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Abstract: Clinical manifestations from primary COVID infection in children are generally less severe
as compared to adults, and severe pediatric cases occur predominantly in children with underlying
medical conditions. However, despite the lower incidence of disease severity, the burden of COVID-19
in children is not negligible. Throughout the course of the pandemic, the case incidence in children
has substantially increased, with estimated cumulative rates of SARS-CoV-2 infection and COVID-19
symptomatic illness in children comparable to those in adults. Vaccination is a key approach to
enhance immunogenicity and protection against SARS-CoV-2. Although the immune system of
children is functionally distinct from that of other age groups, vaccine development specific for the
pediatric population has mostly been limited to dose-titration of formulations that were developed
primarily for adults. In this review, we summarize the literature pertaining to age-specific differences
in COVID-19 pathogenesis and clinical manifestation. In addition, we review molecular distinctions
in how the early life immune system responds to infection and vaccination. Finally, we discuss recent
advances in development of pediatric COVID-19 vaccines and provide future directions for basic and
translational research in this area.
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1. Introduction

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is an enveloped
single-stranded, positive-sense ribonucleic acid (ssRNA+) coronavirus that belongs to
the family of Coronaviridae [1]. The coronavirus disease (COVID-19) manifests itself
as mild–moderate symptoms, such as coughing, muscle fatigue and fever to severe res-
piratory failure that requires ICU care and ventilation [2]. In children, however, clini-
cal manifestations from primary COVID infection mostly remain limited. Severe pedi-
atric cases occur predominantly in children with underlying medical conditions such
as cardiac and circulatory congenital anomalies, type I diabetes [3] and asthma [4]. De-
spite the lower incidence of disease severity, the burden of COVID-19 in children is not
negligible. With a growing proportion of older Americans vaccinated, and the rise of
delta and omicron variants, case incidence in children has substantially increased with
estimated cumulative rates of SARS-CoV-2 infection and COVID-19 symptomatic ill-
ness in children aged 5–17 years comparable to those in adults aged 18–49 and higher
than those in adults aged > 50 years [5,6]. Per the U.S. Centers for Disease Control
(CDC), there have been >800 pediatric COVID deaths in the U.S. alone. The Ameri-
can Academy of Pediatrics (AAP) indicates that, as of 25 August 2022, 14,448,622 total
child COVID-19 cases were reported, and children represented 18.4% of all reported
cases (https://www.aap.org/en/pages/2019-novel-coronavirus-COVID-19-infections/
children-and-COVID-19-state-level-data-report, accessed on 29 November 2022). Children,
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and especially young infants, can spread SARS-CoV-2 to older individuals including par-
ents, grandparents, and teachers [7]. Although SARS-CoV-2 virus shedding varies among
individuals [8], infected children can shed SARS-CoV-2 virus with nasopharyngeal viral
loads comparable to or higher than those in adults [9,10]. Emerging literature on pediatric
COVID-19 is focused on finding an explanation for the lower severity of infection observed
in this population [11–13]. While a definitive answer to this query is unknown, age-related
differences in immune system function may explain the higher susceptibility to serious
events in adults.

The immune response to infections or vaccinations varies with age, especially during
childhood. Functional distinctions in immune cell behavior have been demonstrated by
our group and others, reflecting unique age-dependent challenges including gestation, the
neonatal phase, and infancy [14–22]. Activation of the innate immune system through
Pattern-recognition receptors (PRRs), such as Toll-like Receptors (TLRs), differs markedly
with age. The magnitude of cytokine production in response to most TLR ligands is
impaired in newborns and infants [18,23], with the exception of TLR7/8 ligands [24,25].

