into cytosols (3 and 4). Replication complexes are released into the cytoplasm and initiate replication,
transcription, and translation of the viral genome with NP and L. The transcription of viral genes begins
at the 3′ ends of sense genomic vRNA and complementary anti-sense vRNA. NP and L coding regions
are transcribed directly from the vRNA. GPC and Z are translated from anti-sense vRNA. A secondary
stem-loop structure within IGRs of the S and L segments is responsible for transcription termination.
The anti-sense vRNA serves as a template for newly synthesized vRNA (5). GPC is translated in the
endoplasmic reticulum and undergoes N-linked glycosylation and cleavage of SSP by cellular signal
peptidase (SPase). GPC is further cleaved into GP1 and GP2 by Subtilisin Kexin Isozyme 1/Site 1
Protease (SKI-1/S1P), and finally matured into SSP, GP1, and GP2 in the trans-Golgi network (6). Z
protein utilizes the ESCRT pathway to drive transportation and assembly of viral components such as
NP, L, and replication complexes at the plasma membrane. Z protein also interacts with GPC, mediating
the incorporation of viral RNP complexes into GPC containing particles, leading to the release of the
progeny virus from infected cells (7 and 8). Figure created with BioRender (https://app.biorender.com,
(accessed on 9 March 2023)).

4. Immune Induction by Arenavirus Infection

Different interactions of pathogenic OW and NW arenaviruses with host immune
systems have been suggested, which may affect their pathogenicity. Severe cases of LF
are associated with high levels of viremia with severe immunosuppression character-

https://app.biorender.com
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ized by weak or delayed type-I IFN and inflammatory cytokine responses in the early
stages [39]. This immunosuppression results from LASV efficiently infecting macrophages
and dendritic cells in early stages of infection without stimulating type -I IFN and cytokine
responses. Thus, T-cell activation, which should follow macrophage and dendritic cell
activation, does not occur, resulting in a delayed cellular immune response to LASV infec-
tion [39]. LF survivors show virus-specific CD4 and CD8 T-cell responses during the acute
phase of infection, which are associated with virus clearance and recovery. Furthermore, the
survival of LASV-infected cynomolgus monkeys is related to early type-I IFN response and
increased CD4 and CD8 T-cells, indicating that an appropriate early immune response and
induction of T-cell immunity are important for survival from LASV infection [40]. In con-
trast to LASV, MOPV infection induces a strong IFN and cytokine response in macrophages
and dendritic cells and induces T-cell activation. As for humoral immune responses to
LASV infection, even LF survivors do not produce neutralizing antibodies until several
months after the acute phase. Therefore, neutralizing antibodies induced by LASV infection
are unlikely to be important for virus clearance. Because of these immunological character-
istics of LF, development of LF vaccine candidates has focused on the induction of T-cell
immunity as well as humoral immunity.

If we focus on the induction of T-cellular immunity by vaccination, we should also
evaluate its effect on hearing loss as a sequela of LF. Hearing loss affects about one-third
of LF survivors, and is estimated to be permanent in about two-thirds of cases [41,42].
This sequela is a severe problem that impairs the quality of life of LF survivors. Recently,
STAT1−/− mice infected with LASV have been successfully used as an animal model
of hearing loss [43–45]. This model supports the mechanism that hearing loss is due to
immune-mediated injury by T-cell responses [43].

Several pathogenic NW arenavirus infections are associated with elevated type-I IFN
and inflammatory cytokine levels. For example, the severity and outcome of AHF correlate
with type-I IFN and cytokine levels [39]. In severe cases of AHF, robust type-I IFN and
inflammatory cytokine responses occur, while these responses are not as strong in orthotopic
cases. In addition, for humoral immunity, patients with AHF produce neutralizing antibodies
against JUNV during the acute phase of the disease [39], which is essential for viral clearance.
Furthermore, both AHF and BHF can be successfully treated with immune sera derived from
survivors in the convalescent phase. Therefore, the induction of neutralizing antibodies is
important for NW arenavirus vaccine development. It should be noted that immunization
with Candid#1 induces a strong and protective neutralizing antibody response. The details
of immune responses induced by LHF, VHF, BzHF, or CHF are under investigation. For
vaccine development, a comprehensive understanding of the immune induction capacity and
pathogenesis for each infectious disease is necessary for success.

