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Abstract: The SARS-CoV-2 delta variant (B.1.617.2) appeared for the first time in December 2020
and later spread worldwide. Currently available vaccines are not so efficacious in curbing the viral
pathogenesis of the delta strain of COVID; therefore, the development of a safe and effective vaccine
is required. In the present study, we envisaged molecular patterns in the structural genes’ spike,
nucleoprotein, membrane, and envelope of the SARS-CoV-2 delta variant. The study was based on
determining compositional features, dinucleotide odds ratio, synonymous codon usage, positive and
negative codon contexts, rare codons, and insight into relatedness between the human host isoacceptor
tRNA and preferred codons from the structural genes. We found specific patterns, including a
significant abundance of T nucleotide over all other three nucleotides. The underrepresentation of
GpA, GpG, CpC, and CpG dinucleotides and the overrepresentation of TpT, ApA, CpT, and TpG
were observed. A preference towards ACT- (Thr), AAT- (Asn), TTT- (Phe), and TTG- (Leu) initiated
codons and aversion towards CGG (Arg), CCG (Pro), and CAC (His) was present in the structural
genes of the delta strain. The interaction between the host tRNA pool and preferred codons of
the envisaged structural genes revealed that the virus preferred the codons for those suboptimal
numbers of isoacceptor tRNA were present. We see this as a strategy adapted by the virus to keep the
translation rate low to facilitate the correct folding of viral proteins. The information generated in the
study helps design the attenuated vaccine candidate against the SARS-CoV-2 delta variant using a
synthetic biology approach. Three strategies were tested: changing TpT to TpA, introducing rare
codons, and disrupting favored codons. It found that disrupting favored codons is a better approach
to reducing virus fitness and attenuating SARS-CoV-2 delta strain using structural genes.

Keywords: synthetic biology; SARS-CoV-2 delta vaccine candidate; codon optimization; rare codon;
codon pair; codon context

1. Introduction

Classically the live attenuated vaccine candidates are prepared through serially pas-
saging it in non-optimal conditions, which leads to the attenuation of the virus [1]. Vaccine
candidate generation through this method is a lengthy and stochastic process. For human
poliovirus, the Sabin vaccine, and for the Rinderpest virus, the Plowright vaccine has
been developed. Some key mutations are responsible for virus attenuation. However,
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during serial passages, reversion to the wild-type phenotype through reversion in those
small number of key attenuation mutations is possible, resulting in loss of attenuation and
remains the major problem with such vaccine candidates [2]. It has been documented in the
Polio virus [3], Infectious Bursal Disease virus [4], Canine Distemper Virus [5], and highly
pathogenic Porcine Reproductive and Respiratory Syndrome virus [6] also. Novel strategies
are based on introducing a large number of mutations that individually impart little role
in reducing the replicative fitness but cumulatively generate significant attenuation with
relatively high genetic stability [7,8].

Two or more than two codons code an amino acid called synonymous codons. These
codons are not used equally, and unequal usage is referred to as codon bias. This biological
phenomenon of codon bias may be used for both codon optimization (CO) and deopti-
mization (CD). The CO, on the one hand where optimal codons are used; on the other
hand, in CD, original codons are replaced with less-preferred codons [9]. The feasibility
of generation of attenuated viruses by codon deoptimization has been shown in the in-
fluenza A virus [10], arenaviruses lymphocytic choriomeningitis virus [11], Lassa virus [12],
ΦX174 [13], respiratory syncytial virus [14], and human immunodeficiency virus type
1 virus [15]. Contrarily, despite enhancing protein production, adenovirus fiber protein
codon optimization resulted in virus attenuation [16]. Similarly, in RSV, lowered replicative
ability of codon-optimized virus has been observed in mice [14].

The goal of recoding the virus is to modify the dinucleotide, codon, or codon pair
composition of the recoded viral genes to produce a replication-competent but attenuated
vaccine candidate. Hundreds of mutations are generated during the recoding of a virus,
but amino acid composition remains the same. Hence recoded viruses antigenically remain
similar to their wild-type parents [17].

Like codon bias, there is a bias present in two adjacent codons also, which is called
codon pair bias (CPB). Codon pairs impact gene expression, and altering the codon pairs
towards the codon pairs which are disfavored by the host or virus itself has been recently
used as a strategy to reduce the replicative virus fitness. The method can produce a new
generation of safer, non-reverting, live attenuated vaccines. Selection for disfavoured CPs
results in unintended increases in CpG and UpA dinucleotide frequencies [18,19]; those are
the target of zinc finger antiviral protein and RNAseL that directly binds to the high CpG
RNA sequences and contribute to virus attenuation [20]. The presence of a large number of
underrepresented codons interferes with protein production or processing, and possibly
physical properties of specific tRNAs, including 3D structures, hamper the optimal fitting
into adjacent aminoacyl- and peptidyl-sites in the translating ribosome [21].