A key feature of the distinct innate responses in early life is that the production of cy-
tokines is polarized towards high production of T-helper-2 promoting or anti-inflammatory
cytokine such as IL-6 and IL-10 [19,26], and is impaired in the production of key T-helper 1
promoting cytokines such as TNF and IL-12p70 [15,27]. Similarly, human and murine neonatal
macrophage production of immunosuppressive IL-27, a heterodimeric cytokine of the IL-12
family, peaks during infancy [28]. Because IL-12p70 is predominantly derived from circulating
dendritic cells, the slow maturation of IL-12p70 synthetic capacity in the childhood years can
be attributed to reduced numbers and/or functionality of these dendritic cells [29]. Changes
during childhood in adaptive immune responses include a reduced capacity in antigen inter-
nalization, processing, MHC II presentation, and subsequent stimulation of antigen-specific
CD4+ T cell responses [30,31]. The resulting impairment in early life to promote T-helper 1
immunity to novel pathogens can prime the immune system of children to the preferential
induction of a tolerogenic or sometimes detrimental T-helper 2 response [29,32,33]. While
these intrinsic features of the developing immune system may have proven disadvantageous
in the context of other respiratory viruses such as RSV [34–38], it has been postulated that
in the context of SARS-CoV-2 this may contribute to reduced disease burden in this age
group [11]. In addition, investigation into the age-specific differences in pathology and im-
mune response to infection could contribute to improved future vaccine formulations tailored
for children. Therefore, this article aims to systematically review age-dependent molecular
determinants that could inform future COVID-19 pediatric vaccine development. The search
criteria illustrated in Figure 1 resulted in a collection of 69 original research manuscripts
that were included into the narrative synthesis of this review and were supplemented with
references to additional work for contextualization. The search criteria, as well as the review
itself, are centered around two main questions. The first was, can we identify changes with
age in molecular determinants that contribute to susceptibility and pathogenesis? The second
question was, can we identify changes with age in immune cell functionality that contribute
to efficacy and durability of vaccination against SARS-CoV-2? Understanding the molecular
distinctions in SARS-CoV-2 pathogenesis and vaccine responses between children and adults
could directly inform future development of vaccine formulations tailored for early life.
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Figure 1. A PRISMA diagram illustrating the criteria for inclusion of original research publications
that were included in the narrative synthesis of this review.

2. Infection
2.1. Pathogenesis

The first step in the pathogenesis of COVID-19 after invasion is receptor recognition.
SARS-CoV-2 is covered by many transmembrane Spike (S) glycoproteins. The S protein
consists of two functional subunits, S1 and S2, which are responsible for receptor binding
and membrane fusion, respectively [39]. The S1 subunit contains a receptor-binding
domain (RBD) that specifically recognizes angiotensin-converting enzyme (ACE2) as its
cellular receptor. The ACE2 receptor is widespread and distributed throughout human
epithelial tissues, such as the nasal and oral mucosa, lungs, and heart [40]. It is argued
that SARS-CoV-2 can enter the target cell via the cell surface or through endocytosis.
Subsequently, the S-protein is cleaved by either the membrane-anchored serine protease
TMPRSS2 or by lysosomal cathepsins [41,42]. It has been suggested that the cell surface
receptor Neuropilin-1 (Nrp1) facilitates an earlier separation of the S-protein and therefore
may influence virus infectivity [43]. Proteolytic cleavage induces conformational changes
within the S2 unit leading to viral and host cell membrane fusion [44]. Interestingly, it has
been described that the omicron variant favors the endosomal pathway over TMPRSS2-
mediated entry [45]. This entry preference is probably due to a mutational reorganization
of the S1-S2 cleavage site of its spike protein causing impaired fusion capability [46]. Other
mutations in the RBD of the omicron strain are believed to be associated with decreased
ACE2 binding affinity [47]. These observations may explain the lower pathogenicity
observed in the omicron variant compared to the delta variant. Upon cell entry, viral
contents are released into the target cell following viral RNA replication, transcription,
and translation. Further processing of the S protein is conducted by furin prior to the
release of new viruses into the extracellular space [41]. It should be noted that there are
multiple proteases involved in the activation of the S protein that operate at distinct sites.
The exact molecular entry and replication mechanism of SARS-CoV-2 is a complex process
and therefore remains to be fully elucidated.

2.2. Clinical Presentation (Children vs. Adults)

Global vaccine strategy efforts have led to a significant reduction of symptoms in
COVID-19-infected individuals [48]. Clinical features rely inter alia on vaccination status,
comorbidities, and other determinants of health such as residential area and age. Among the
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fully vaccinated, sore throat, cough, and fever are still predominant signs of delta-variant-
infected individuals [48]. Interestingly, asymptomatic cases are frequently observed among
the elderly (60 years or older) who are fully vaccinated [49]. In contrast, unvaccinated
delta variant patients show a varying set of clinical features such as shortness of breath,
gastrointestinal problems, olfactory impairment, and headache [50].