5. Arenavirus Vaccine Development

Despite the public health threat of mammarenavirus infection, there are no FDA-
approved vaccines except for JUNV Candid #1, which has only been approved for limited
use in Argentina. While LF and AHF are the two major mammarenavirus infectious dis-
eases and several vaccine candidates against them have been developed, the WHO and the
Coalition for Epidemic Preparedness Innovations (CEPI) have prioritized LASV vaccine de-
velopment [46,47]. The vaccine platforms and strategies outlined in this review will mainly
focus on LF and AHF. Incidents of other mammarenavirus infections are rare compared to
LF and AHF, although the development of vaccines against them remains crucial, as cases
of VHF, BzHF, and CHF were reported recently [20,48,49]. Various vaccine platforms have
been investigated, ranging from live-attenuated vaccines, artificially modified recombinant
viruses, the use of other viruses as vectors, as well as proteins, DNA, and mRNA [3–5,7,11].

Several vaccine candidates against LF have been developed [46,47]. Three vaccine can-
didates, the recombinant vesicular stomatitis virus (VSV) expressing LASV GPC (rVSV∆G-
LASV-GPC) [50–52], the recombinant measles virus expressing LASV GPC and NP (MV-
LASV) [34,53], and a DNA vaccine encoding the LASV GPC gene (INO-4500) [54] have been
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evaluated for their safety and efficacy in phase 1 clinical trials (IAVI C102 ClinicalTrials.gov:
NCT04794218, V182-001 ClinicalTrials.gov: NCT04055454, and LSV-001 ClinicalTrials.gov:
NCT03805984, respectively). The results of these studies are not yet available. In compari-
son to LF, other arenavirus diseases have lagged in vaccine development. Even the vaccine
for AHF, Candid#1, has not been approved by the FDA due to concerns about the risks of
residual virulence and reversion to pathogenicity [55–57]. Given the recent cases of other
severe arenavirus infections, such as the cases of CHF in Bolivia in 2019, BzHF in Brazil
in 2020, and the seasonal epidemic of VHF in Colombia in 2021 [20–22] and the isolation
of novel arenavirus species potentially harmful to humans [13,23], vaccines against such
diseases should be developed.

Unfortunately, there are numerous obstacles that must be overcome for successful
vaccine development. All highly pathogenic arenaviruses are classified as Risk Group 4
agents, and must be handled in the highest biological containment facility, biosafety level-4
(BSL-4), due to their lethality and lack of vaccines and therapeutics. The limited number of
institutions with access to BSL-4 facilities further hampers vaccine development studies.
Additionally, limitations of appropriate animal models for some arenavirus infections also
make the investigation of vaccine candidates difficult. This review will describe the status
of vaccine development for arenavirus infections as well as various bottlenecks.

5.1. Vaccine Candidates for LF

The development of a LF vaccine has progressed considerably in recent years [3,4,58].
Several vaccine candidates, such as replication-incompetent virus vectors, inactivated
LASV, virus-like particles, and DNA vaccines, have demonstrated some effectiveness
(Table 1) [4,58]. Among these, some candidates using replication-competent virus vectors
have succeeded with high protective efficacy and immunogenicity, and are in further
development as remarkable vaccine candidates [34,50–53].