Alpha, Beta, Gamma, Delta, Epsilon, Iota, Kappa, Lambda, and Omicron variants
of SARS-CoV-2 are present. Of these, Alpha, Beta, Gamma, Delta, and Omicron were
declared as variants of concern (VoCs) by the WHO [22]. India experienced a sudden rise
in COVID-19 cases since late march 2021, causing more than 400,000 cases and 4000 deaths
reported each day in early May 2021. The B.1.617.2 (delta) variant was detected for the
first time in India in December 2020 and later became the most commonly reported variant
across the globe [23], and it was associated with global surges in cases, higher viral loads,
longer duration of infectiousness, and high rates of reinfection [24]. Genome sequencing
data also revealed that novel variants caused breakthrough cases, such as alpha (B.1.1.7,
56%), epsilon (B.1.429, 25%), B.1.427 (8%), gamma (P.1, 8%), and beta (B.1.351, 4%) [25],
accounting for 56%, 25%, 8%, 8%, and 4% of breakthrough infection. Contrarily 86.69%
of breakthrough was due to delta [26], pointing to its greater involvement. In vaccinated
and unvaccinated people, the severity of disease on the WHO clinical progression scale
was highest for the delta group, followed by alpha, and least for omicron among adults
admitted to hospitals in the United States [27]. In addition, delta strain infection demanded
more oxygen therapy than Alpha or Omicron [28]. Higher viral loads, longer duration of
infectiousness, high disease severity and requirement of hospital admission and oxygen
therapy, and high rates of post-infection breakthrough prompted authors to investigate
vaccine candidate development against the Delta strain.
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Vaccines are reported to be efficacious against infectious diseases, as shown by clinical
trials [29]. The data suggested that the vaccination gave protection against severe disease
outcomes in the case of the B.1.1.7 (alpha) variant, isolated first in the United Kingdom [30].
For the B.1.351 (beta) variant, effectiveness against the severe disease was reported to be
low; however, it still reduced severe and fatal outcomes in individuals vaccinated with the
BNT162b2 vaccine [31]. The same BNT162b2 vaccine exhibited a high level of neutralization
against the P.1 (gamma) variant [32].

Delta variant possesses mutations in the spike region of the virus (spike protein muta-
tions T19R, ∆157-158, L452R, T478K, D614G, P681R, and D950N). These mutations enable
the delta strain to escape the immune response. The data is limited on protection by vacci-
nation with BNT162b2 and ChAdOx1 nCoV-19 against symptomatic delta strain. David W.
Eyre (2022) [33] reported that two vaccinations with either BNT162b2 or ChAdOx1 nCoV-19
caused a small reduction in delta variant transmission than the alpha variant, as evidenced
by a partial reduction in the PCR Ct values. The effectiveness of the BNT162b2 vaccine
against symptomatic COVID-19 was 57% after the first vaccine dose in adolescents [34].

Furthermore, Luo CH and Morris CP (2021) [35] reported the delta variant as a cause of
higher infectious virus loads in both vaccinated and unvaccinated individuals. Considering
the partial effectiveness of available vaccines against the delta strain, it is essential to design
strategies that effectively target the delta variant. In the present study, we attempted to gain
insights into molecular patterns present in the structural genes (spike (S), nucleoprotein
(N), membrane (M), and envelope (E)) of the COVID delta strain, which can be explored
into the synthetic biology approach to develop a vaccine candidate.

2. Materials and Methods
2.1. Sequence Retrieval

We retrieved the sequences from the National Center for Biotechnological Information
(NCBI) for the SARS-CoV-2 delta strain. The sequences taken were collected between
January 2022 to July 2022. SARS-CoV-2 is the plus-sense, single-stranded viral RNA genome
that encodes open-reading-frames (ORFs) for sixteen non-structural proteins that form the
replication machinery (ORF1a/ORF1b), four structural proteins (spike (S), nucleoprotein
(N), membrane (M) and envelope E)), and seven accessory proteins. Both the structural and
non-structural proteins can be targeted for virus attenuation. Still, we chose to focus on
structural proteins since these proteins are essential for the host cells’ binding and invasion,
and immune response against them will be able to provide an effective barrier against viral
binding and invasion in the host cell.