The omicron strain was named the fifth variant of concern by the World Health Organiza-
tion [51]. From a clinical perspective, omicron infections are associated with a significant lower
risk of severe disease when compared with delta variant infections [52]. This observation
supports the difference in pathogenesis between these strains as described earlier.

In its most severe form, an infection with COVID-19 could lead to an unfettered
release of pro-inflammatory cytokines. This so-called cytokine storm is mainly observed in
COVID-19 patients with severe infection [53]. In these patients, the hyperactive immune
activation may progress to acute respiratory stress syndrome (ARDS) and multiple organ
dysfunctions [54] and eventually death.

The course of infection in children is usually asymptomatic or mild. Pediatric symp-
toms may vary and depend on different factors. In most cases, however, clinical fea-
tures include classic flu-like symptoms such as pyrexia, sore throat, nasal congestion,
and cough [12]. Besides the involvement of the upper airways, other organs such as the
gastrointestinal system and the central nervous system could be affected. While most
children experience an uneventful course, a small percentage develop multisystem inflam-
matory syndrome (MIS-C). This potentially life-threatening disease is characterized by an
excessive immune reaction and typically manifests itself two to six weeks after COVID-19
infection [55]. In these patients, main symptoms include fever, and gastrointestinal and
abdominal pain. Cardiac manifestations such as myocarditis and arrhythmias are also com-
mon [56]. Notably, respiratory tract involvement is not prevalent in MIS-C patients, which
may help distinguish MIS-C from severe COVID-19 illness. Due to its clinical similarities,
MIS-C was initially called Kawasaki-like disease. However, emerging literature points
out interesting differences between these two conditions. For example, immunological
research showed that children with MIS-C harbor a different cytokine profile in contrast
to children who suffer from Kawasaki disease, suggesting a difference in underlying im-
munopathology [57,58]. In support of the foregoing, autoantibody responses involved
in Kawasaki syndrome show clear differences when compared to autoantibody profiles
in MIS-C patients [59]. It should be noted, however, that sample sizes included in these
studies were small and further research should determine whether the previous findings
are valid.

2.3. Differences in Entry Mechanisms between Children and Adults

As stated in the previous chapter, SARS-CoV-2 may enter the target through the
endosomal pathway or via TMPRSS2. Expression of TMPRSS2 is age-determined (Table 1,
Figure 2), and alternative entry mechanisms in children could therefore be dominant. It
should be noted that cells expressing both ACE2 and TMPRSS2 in infants are scarce [60],
which could offer a protective mechanism against strains that prefer TMPRSS2-mediated
entry. Another study also found lower TMPRSS2 expression in airway cells from children
(age 0–17), but noted a higher expression of ACE2 [61].

Table 1 shows that TNFα-converting enzyme (TACE) expression is lower in children
than in adults. TACE causes membrane-bound ACE2 to ‘shed’ from endothelial cells,
generating its soluble and enzymatically active form. While the impact of soluble ACE2
(sACE2) on viral entry remains poorly understood, it has been suggested that sACE2
facilitates viral entry and thus promotes disease severity [62,63]. However, contradictory
findings show that high sACE2 levels offer protection against SARS-CoV-2 [64]. In support
of this hypothesis, newborns and infants exhibit higher sACE2 levels than adults [65].
Furthermore, studies have demonstrated that pro-inflammatory cytokines such as Il-1β
and TNFα enhance ACE2 shedding. The levels of these cytokines are higher in children
infected with SARS-CoV-2 compared to their infected adult counterparts (Table 2, Figure 2).
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Therefore, these molecules may enhance protectivity by providing greater resistance to
SARS-CoV-2 in the pediatric population, if high sACE2 levels are in fact correlated with
reduced infectability.
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Table 1. Expression of molecular determinants related to viral entry in COVID-19 in children and adults.