Vaccines using replication-competent viral vectors are unique in their ability to main-
tain a long-term immune response. VSV, a member of the family Rhabdoviridae, is a non-
segmented single stranded negative sense RNA virus. Recombinant VSV (rVSV) has
been developed as a vaccine platform for several infectious diseases [51,59]. A vaccine
approved by the FDA in 2019 for Ebola virus disease (EVD) was generated by replacing the
VSV glycoprotein (G) gene with the Ebola virus glycoprotein gene (rVSV-EBOV) [51,60].
rVSV∆G-LASV-GPC was generated by replacing the G gene of VSV with the GPC gene
of LASV. This vaccine candidate does not cause disease but induces a protective immune
response, such as a T-cell response and neutralizing antibodies, against LASV infection in
non-human primates (NHPs) and guinea pigs [50–52,61].

ChAdOx1-Lassa-GPC is a chimpanzee adenovirus-vectored vaccine candidate incor-
porating the LASV GPC gene [62]. This vaccine candidate induces both T-cell and antibody
responses in vaccinated mice. A single administration of ChAdOx1-Lassa-GPC protects
Hartley guinea pigs from morbidity and mortality after LASV infection [62].

A recombinant measles virus (Schwarz strain) vaccine candidate expressing both the
LASV GPC and NP (MV-LASV) induces efficient protection against homologous LASV
challenge after a single administration in cynomolgus macaques [34]. This vaccine candi-
date induces long-term immunity and protects against heterologous LASV strain challenge
in this animal model [53].

The live-attenuated yellow fever virus strain 17D (YF17D) has been successfully
developed as a vaccine for yellow fever [63]. This recombinant YF17D platform has
also been utilized in LF vaccine development [64–66]. These vaccine candidates partially
protected strain 13 guinea pigs from lethal LASV infection, but all survivors presented with
symptoms of LF, and viral infection was not suppressed [64,65]. Moreover, the vaccination
of common marmosets failed to induce adequate immunity and did not protect them from
a lethal outcome [66].

ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
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Table 1. Summary of vaccine candidates for OW arenavirus infections.

Viruses Diseases Vaccine Platforms Name of Vaccine
Candidates Antigen Animal Experiment Clinical Trial Immumne

Induction Advantage Disadvantage

LASV LF Inactivated viruses

Inactivated recombinant
Lassa-Rabies virus LASSARAB GPC Guinea pigs (80%

protection) Preclinical
Protective
non-neutralizing
antibodies

Partial protection
in guinea pigs

Replication-incompetent
virus vectors

Recombinant serotype 5
adenovirus (Ad5)

Ad5 (E1-, E2b-)
LASV-NP,-GPC GPC and NP Guinea pigs (100%

protection) Preclinical Neutralizing
antibodies

High stability, low risk of
adverse event, unaffected
by prior immunity to
adenovirus

DNA vaccines candidate

Plasmid DNA vaccine
encoding LASV GPC INO-4500 GPC

Guinea pigs (100%
protection),
NHPs (100% protection)

Phase I

T cell response
(Induction of
GPC-reactive CD4
ant CD8 Tcell)

Long shelf life,
Long term immunity

Special equipment
requirements

Replication-competent virus
vectors

Vesicular stomatitis
virus vector

rVSV∆G-LASV-
GPC GPC

Guinea pigs (100%
protection),
NHPs (100% protection)

Phase I
Neutralizing
antibodies
T cell response

Long term immunity,
Cross protection among
LASV lineages

Possible effects of
preimmunity to
VSV,
Mild side effects

Vaccinia virus vector V-LSG GPC

Cynomolgus macaques
(67% protection),
Rhesus macaques (100%
protection)

Preclinical
T cell response
(Cell-mediated
immunity)

Good safety, stable
antigen expression and
convenient storage

Partial protection
in the animal
models

Chimpanzee adenovirus
vector

ChAdOx1-Lassa-
GPC GPC Guinea pigs (100%

protection) Preclinical
T cell response
(Cell-mediated
immunity)

Unaffected by prior
immunity to human
adenovirus

Measles Schwarz virus vector MV-LASV
(MeV-NP)

GPC and
NPEXON

NHPs (100% protection) Phase I
T cell response
(Cell-mediated
immunity)

Long term immunity,
Cross protection among
LASV lineages

Yellow fever virus 17D vector YF17D/LASV-
GPC GPC

Guinea pigs (80%
protection),
Common marmosets (0%
protection)

Preclinical
T cell response
(Cell-mediated
immunity)

Potential as a bivalent
vaccine to YF and LF

Partial protection
in the animal
models
Possible effects of
preimmunity to
YF
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Table 1. Cont.