A total of 190 sequences for each structural gene encoding for the spike, nucleoprotein,
membrane, and envelope were obtained. All selected sequences did not contain any am-
biguous sequences, started with ATG and ended with stop codons TAA, TAG, or TGA, and
were present in a triplet (The accession numbers of the sequences are given in Supplemen-
tary Table S1). For the convenience of study for recoding of envisaged genes, we took the E,
M, NP and S genes from the delta virus strain (assession numberOM982659.1). Sequences
for the E, M, N, and S genes of representative sarbecoviruses were taken from the work of
Llanes et al. (2020) [36] in the study that included Bat SARS-like CoV RaTG13 (MN996532),
Bat SARS-like CoV HKU3 (DQ022305), Bat SARS-like CoV SL-CoVZC45 (MG772933),
Bat SARS-like CoV SL-CoVZXC21 (MG772934), Bat SARS-like CoV WIV1 (KF367457),
SARS-CoV (Human, NC_004718), SARS-CoV (Civet, AY686863), SARS-CoV-2 (Human,
NC_045512), SARS-CoV-2 (Tiger, MT365033), and Pangolin CoV (MT040333). Representa-
tive sequences from VOCs Alpha (MZ622337), Beta (MZ344999), Gamma (MZ477758), and
Omicron (OQ084152) were also included.

2.2. Odds Ratio Analysis

The odds ratio is expected to observe dinucleotide frequency in a given nucleotide
sequence. Various factors affect the odds ratio, including nucleotide composition [37],
evolutionary forces [38], forces required to maintain RNA secondary structures involved in
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splicing and gene expression [39], and forces to evade host defense mechanism (specific
context is CpG where viral pathogens avoid CpG since CpG dinucleotide are perceived as
pathogen-associated molecular patterns by host cells, and viral pathogens tend to decrease
CpG content [40]. For the four genes, the dinucleotide odds ratio was calculated using
DNASTAR Lasergene Inc. An odds ratio value of 0.78 and 1.23 is considered underrepre-
sentation and overrepresentation of dinucleotides, respectively [41].

2.3. Relative Synonymous Codon Usage (RSCU) Analysis

RSCU help in knowing the preferred and non-preferred codons. The relative synony-
mous codon usage (RSCU) is calculated using the formula.

RSCU = S × Nc/Na

where S = the number of synonymous codons encoding the same amino acid.
Nc = the frequency of the codon in the genome.
Na is the relative frequency of the codon for that amino acid.

2.4. Codon Context Analysis

The effects of adjacent sequences on protein translation are called context effects.
There are experimental pieces of evidence suggestive of the effects of context on nonsense
suppression, missense suppression, translational errors, and frameshifting, which is further
supported by statistical analysis that explain that the context around codons is not ran-
dom [42]. Also, the codon context affects translational kinetics [43]. Codon context analysis
was done using Anaconda software 2® [44]. The context was evaluated into the matrix of
64 × 64, where stop codons were included, and the direction was kept 5′ to 3′.

2.5. High Occurring Codon Pairs

The efficient translation is dependent on the usage of codons and codon pairs. Some
synonymous codons are used more in comparison to other codons, which is called codon
bias. Similarly, some codon pairs are also frequently used and referred to as codon pair bias.
An example is codon pair GCA-GAG, which is preferentially used to encode amino acid
pair alanine-glutamic acid compared to GCC-GAA [45]. Both codon deoptimization and
codon pair deoptimization are used to attenuate viruses [9,10,46]. High-occurring codon
pairs were determined by Anaconda 2.0 version assessed on 24 July 2022. The generated
report was trimmed, and the top 20 high-occurring codon pairs were taken.

2.6. Rare Codon Analysis

The usage of rare codons in the reading frame is used to control the translation rates
and adopt an intermediate confirmation to attain proper protein folding [47]. In a few
instances, substituting rare codons with the optimal one resulted in protein misfolding and
affecting solubility [48] and, eventually, loss of biological activity [49]. The presence of rare
codons might be tissue-specific [50] and indicative of translational programming of cell
proliferation [51]. The number of rare codons was calculated for all 4 genes and normalized
to get percent occurrence. An occurrence of less than 0.5% was set as a criterion to be rare
codons, and above than 5% was considered abundant codons.

2.7. Codon Pair Score

Codon pair bias can be quantified using the codon pair score (CPS) statistics [45]. The
codon pair bias (CPB) indicates the bias present in the codon pair, and it is the mean of
the codon pair scores (CPSs) for all of its codon pairs present in an ORF or gene. In turn,
the CPS for each codon pair is the natural log of the ratio of the observed versus expected
frequency of that codon pair [52]. Statistically, underrepresented codon pairs have negative,
and overrepresented codon pairs have positive CPS values. The average CPS of a gene is
calculated as the arithmetic mean of individual CPS values. The lower the value of CPS,
the more the virus will be attenuated.
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2.8. mRNA Stability Calculation