Molecule Expression in Children versus Adults

ACE2
Lower in children than in adults [66,67],

Higher in children than in adults [68]
higher in children than older (>50 years) adults [69]

TMPRSS2 Lower in children than in adults [66,70]
ADAM17 (TACE) Lower in children than in adults [71]

2.4. Cytokine Profiles and Innate Immunity in Children versus Adults

The clinical condition of adults with COVID-19 depends on cytokine activity and, there-
fore, understanding cytokine dysregulation is essential in improving clinical outcomes. How-
ever, in children, there seems to be no clear connection between cytokine reactivity and disease
severity. In fact, cytokines may contribute to immune protection in children as suggested in
the previous paragraph. Table 2 shows that Il-17A levels are elevated in COVID-19-infected
infants compared to adults. IL-17A is a proinflammatory cytokine produced by different
cell types such as natural-killer cells (NK cells), CD4+ T cells, and CD8+ T cells. While IL-
17A-induced inflammation in adults is correlated with worse disease outcomes, this has not
been observed in the pediatric population [72], and this study suggests that IL-17A or IL-17A
producing cells may play a protective role in children. The functional status of NK cells in
adults, which deteriorates as part of the aging process and following COVID-19 infectivity,
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could contribute to this difference [73,74]. Furthermore, effector cytokines such as IFNα and
TNFα, both produced by NK cells among others, are decreased in adults (Table 2). In support
of the foregoing, NK cell levels increase with age and adults with COVID-19 exhibit lower
absolute NK cell counts compared to their healthy counterparts.

Another age-associated change in innate immunity is impaired pattern recognition re-
ceptor (PRR) signaling. Studies have shown that SARS-CoV-2 molecules activate the innate
immune system through toll-like receptors (TLRs) [75,76]. TLR-induced cytokine produc-
tion is decreased in elders, both originated from monocyte-derived dendritic cells (MoDcs)
and plasmacytoid dendritic cells (pDcs) [77]. Conversely, cytokine storm is associated
with overactivation of TLR pathways in adults. It is unclear whether this overwhelming
response also promotes the development of MIS-C in children. However, aging is char-
acterized by remodeling of the immune system, resulting in a higher pro-inflammatory
tonus, which could contribute to the excessive TLR response in adults. The importance
of a functional balance in TLR activity also relates to the production of interferons (IFNs).
IFN production by TLR activation is important to impede virus replication. Type I and II
IFN responses in the upper airways are more robust in pediatric than in adult patients,
while this is shown to be the opposite for systemic IFN responses [78,79]. Vigorous local
IFN responses may account for creating a strong barrier against systemic viral entry and
replication in the pediatric population. On the contrary, systemically imbalanced and
delayed IFN responses in adults may further contribute to disease progression [80,81].

2.5. Adaptive Immunity in Children versus Adults

Evidence indicates that T cells play a major role in the elimination of SARS-CoV-2
infection [82]. In our previous work, we explained functional differences in CD8+ T cell
responses between the young and older population. For example, thymic involution in aging
results in shrinkage of the naïve CD8+ T cell compartment and reduced T cell receptor (TCR)
diversity [22]. Furthermore, continuous antigenic stimulation can lead to T cell exhaustion,
resulting in impaired intracellular TCR signaling. Molecular markers on T cells potentially
involved in exhaustion, such as Tim-3 and PD-1, have been linked to disease progression [83].
Considering the foregoing, recent work shows that pediatric patients react with increased
magnitude of SARS-CoV-2-specific CD4+ and CD8+ T cell responses compared to adults [84].
It is noteworthy that opposite findings have also been reported [85,86], which could be
due to small sample sizes and variance within groups. Even if adults and children are
capable of mounting equivalent SARS-CoV-2-specific T cell responses, distinctions in IFN
signaling in adults could negatively affect the cytokine response, leading to impaired T cell
activity [87]. In addition to differences in T cell responses between young and adult patients,
lower T cell frequencies have been observed in older (>60 years) patients [83], but data
showing no significant differences in absolute T cell counts between age groups have also been
reported [88]. Reduction in total T cell counts in adults is associated with poor outcomes [83].
In support of the latter, it has been demonstrated that T cells from COVID-19-infected patients
are more likely to undergo apoptosis and contribute to lymphopenia [89]. Interestingly, a
study observed mitochondria-mediated T cell apoptosis, induced by elevated levels of IL-6
and TNFα, in adult but not in child COVID-19 patients [90]. Again, underlying age-dependent
differences in the immune system such as increased mitochondrial accumulation and reduced
autophagy have been suggested to play a part in this difference [90]. Interestingly, some of
the cytokines reported to be induced less in early life in response to SARS-CoV-2 infection,
including IL-2, IL-10, and TNFα, were also correlated with more severe COVID-19 disease
in adult patients [91]. An interesting concept that was postulated recently is the idea that
energy allocation trade-offs between immune responses and child growth likely favor growth
unless SARS-CoV-2 represents a serious threat to survival. The resulting decision to mount an
inflammatory response to a SARS-CoV-2, or conversely, to tolerate it, could be different in a
growing child as compared with an adult [92]. Although this is a plausible concept, it would
prove challenging to demonstrate evidence towards this concept, especially because children
and adults often experienced different levels of sequestering and social distancing/masking
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during the pandemic, potentially creating a bias in exposure to strains with variable levels of
virulence, as well as exposure to other pathogens such as RSV.