Viruses Diseases Vaccine Platforms Name of Vaccine
Candidates Antigen Animal Experiment Clinical Trial Immumne

Induction Advantage Disadvantage

Recombinant live-attenuated
virus
Recombinant LASV with the
replacement of L segment
IGR with that of S segment

rLASV(IGR/S-S) Whole virus Guinea pigs
(100% protection) Preclinical

T cell response
(Cell-mediated
immunity)

Genetically stable in vitro

Recombinant LASV with
codon deoptimized
GPC genes

rLASV-GPC/CD Whole virus Guinea pigs
(100% protection) Preclinical

T cell response
(Cell-mediated
immunity)

Genetically stable in vitro

Recombinant MOPV with
NPExoN and LASV GPC MOPEVACLASV Whole virus Cynomolgus macaques

(100% protection) Preclinical
T cell response
(Cell-mediated
immunity)

Genetically stable in vitro

Reasortant of LASV
and MOPV

Reasortant of LASV
and MOPV ML29 Whole virus

Guinea pigs (100%
protection),
NHPs (100% protection)

Preclinical
T cell response
(Cell-mediated
immunity)

Lethal infection in
Stat1−/− mouse

LUJV LHF Not available
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A replication-incompetent adenovirus vector-based platform, Ad5 (E1-, E2b-), has been
used for LF vaccine candidates [67]. Ad5 (E1-, E2b-) has high stability, a low risk of adverse
events, and induces immune responses even in the presence of pre-existing adenovirus
immunity [68]. Vaccination with both Ad5 (E1-, E2b-) vectors expressing the LASV-NP and
GPC has been reported to protect guinea pigs from lethal LASV challenge [67].

DNA vaccines induce an immune response by electrically inoculating plasmid DNA
encoding a viral antigen into the body and expressing the antigen in an organism [69].
A DNA vaccine candidate, INO-4500, encoding the LASV GPC protected guinea pigs
and NHPs from both disease development and lethal outcomes [54]. Furthermore, this
vaccine candidate is already in phase I human clinical trials. In its phase I trial, vaccination
with INO-4500 induced high cellular immunity, including the upregulation of LASV GPC
peptide-reactive CD4 and CD8 T-cells up to 48 weeks [70].

ML29 is a reassortant virus generated by clonal selection of reassortants of MOPV and
LASV. ML29 is an LF vaccine candidate with adequate and broad cross-reactivity [71–75].
The efficacy of ML29 as a LF vaccine candidate has also been confirmed in marmosets,
macaques, guinea pigs, and CBA/J mice [73,76,77]. Furthermore, in simian immunodefi-
ciency virus (SIV)-infected macaques, the administration of ML29 did not increase clinical
signs of arenavirus infection or shorten lifespan, and only a slight viremia of ML29 was
observed [71]. This indicates that ML29 may prove safe in regions with high rates of
human immunodeficiency virus (HIV)-related immunodeficiencies. However, recombinant
ML29 has been reported to cause 100% fatal infection in STAT1−/− mice [78]. This study
demonstrated that CD4 and CD8 T- cell responses were involved in the acute infection of
ML29, and infection with ML29 itself possibly induced hearing loss.

Other vaccine candidates have been developed using vaccinia viruses, rabies viruses,
alphavirus replicons, virus-like particles, and recombinant LASV proteins [37,79–83]. Re-
cently, recombinant LASV in which the IGR of the L segment is replaced with that of the S
segment [84], recombinant LASV with codon deoptimized GPC genes [85], and recombinant
MOPV with mutations in the ExoN domain of NP and replacement of GPC with LASV GPC
(MOPEVACLASV) [32,33] have been reported as novel live-attenuated vaccine candidates.