mRNA stability is important in regulating protein expression [53]. Genome-wide
RNA decay analysis revealed that stable mRNA are generally rich in optimal codons and
result in high gene expression, while unstable mRNA encompass predominately non-
optimal codons. In unstable RNAs, more than 60% of the codons are non-optimal [54].
The higher the stability of an mRNA in the cytoplasm, the higher quantities of proteins
will be produced. Several algorithms like mfold, KineFold, and ViennaRNA are used
to predict plausible mRNA structures. The software computes the mRNA thermody-
namic stability value in the form of minimum free energy (MFE), a thermodynamic energy
measurement based on intramolecular stacking, the system’s temperature, entropy, en-
thalpy, and ionic conditions, and hydrogen bond interactions [55]. A lower MFE depicts
more stable mRNA [56], and unstable mRNA structures have more than 60% non-optimal
codons [54]. Less stable transcripts will have fewer negative values, and with more negative
values, better-fit progeny will be generated. The RNAfold server was used to calculate the
transcript’s minimum free energy (MFE).

2.9. Codon Adaptation Index (CAI) Calculation

CAI is a common evaluation measure of protein expression [57]. CAI alone is not
very comprehensive but imperative to determine gene expression [58]. CAI values were
calculated using the CAICal served developed by Puigbò and colleagues [57].

3. Results
3.1. Compositional Features of SARS-CoV-2 Delta Strain Structural Genes Revealed at Richness

The nucleotide composition of any genome is responsible for mutational robustness,
which indicates the capacity to withstand mutations exhibiting no or slight variation in
phenotype upon introducing mutations [59] and influence codon usage [60]. Dispropor-
tionate base composition accounts for much of codon usage in RNA viruses [61]. In the
present study, the structural genes of the delta strain of the SARS-CoV-2 virus were studied
for their nucleotide composition (Table 1). The average nucleotide composition of the gene
indicated that the genes were AT-rich, with an abundance of T nucleotide (except for the M
gene); however, at the third codon position, all the genes have richness in T nucleotide.

Table 1. Average nucleotide composition of structural genes of SARS-CoV-2 delta strain.

%A %C %T %G %G+C %A+T %A3 %C3 %T3 %G3 %G3+C3 %A3+T3

E Average 21.56 19.43 40.48 18.52 37.96 62.04 22.18 18.49 43.06 16.27 34.76 65.24

SD 0.56 0.74 0.33 0.35 0.71 0.71 2.60 0.73 4.00 1.18 1.54 1.54

M Average 25.56 21.93 31.74 20.78 42.70 57.30 24.22 22.85 36.79 16.14 38.99 61.01

SD 0.03 0.08 0.08 0.02 0.09 0.09 0.06 0.10 0.12 0.05 0.12 0.12

NP Average 31.75 25.01 21.25 21.98 47.00 53.00 30.58 22.58 31.72 15.12 37.70 62.30

SD 0.09 0.06 0.09 0.09 0.08 0.08 0.20 0.09 0.19 0.12 0.16 0.16

S Average 29.46 18.84 33.26 18.44 37.27 62.73 27.03 15.88 46.37 10.71 26.59 73.41

0.04 0.05 0.03 0.04 0.05 0.05 0.05 0.09 0.11 0.06 0.13 0.13

3.2. Odds Ratio Analysis Indicated Both under and Overrepresentation of Some Mirror Dinucleotides

The odds ratio analysis revealed that TpT and CpA showed maximum variation in
values with standard deviations of 0.63 and 0.51, respectively. The average TpT dinucleotide
value ranged between 0.867–2.383, while CpA ranged between 0.359–1.569 for the four
structural genes of the delta virus. Since the variation was in higher ranges, the deviation
was high.

The least deviation was observed for TpG, ApC, and ApG dinucleotides. TpT dinu-
cleotide was underrepresented in the NP gene, while in other genes, it is overrepresented.
CpG, as expected, was underrepresented in all the genes. Based on the average odds ratio,
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it was evident that GpA, GpG, CpC, and CpG dinucleotides were underrepresented (odds
ratio < 0.78), while TpT, ApA, CpT, and TpG were overrepresented (odds ratio > 1.23). Here
CpC and GpG and; TpT and ApA are the mirror dinucleotides that are underrepresented
and overrepresented, respectively. From the figure, it is evident that the odds ratio of E,
M and NP genes are somewhat similar, while for the NP gene, there is little difference
(Figure 1).
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Figure 1. Dinucleotide odds ratio analysis for structural genes of delta strain of SARS-CoV-2.