The role of B cell immunity in COVID-19 remains a matter of debate. Evidence
in the literature regarding antibody titers, antibody classes, and isotypes is conflicting.
Weisberg et al. (2021) observed that infants mainly produced IgG antibodies against the
S protein while adults exhibited a more expanded breadth of anti-SARS-CoV-2-specific
antibodies [93]. They also found an overall lower neutralizing antibody response in the
pediatric population while opposite findings have also been indicated [94]. Differences in
age group range between these studies could explain these opposite observations. Another
study demonstrated similar antibody responses against viral proteins between children
and adults [84]. Interestingly, a recent cohort study published in JAMA Network Open
found that only a small percentage of COVID-19-infected children produced antibodies
against SARS-CoV-2 compared to the adult cohort, despite similar viral loads [95]. It can be
postulated that the increased inflammatory state in adults, together with impaired features
in T cell immunity, would stimulate the humoral response. In addition, the immune re-
sponse in children may be driven by innate immunity explaining low antibody titers in this
population. In contrast, a new study published in the same scientific journal demonstrated
significantly higher spike receptor-binding domain (S-RBD) IgG antibody concentrations
in especially young children (younger than 3 years) than adults at different time intervals
despite weak cross-reactivity to other human coronaviruses (hCov) [96]. These antibody
titers remained detectable up to 1 year after infection. The results of this study align with a
large prospective multi-center study on the quality and durability of the humoral response
between children and adults against SARS-CoV-2 [97]. Preexisting exposure to seasonal
hCoV may contribute to a cross-reactive antibody response in children resulting in higher
antibody levels [98]. However, limited pre-existing cross-reactive antibodies against hCoV
in healthy children and adults has been observed [99,100]. Understanding the role of pre-
existing immunity in COVID-19 may provide important insights into pediatric vaccination
strategies and should be further researched.

Table 2. Expression of immunological determinants related to disease outcome in COVID-19 in
children and adults.

Molecule Adults/Children with COVID-19 Possible Impact on Outcome (Negative or
Positive)

Il-6 Higher in adults than in children [101–105] None in children [106,107]/negative in
adults [108–110]

Il-8 Unknown Negative in adults [110]

Il-10 Higher in adults than in children [101]
No differences [102] Negative in adults [109,111]

Il-2 Higher in adults than in children [102] None in children [107]
Il-7 ? Negative in adults [111]
Il-5 Higher in adults than in children [101]

TNFα Higher in children than in adults [86]
No differences [102,105] None in children [106,107]

TGFβ ? Negative in adults [112]

IL-17A Higher in children than in adults [86,113] Negative in adults [114]
None in children [72]

IFNγ
Higher in children than in adults [86]

No differences [102,105]
Negative in adults [115]
None in children [107]

NF-kb ? Negative in adults [116]
Il-12 Higher in children than in adults [101]
IL-1β Higher in children than in adults [101]

CD25+ (on CD4+ cells) Higher expression in adults than in children [86]
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3. Immune Response to Immunization