Further limiting vaccine development and advancements is the genetic diversity of
LASVs. The sequence analysis of LASV isolates has shown that there are at least seven
different lineages of LASV [86–90]. This genetic diversity raises concerns about the efficacy
of potential LASV vaccines, since LF vaccine candidates are typically developed utilizing
the genes of the Josiah strain in lineage IV [50,51].

Hearing loss is a sequela of LF, and this sequela is a significant problem that impairs
the quality of life of LF survivors [41,42]. This characteristic sequela is a concern in the
development of LF vaccines, especially vaccines inducing a robust T-cell response. Because
details of the mechanism of hearing loss are not yet fully understood, there is a risk that
vaccination may cause hearing loss in vaccine recipients. In the development of LF vaccines,
the prevention of inducing hearing loss in recipients as well as achieving high protective
efficacy is crucial.

5.2. Vaccine Candidates for Other Arenavirus Infections

Compared to LF vaccine candidates, vaccine development for other arenavirus in-
fections has lagged, except for JUNV Candid#1 (Table 2). The establishment of reverse
genetics technology for arenaviruses has enabled the development of various recombinant
vaccine candidates. Recently, recombinant arenaviruses have been created and analyzed as
candidates for attenuated live vaccines.
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Table 2. Summary of vaccine candidates for NW arenavirus infections.

Viruses Diseases Vaccine Platforms Name of Vaccine
Candidates Antigen Animal Experiment Clinical Trial Advantage Disadvantage

JUNV AHF Live-attenuate virus

Candid#1 Whole virus

Guinea pigs (100%
protection),
Rhesus macaques (100%
protection)

Avaiable in
Argentina Long term immunity Risk of revertant to

high pathogenicity

Recombinant live-attenuated virus

Recombinant JUNV Candid#1
with K33S mutaion in GPC K33S rCan Whole virus Guinea pigs (100%

protection) Preclinical
Reduced risk of
revertant to high
pathogenicity

Tri-segmented recombinant virus r3MACV Whole virus Guinea pigs (50%
protection) Preclinical Potential as

multivalent vaccine
Recombinant MOPV with NPExoN
and NW arenavirus GPCs MOPEVACNEW Whole virus No data Preclinical Potential as

multivalent vaccine

DNA vaccine candidate

DNA vaccine DNA vaccine GPC No data Preclinical Long shelf life Special equipment
requirements

MACV BHF Recombinant live-attenuated virus

Tri-segmented recombinant virus r3MACV Whole virus No data Preclinical Potential as
multivalent vaccine

Risk of revertant to
high pathogenicity

Recombinant live-attenuated virus rMACV/Cd#1-GPC Whole virus Guinea pigs (100%
protection) Preclinical Risk of revertant to

high pathogenicity

Recombinant live-attenuated virus rMACV∆N83/∆N166/F438I Whole virus Guinea pigs (100%
protection) Preclinical Risk of revertant to

high pathogenicity

Recombinant live-attenuated virus Car91 Whole virus No data (Partially protection
in Guinea pigs from GTOV) Preclinical Risk of revertant to

high pathogenicity
Recombinant MOPV with NPExoN
and MACV GPC MOPEVACMACV Whole virus Cynomolgus macaques

(100% protection) Preclinical

Recombinant MOPV with NPExoN
and NW arenavirus GPCs MOPEVACNEW Whole virus Cynomolgus macaques

(100% protection) Preclinical Potential as
multivalent vaccine

DNA vaccine candidate
Plasmid DNA vaccine encoding
MACV GPC

DNA vaccine encoding
the MACV GPC GPC No data Preclinical Long shelf life Special equipment

requirements
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Table 2. Cont.