3.3. Dinucleotide Bias at the Junction of Codons

Dinucleotide bias at the junction of codons (C at 3rd position of 5′ codon and G at 1st
codon position in subsequent 3′ codon and similarly T at 3rd position of 5′ codon and A at
1st codon position in subsequent 3′ codon, is called p3-1 junction), were evaluated for CpG
and TpA and demonstrated in Figure 2. Positive and negative contexts were found for CpG
and TpA at the p3-1 junction, though the negative context was more prominent than the
positive one (Figure 2). The negative context for CpG at the junction was mainly present
in the S and N genes. In the E gene, only positive, while in the M gene, both positive and
negative contexts were present depending on the amino acid. For TpA dinucleotide at the
junction, in gene S, a highly negative context was present, followed by M and N genes.
Similar to the CpG junction, the TpA junction was present in a positive context only in
the E gene. Overall analysis revealed that at the junction, all kinds of contexts (no context,
positive context, negative context) were present; however, in the S gene, negative contexts
were more prominent for the TpA junction, which could be the result of selection forces.
Our results concord with the results obtained by Beutler et al., 1989 [62].

A similar result was obtained on Ustilago, a fungal parasite of grasses, where extensive
codon context analysis revealed avoidance of TpA at codon–codon junctions, and possibly
it is attributed to reducing the risk of nonsense mutations resulting in a stop codon and
abrupt chain termination [63] and affecting subsequent translation fitness as a part of the
selection [64]. In contrast to our result, TpA was the second most abundant dinucleotide
at the junction in Human Rhinoviruses A, B, and C [65]. CpG frequency is dropped in
the Influenza A virus at the p3-1 junction [66], and it is additional to the intracodon CpG
component, where all CpG-containing codons were underrepresented [67].
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context has been demonstrated with green color, while negative context has been demonstrated with
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TpA and CpG underrepresentation at the p3-1 junction suggested that codon choices
alone may not explain the scarcity of TpA and CpG since, at this position, at least TpA
has no defined coding function in this frame and is the result of multiple forces, including
immune pressure [67,68], high mutability resulting in a transition from CpG to TpG [69],
selection forces [70], TpA having mRNA destabilizing effect [62], higher susceptibility of
UpA to cytoplasmic RNase [71] and evading interferon-inducible protein ZAP and RNAseL
as host protein responsible for sensing CpG in viral RNA.

3.4. RSCU Values of Codons from Four Structural Genes Revealed That for All Genes; Preferred
Codons Are Not the Same

Relative synonymous codon usage (RSCU) is one of the imperative parameters for
evaluating the codon bias present in synonymous codons. It represents the expected occur-
rence frequency of any codon out of all synonymous codons for a particular amino acid,
multiplied by the degeneracy level and suggestive of codon priority among synonymous
codons encoding for a single amino acid [72]. A higher RSCU values suggest a preferred
codon, while lower values are indicative usage of non-preferred codons.

The RSCU values below 0.6 suggest low occurrence, while values above 1.6 suggest
vice versa. CpG and TpA suppression is expected owing to facts mentioned in this article in
the above section and observed in vertebrate viruses also [73]. CpG and TpA dinucleotide
suppression is reflected in the CpG and TpA encompassing codons, and the same is evi-
denced by RSCU analysis of codons in various virus models. All eight CpG-encompassing
codons are found to be underrepresented in the Nipah virus [74]. RSCU values analysis
of six codons containing TpA (TTA, CTA, ATA, GTA, TAT, and TAC) indicated that these
are not preferred in Mycoviral genes [75]. HCV also showed a significant tendency to not
prefer the codons with CpG or TpA dinucleotides [76], and many researchers have reported
similar results [77–80] establishing a correlation between the presence of CpG and TpA and
lower RSCU.

The RSCU value is independent of the amino acid composition of any gene and hence
helps compare different genes [81]. Values near 1 suggest the unbiased use of codons [82].
In a synthetic recoded virus vaccine candidate construct, the higher RSCU values codons
must be replaced with the lower RSCU valued codon. The RSCU values for each of the
genes envisaged and given in Table 2 below. The analysis indicated that each gene codon
usage pattern is different.
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Table 2. The most preferred codon among synonymous codons in structural genes.