Currently available COVID-19 vaccines for adults in the United States are based on
mRNA (Pfizer-BioNTech and Moderna), subunit (Novavax), and viral vector (J&J/Janssen)
technology. Worldwide, vaccines have been made available for pediatric use (16 or
younger) in most countries, although the age groups for which eligibility is defined can
vary greatly [117]. To date, the Pfizer-BioNTech COVID-19 vaccine (BNT162b2) is the
only vaccine approved by the Food and Drug Administration (FDA) for individuals aged
12–17 years in the U.S. In this age group, vaccine efficacy was shown to be similar as in
adults, with only mild/moderate reactogenicity and no serious adverse events [118]. Fur-
thermore, in June 2022, the FDA granted an emergency use authorization for BNT162b2 and
the Moderna vaccine in individuals aged 6 months to 5 years [119]. While the ingredients
in these pediatric vaccines do not differ from the adult formulations, age-specific dose
adjustments have been made. Studies in children aged 6 years and older have labeled
BNT162b2 as safe and highly efficacious with neutralizing titers and spike-specific IgG
responses similar to adults [118,120,121]. However, it is worth noticing that these trials
were conducted during the delta wave. Vaccine efficacy studies in 5-to-11-year-olds and
adults during the omicron surge have demonstrated a decline in vaccine protection [122],
potentially caused by waning immunity [94,123,124]. This is not entirely surprising, since
the omicron strain consists of multiple mutations in the RBD that could explain immune
evasion [125]. Interestingly, however, this decrease in efficacy appears to be faster in
5–11-year-olds compared to adolescents [126,127].

Age-dependent differences in immune responses after vaccination could contribute
to these distinct observations. Considering future pediatric COVID-19 vaccine develop-
ment, it is essential to understand the differences in immunological mechanisms following
vaccination between adults and children. However, the literature on innate and adap-
tive responses to BNT162b2 is less prevalent in children as compared to adults, although
this is a rapidly developing field of study [128–130]. In adults, BNT162b2 vaccination
has proven to stimulate the innate immune response mainly characterized by circulating
IFNγ, which enhances after the secondary dose [131]. Furthermore, vaccination induces
spike-specific CD4+ and CD8+ T cell and neutralizing antibody responses. Consistent with
these observations, murine models have shown similar immune responses to BNT162b2
vaccination [132]. In these models, NK-cells and CD8+ T cells were perceived as the drivers
behind IFNγ production.

As described earlier, age-dependent molecular distinctions in immune response
against COVID-19 likely contribute to the milder course of infection in children. Research
should reveal whether COVID-19 vaccination in children induces different immune re-
sponses compared to their adult counterparts to further optimize vaccine efficacy. By
extension, the immunostimulatory properties of the mRNA or the lipid nanocarrier that
can provoke the innate immune system may differ between age groups. Insight into the
understanding of the adjuvant mechanisms of mRNA vaccine formulations could further
contribute to COVID-19 vaccine development and may ultimately plead for more tailored
COVID-19 vaccines as opposed to a one size fits all approach.

4. Concluding Remarks and Future Directions

In this article we aimed to integrate our understanding of age-dependent immunolog-
ical differences which could contribute to future pediatric vaccine development against
COVID-19. An important limitation of this review is that the field of pediatric vaccine
development for SARS-CoV-2 develops very fast. Therefore, we have tried to emphasize
those studies and observations that are thoroughly supported by robust study design
and confirmation by other studies, to prevent our review from becoming outdated. It is
evident that adaptive immune responses significantly change as age increases. Together
with factors affecting innate immunity such as NK cell senescence and functionally distinct
PRR responses as described previously [16,17,23,37,133–137], generating similar immune
responses in adults and children seems challenging. Maturation of the innate and adaptive
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immune system in adults may partly explain the more favorable prognosis in children
after an infection with COVID-19. While the course of COVID-19 infection differs between
adults and children, the composition of the BNT162b2 vaccine, which to date is the only
COVID-19 vaccine registered for both adults and children aged 12–17 years, is the same.
This may imply that the molecular mechanisms underlying immune protection following
immunization in children and adults are equal. However, based on our understanding of
the distinct immunological features that protect children from severe disease, this notion
could be challenged. Therefore, it is essential to conduct research on the mechanisms of the
immune response in children following COVID-19 vaccination. Furthermore, mechanistic
studies could provide insights into the involvement of humoral immunity in SARS-CoV-2
clearance. Data regarding the contribution of B cell immunity in response to COVID-19
infection across age groups are scattered thus far. Tailor-made vaccine formulations that
take these factors into account may offer better protection, which becomes more important
when mutant variants may fuel a new surge of COVID-19.
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