Viruses Diseases Vaccine Platforms Name of Vaccine
Candidates Antigen Animal Experiment Clinical Trial Advantage Disadvantage

GTOV VHF DNA vaccine candidate
Plasmid DNA vaccine encoding
GTOV GPC

DNA vaccine encoding
the GTOV GPC GPC No data Preclinical Long shelf life Special equipment

requirements

Recombinant live-attenuated virus
Recombinant MOPV with NPExoN
and NW arenavirus GPCs MOPEVACNEW Whole virus Cynomolgus macaques

(100% protection) Preclinical Potential as
multivalent vaccine

SABV BzHF Recombinant live-attenuated virus

Recombinant MOPV with NPExoN
and NW arenavirus GPCs MOPEVACNEW Whole virus No data Preclinical Potential as

multivalent vaccine

Need to be verified
in animal
experiments

CHAPV CHF Recombinant live-attenuated virus

Recombinant MOPV with NPExoN
and NW arenavirus GPCs MOPEVACNEW Whole virus No data Preclinical Potential as

multivalent vaccine

Need to be verified
in animal
experiments
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5.2.1. Vaccine Candidates for AHF

Vaccine candidates for AHF have been studied in the past, including formalin-inactivated
viruses or a heterologous virus, TCRV. Among these, live-attenuated viruses have been used
successfully [8]. The live-attenuated JUNV strain, Candid#1, is the vaccine against AHF,
and was established through the serial passage of the lethal XJ strain of JUNV in guinea
pigs, mouse brains and fetal rhesus monkey lung cells [7–9]. Candid#1 is fully attenuated
and engenders protective immunity against lethal JUNV infection in rhesus macaques,
guinea pigs, and humans [8,91]. Vaccination with Candid#1 has been shown to induce long-
term immunity against JUNV infection [91]. This vaccine became available in Argentina in
1992 to at-risk populations, but has not been approved by the FDA due to concerns about
residual pathogenicity and the possibility of pathogenic reversion. During serial passage,
Candid#1 acquired several mutations throughout its genome, especially within the GPC
gene. The amino acid substitution from phenylalanine to isoleucine at position 427 (F427I)
in the transmembrane domain (TMD) of the GP2 is highly associated with attenuation.
The mutation from tyrosine to alanine at position 168 (T168A) leading to the disruption
of N-glycosylation motif in the GP1 is also related to attenuation mechanisms [92]. Valine
at position 64 of Z has also been reported to contribute to the pathogenicity of the lethal
JUNV Romero strain. Candid#1 has glycine at this position, and the recombinant JUNV
Romero with the V64G mutation in Z is completely attenuated in a guinea pig model [93].
Another report has shown that an amino acid substitution from lysine to serine at position
33 (K33S) in the SSP of JUNV Candid#1 GPC suppresses a reversion mutation at 427 (I427F)
in GPC [56,94]. These findings could lead to the development of a vaccine candidate that is
safer and more stable than the conventional JUNV Candid #1 vaccine strain.

Other approaches including DNA vaccines, recombinant virus vector vaccines, or recom-
binant viral proteins have also been investigated [95]. Tri-segmented recombinant MACV
(r3MACV) consisting of two S segments containing the GPC genes of MACV, GTOV, and
CHAPV, and one L segment originating from MACV, have been established using reverse
genetics techniques [96]. r3MACV has been shown to induce host type-I IFN responses
in vitro as well as to protect 50% of Hartley guinea pigs from a simultaneous lethal JUNV
challenge [96]. Although its immune induction properties and protective effect for MACV,
GTOV, and CHAPV infections are still unclear, r3MACV might be a strong candidate as a
pan-NW arenavirus vaccine. MOPEVAC expressing MACV GPC (MOPEVACMACV) and
the pentavalent MOPEVAC vaccine candidate expressing GPCs from all pathogenic South
American NW arenaviruses (MOPEVACNEW) induce cross-neutralizing antibodies against
JUNV in cynomolgus macaques after boost immunization [34].