S.No. Single Letter
Amino Acid Codon S NP M E

1 F
TTT 1.532 0.462 0.909 0.8

TTC 0.468 1.538 1.091 1.2

2 L

TTA 1.585 0.444 0.686 0.429

TTG 1.132 2 0.686 0.857

CTT 2.038 1.778 2.057 3

CTC 0.623 0.444 1.029 0

CTA 0.509 0.667 0.857 0.857

CTG 0.113 0.667 0.686 0.857

3 I

ATT 1.737 1.929 1.737 1

ATC 0.553 0.857 0.789 1

ATA 0.711 0.214 0.474 1

4 V

GTT 2.021 1 1 2.154

GTC 0.825 1.5 0 0.308

GTA 0.619 0.5 2 0.923

GTG 0.536 1 1 0.615

5 S

TCT 2.242 1.297 0.8 3

TCC 0.727 0.486 1.2 0

TCA 1.576 1.459 1.2 0.75

TCG 0.121 0.324 0.4 0.75

AGT 1.03 1.459 1.6 0.75

AGC 0.303 0.973 0.8 0.75

6 P

CCT 1.965 1.143 0.8 4

CCC 0.281 1 0 0

CCA 1.754 1.571 2.4 0

CCG 0 0.286 0.8 0

7 T

ACT 1.853 2 1.429 1

ACC 0.421 0.75 1.143 0

ACA 1.6 1 0.857 2

ACG 0.126 0.25 0.571 1

8 A

GCT 2.127 2.054 2.526 1

GCC 0.405 0.757 0.421 1

GCA 1.367 0.865 0.842 0

GCG 0.101 0.324 0.211 2

9 Y
TAT 1.481 0.5 0.889 0

TAC 0.519 1.5 1.111 2

10 H
CAT 1.529 1.5 1.6 0

CAC 0.471 0.5 0.4 0

11 Q
CAA 1.484 1.543 1 0

CAG 0.516 0.457 1 0
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Table 2. Cont.

S.No. Single Letter
Amino Acid Codon S NP M E

12 N
AAT 1.236 1.455 0.727 1.6

AAC 0.764 0.545 1.273 0.4

13 K
AAA 1.258 1.375 1.143 2

AAG 0.742 0.625 0.857 0

14 D
GAT 1.377 1.182 0.333 2

GAC 0.623 0.818 1.667 0

15 E
GAA 1.447 1.333 1.714 1

GAG 0.553 0.667 0.286 1

16 C
TGT 1.4 0 2 0.667

TGC 0.6 0 0 1.333

17 R

CGT 1.364 1.333 2.143 2

CGC 0.136 1.111 0.857 0

CGA 0 1.111 0.429 2

CGG 0.409 0.444 0 0

AGA 2.727 2 1.286 2

AGG 1.364 0 1.286 0

18 G

GGT 2.265 0.909 1.429 4

GGC 0.723 1.545 0.857 0

GGA 0.867 1.182 1.714 0

GGG 0.145 0.364 0 0
The most preferred codon among synonymous codons is given in bold.

3.5. Codon Usage Comparison for Other Variants of Concern (VOCs) of SARS-CoV-2 and
Representative Sarbecoviruses

The average RSCU value of SARS-CoV-2 VoCs and representative Sarbecoviruses is given
in Table 3 and compared with delta strain. The analysis revealed that though the RSCU values
for each codon slightly differed for different strains, the preferred codon choice remained the
same for all amino acids in all envisaged viruses excluding phenyl alanine.

Table 3. Average RSCU values for representative SARS-CoV-2 VoCs and Sarbecoviruses. The most
preferred codon for an amino acid from the synonymous codon family is given in bold.

Codons Amino Acid Alpha Beta Gamma Omicron Sarbecoviruses Delta

TTT
F

1.010 0.927 0.929 0.931 0.944 0.926

TTC 0.991 1.073 1.071 1.069 1.056 1.074

TTA

L

0.782 0.768 0.782 0.782 0.781 0.786

TTG 1.166 1.157 1.166 1.166 1.089 1.169

CTT 2.214 2.245 2.200 2.214 2.082 2.218

CTC 0.537 0.540 0.537 0.537 0.588 0.524

CTA 0.722 0.710 0.722 0.722 0.801 0.723

CTG 0.581 0.581 0.595 0.581 0.660 0.581
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Table 3. Cont.

Codons Amino Acid Alpha Beta Gamma Omicron Sarbecoviruses Delta

ATT

I

1.616 1.597 1.583 1.609 1.634 1.601

ATC 0.799 0.813 0.826 0.796 0.745 0.800

ATA 0.585 0.590 0.591 0.595 0.621 0.600

GTT

V

1.533 1.528 1.528 1.533 1.473 1.544

GTC 0.669 0.666 0.671 0.669 0.838 0.658

GTA 1.011 1.019 1.012 1.011 0.875 1.011

GTG 0.788 0.787 0.789 0.788 0.813 0.788

TCT

S

1.841 1.835 1.879 1.835 1.770 1.835

TCC 0.605 0.603 0.600 0.603 0.518 0.603

TCA 1.250 1.246 1.239 1.246 1.424 1.246

TCG 0.399 0.399 0.398 0.399 0.474 0.399

AGT 1.182 1.210 1.179 1.210 1.071 1.210

AGC 0.723 0.707 0.705 0.707 0.743 0.707

CCT

P

1.986 1.986 1.988 1.977 1.787 1.977

CCC 0.319 0.319 0.330 0.320 0.400 0.320

CCA 1.424 1.424 1.409 1.431 1.529 1.431

CCG 0.272 0.272 0.274 0.272 0.284 0.272

ACT

T

1.562 1.572 1.583 1.559 1.523 1.571

ACC 0.538 0.527 0.512 0.581 0.496 0.579

ACA 1.401 1.401 1.398 1.373 1.505 1.364

ACG 0.499 0.499 0.508 0.488 0.477 0.487

GCT

A

1.927 1.934 1.927 1.927 1.920 1.927

GCC 0.646 0.647 0.646 0.646 0.700 0.646

GCA 0.769 0.760 0.769 0.769 0.718 0.769

GCG 0.659 0.660 0.659 0.659 0.662 0.659

TAT
Y

0.684 0.686 0.691 0.718 0.626 0.718

TAC 1.317 1.314 1.310 1.283 1.374 1.283

CAT
H

1.157 1.164 1.150 1.157 0.938 1.157

CAC 0.343 0.336 0.350 0.343 0.562 0.343

CAA
Q

1.007 1.013 1.007 1.007 0.977 1.007

CAG 0.493 0.487 0.493 0.493 0.523 0.493

AAT
N

1.252 1.252 1.247 1.255 1.198 1.255

AAC 0.748 0.748 0.753 0.746 0.802 0.746

AAA
K

1.436 1.444 1.449 1.439 1.462 1.444

AAG 0.564 0.556 0.551 0.561 0.538 0.556

GAT
D

1.219 1.214 1.217 1.223 1.158 1.223

GAC 0.781 0.786 0.783 0.777 0.842 0.777

GAA
E

1.366 1.363 1.363 1.381 1.236 1.374

GAG 0.634 0.637 0.637 0.619 0.764 0.627

TGT
C

1.021 1.017 1.017 1.517 0.885 1.017

TGC 0.480 0.483 0.483 0.483 0.615 0.483
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Table 3. Cont.

Codons Amino Acid Alpha Beta Gamma Omicron Sarbecoviruses Delta

CGT

R

1.660 1.675 1.665 1.698 1.606 1.710

CGC 0.508 0.509 0.501 0.516 0.722 0.526

CGA 0.866 0.866 0.957 0.875 1.061 0.885

CGG 0.208 0.140 0.173 0.210 0.156 0.213

AGA 2.037 2.071 2.053 2.039 1.652 2.003

AGG 0.722 0.739 0.651 0.663 0.803 0.663

GGT

G

2.168 2.173 2.174 2.138 1.882 2.151

GGC 0.767 0.765 0.776 0.788 0.765 0.781

GGA 0.936 0.933 0.919 0.945 1.161 0.941

GGG 0.129 0.129 0.132 0.129 0.191 0.127

3.6. ACT-, AAT-, TTT- and TTG-Initiated Codons Were Preferred in at Least Three out of Four Genes

Codon pair deoptimization (CPD) is an efficient virus attenuation technique where
suboptimal pair of codons is used, and synonymous codons are changed so that amino
acid composition remains the same and hence the antigenicity [7]. The ultimate goal
of codon swapping is to increase the number of underrepresented codon pairs in the
virus’s genes. The strategy has been implicated in attenuating viruses for making vaccine
candidates, including human respiratory syncytial virus [83], porcine reproductive and
respiratory syndrome viruses [84], enterovirus A71 [85], and dengue virus 2 [86], and the
list is long. In the present study, we presented both the high occurring codon pairs and low-
occurring codons so that the high-occurring pairs may be disrupted with the low-occurring
codons. Table 4 presents the top 20 most preferred codon pairs in the envisaged genes.
Analysis revealed that among the top 20 most preferred codon pairs, ACT- (Threonine) AAT-
(Asparagine), TTT- (Phenyl alanine) and TTG- (Leucine) initiated codons were preferred
in at least three genes out of four envisaged. On the other hand, GTT-, GGA- and CTT-
initiated (Val, Gly and Leu) codons were preferred in at least two genes.

Table 4. Percent frequency of top 20 high occurrence codon pairs.