5.2.2. Vaccine Candidates for BHF

MACV is genetically closely related to JUNV, and vaccine candidates are being de-
veloped for MACV using similar approaches as those used for JUNV. The GPC of JUNV
and MACV share structural characteristics such as similarities of N-linked glycosylation
motif positions and a phenylalanine at position 438 within the MACV GPC, corresponding
to the phenylalanine at position 427 of JUNV GPC [97,98]. Recombinant live-attenuated
MACV vaccine candidates have been inspired by the attenuation mechanisms of the
JUNV Candid#1 strain. A recombinant MACV, artificially substituted with the GPC of
JUNV Candid#1 (rMACV/Cd#1-GPC), is fully attenuated in IFN-αβ/γ R−/− mice, which
succumb to parental MACV infection. The rMACV/Cd#1-GPC is immunogenic and in-
duces sufficient protection against subsequent lethal challenge with MACV in this mouse
model [97]. N-linked glycosylation at positions 83 (N83) and 166 (N166) on the GPC are
also involved in the pathogenicity of MACV [97,98]. A recombinant MACV was formulated
using an F438I substitution to disrupt these N-linked glycosylation sites within the GPC
(MACV∆N83/∆N166/F438I). This recombinant virus is fully attenuated in IFN-αβ/γ
R−/− mice and outbred Hartley guinea pigs [98]. Notably, MACV∆N83/∆N166/F438I
has a reduced ability to propagate in neuronal cell lines, indicating a lower risk of neu-
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ropathogenicity in recipients. Immunization with this vaccine candidate protects 100% of
guinea pigs from lethal infection of MACV [98].

A variant of the MACV Carvallo strain (Car91) has also been reported to not cause
disease in Hartley guinea pigs [99]. The same study suggests that attenuation of MACV
Car91 is possibly due to loss of a portion of the L segment IGR [99]. Immunization
with MACV Car91 induces high neutralizing antibody titers, but its protective effect
against lethal MACV infection remains unknown [99]. Other vaccine candidates under
investigation include DNA vaccines and alphavirus replicon vectors. A DNA vaccine
candidate encoding the MACV GPC gene induced neutralizing antibodies in immunized
rabbits [100]. An alphavirus RNA replicon vector simultaneously expressing both the JUNV
and MACV GPC has been established using a Venezuelan equine encephalitis (VEEV) TC-
83 vector. This vaccine candidate is safe and immunogenic in Hartley guinea pigs, inducing
complete protection against lethal JUNV or MACV infections [101]. Both MOPEVACMACV
and MOPEVACNEW induce neutralizing antibodies against MACV and protect cynomolgus
macaques from lethal MACV infection [34].

5.2.3. Vaccine Candidates for the Other Arenavirus Infections

There are also limited reports of vaccine candidates for the more minor arenavirus
infections. A DNA vaccine candidate encoding the GTOV GPC gene induced homologous
neutralizing antibodies in immunized rabbits [100]. Passive immunization with a cocktail
of anti-JUNV, -MACV, and -GTOV IgG antibodies from DNA-vaccinated rabbits protected
100% of Hartley guinea pigs against lethal JUNV or GTOV infection. In addition, a com-
bination of DNA plasmids encoding the GPC of JUNV, MACV, GTOV, and Sabia virus
(SABV) was used to simultaneously vaccinate rabbits, resulting in sera that neutralized
all four targets [100]. The protectiveness of this DNA vaccine candidate against lethal
GTOV infection has not been revealed. Further development of this vaccine is important,
as it may serve as a better platform for VHF vaccine development, since DNA vaccines
can be designed to specifically activate antibody and/or T-cell responses. This vaccine
candidate has the advantage of convenience in design and antigen combination and retains
the potential to be a pan-arenavirus vaccine candidate. However, the limitations surround-
ing the practical availability of equipment required to administer DNA vaccines versus
other vaccine platforms must be considered. MOPEVACNEW is also reported to induce
cross-neutralizing antibodies against GTOV, CHAPV, SABV and sterile protection against
GTOV in cynomolgus macaques [34]. Although evaluation of its protection using JUNV,
CHAPV, or SABV infected animal models is needed, MOPEVACNEW could have potential
as a multivalent vaccine against pathogenic NW arenaviruses. Unfortunately, there are no
vaccine development reports to date for LF.

6. Issues Hindering the Development of Vaccines against Other Arenavirus Infections

Several vaccine candidates against LF, AHF, and BHF have been developed, as described
above. However, vaccine developments for some arenavirus infections including LHF, VHF,
BzHF, and CHF are still lacking. This disparity may be due in part to their relative rarity and
the fact that only a limited number of research facilities are permitted to handle these viruses
due to their high pathogenicity. To overcome these limitations, studies have been conducted
using alternative arenaviruses, such as LCMV, TCRV, and PICV that are less or not pathogenic
to humans and are available for use in BSL-2 or 3 facilities [88,102–105].

NHPs, such as Cynomolgus and Rhesus macaques, are considered biologically close to
humans and are accordingly deemed “gold standard” animal models for arenavirus infec-
tions [8,51,52,106–108]. However, research with NHPs is limited due to their high cost and
the numerous safety considerations that must be addressed when handling them in high-
containment laboratories. Instead of NHP models, rodent models have been thoroughly
utilized in studies focused on viral pathogenicity and vaccine development [71,98,109–111].
Since there are other excellent articles on animal models of LASV and JUNV
infections [55,112–115], we describe animal models used to study other arenavirus infec-
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tions. Unfortunately, a lack of established animal models for SABV and CHAPV infection
remains a major barrier to research with these viruses. However, animal models for MACV
and GTOV have been developed [116–118]. Infection with the MACV Chicava strain in-
duces 100% lethal outcomes in Hartley guinea pigs [116]. The guinea pig has also been
used as an animal model for VHF [117]. Both strain 13 and Hartley guinea pigs develop
lethal outcomes after GTOV infection [118]. Rhesus monkeys are not lethally infected by
GTOV, and high titers of neutralizing antibodies have been detected in these animals [118].
Strain 13 guinea pigs are also reported to show lethal outcomes after LUJV infection [119].
No animal models for BzHF and CHF, caused by SABV and CHAPV, respectively, have
been established to date. Similar to the other animal models for arenavirus hemorrhagic
fevers, strain 13 or Hartley guinea pigs are expected to be appropriate models for the
vaccine development, although no work has been published to confirm this at the time of
writing. The pathogenicity of SABV and CHAPV has also not yet been evaluated using
NHP models. Development of these animal models is urgently needed; a novel strain of
SABV has been isolated from hemorrhagic fever patients in 2019, and furthering vaccine
development is crucial.

7. Conclusions

Arenavirus infections are severe infectious diseases threatening both human life and
public health. The establishment of preventatives, therapeutics, and vaccine candidates
is essential for the improvement of public health and the avoidance of these threats. The
remarkable development of LF vaccines in recent years raises hope for use of the first LF
vaccine within endemic areas. However, this hope is unlikely to become reality within the next
few years, as the number of LF vaccine candidates undergoing clinical trials is very limited.
As for other arenaviruses other than LASV and JUNV, vaccine development has significantly
lagged. Despite these viruses causing a limited number of clinical cases, the local population
within endemic areas remains at risk of fatal infection. Development of vaccines for these
diseases, perhaps utilizing the knowledge gained from LF and AHF vaccine development,
is urgently needed to protect these endemic regions. The application of these findings may
require the development of new animal models and new vaccine platforms may need to be
developed. Ideal vaccines for arenavirus infection should be established to be safe, provide
lifetime immunity with a single administration, as well as induce broad and highly protective
immunity against pathogenic arenavirus infections. We should continue our research with a
broad perspective and deep insight to achieve this goal.
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