Gene Name Envelope Nucleocapsid Membrane Spike

% frequency of top 20 codon pairs
1. TTA-ATA 1.46 CAA-CAA 0.96 ATT-GCT 1.79 GTT-TAT 0.54
2. TCG-GAA 1.46 AAA-GAT 0.95 TGT-CTT 0.89 GGT-GTT 0.50
3. TAC-TCA 1.46 ATT-GGC 0.72 GGA-GCT 0.89 TTT-GGT 0.47
4. GTT-TCG 1.46 AAG-AAG 0.72 CTT-GTA 0.89 ACT-AAT 0.45
5. GTT-AAT 1.46 CAA-GGA 0.72 CTT-CTA 0.89 GGT-GAT 0.40
6. GTA-CTT 1.46 TCA-ACT 0.71 CTT-CGT 0.89 TTT-AAT 0.39
7. GGT-ACG 1.46 CCT-GCT 0.71 ATG-TGG 0.89 TCT-AAC 0.39
8. GAA-GAG 1.46 AGC-AGT 0.68 ACT-ATT 0.89 AAT-CTT 0.39
9. CTT-TTT 1.46 GGA-ACT 0.61 GCT-TGT 0.88 AAT-GGT 0.38
10. CTT-CTT 1.46 CAA-ATT 0.48 GAA-GAG 0.46 AAT-TTT 0.32
11. ATG-TAC 1.46 ACT-CAA 0.48 ATA-ATT 0.46 AAC-AAA 0.32
12. ATA-GTT 1.46 TTG-GAT 0.48 TTT-TTG 0.45 AAT-GTT 0.32
13. AGC-GTA 1.46 TTG-CTG 0.48 TTG-CTT 0.45 GTT-TTT 0.32
14. ACG-TTA 1.46 TAC-TAC 0.48 TGG-ATT 0.45 TAT-TCT 0.31
15. AAT-AGC 1.46 GGC-AGT 0.48 CTC-CTT 0.45 GTT-GCT 0.31
16. TTT-CTT 1.44 GGA-CCC 0.48 ATT-ACC 0.45 GCA-CAA 0.31
17. TTG-CTA 1.44 GCT-GCT 0.48 AAT-ATT 0.45 ACT-TCT 0.31
18. TTC-TTG 1.44 GAC-AAA 0.48 TTT-GCT 0.45 TAT-AAT 0.31
19. TTC-GTG 1.44 CGT-GGT 0.48 TTT-GCG 0.45 AAT-GAT 0.31
20. GTT-ACA 1.44 CGC-ATT 0.48 TTT-GCC 0.45 GGT-TTT 0.31
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3.7. Preferred Codon Pair Analysis in Sarbecoviruses and Other SARS-CoV-2 VoCs

Delta virus structural genes were compared with the other strains of SRAS-CoV-2 and
sarbecoviruses, and the top 20 codon pairs for each of the genes are given in Table 5A–D.
When the E gene of all envisaged strains was compared, the analysis revealed that in delta
and other strains, Phenylalanine-, Leucine-, Serine-, and Tyrosine-initiated codons are
preferred. The difference was in Valine-initiated codons, which were abundant in delta
(05 valine-initiated codon pairs), while in other strains of SARS-CoV-2 Serine initiated (06),
codon pairs were preferred (Table 5A). For the M gene, all the strains envisaged preferred
Phenyl alanine-initiated and Leucine initiated codons. However, the number of Phenyl
alanine-initiated codon pairs was less (04) in the delta strain compared to 06 Phenyl alanine-
initiated codon pairs in others, including Sarbecoviruses. Also, in delta Leucine-initiated,
05 codon pairs were present, while their number was 07 in other viruses (Table 5B). For the
N gene, Glycine-initiated codon pairs (05) were preferred in SARS-CoV-2 VoCs, excluding
Sarbecoviruses and delta. In the delta, only 03 codon pairs were Glycine-initiated, while
in Sarbecoviruses, Lysine-initiated codon pairs were preferred (04) (Table 5C). For the S
gene, the delta strain and other SARS-CoV-2 strains Glycine-initiated (≥03) codon pairs
were preferred. In Sarbecoviruses, no such clear pattern was observed. Furthermore,
in Omicron, Gycine-initiated (04) codon pairs were preferred (Table 5D). Based on the
analysis, it can be said that since the codon preference is the same for all VoCs, including
delta and Sarbacoviruses, the choice of the preferred codons is also similar to some extent.
However, for codon pairs, the choice differed to some extent when the delta was compared
with others. The difference may result from complex molecular interactions or signature
molecular patterns. Since we included only the top 20 codon pairs in the study, other
shared codon pairs between the viruses are possible.

Table 5. (A) Comparison of the E gene of the delta strain with other strains. (B) Comparison of the
M gene of the delta strain with other strains. (C) Comparison of the N gene of the delta strain with
other strains. (D) Comparison of the S gene of the delta strain with other strains. Dissimilar preferred
codon pairs are depicted in bold and underlined.

(A)

Alpha Delta Beta Delta Gamma Delta Omicron Delta Sarbecoviruses Delta

FY FY FY FY FY FY FY FY YS FY
FL LC FL LC FL LC FL LC VY LC
LC LL LC LL LC LL LC LL VK LL
LL FL LL FL LL FL LL FL LC FL
FL FV FL FV FL FV FL FV LL FV
FV LI FV LI FV LI FV LI FL LI
FV CA FV CA FV CA FV CA FV CA
LI CC LI CC LI CC LI CC LI CC

CA CN CA CN CA CN CA CN CA CN
CC SF CC SF CC SF CC SF CC SF
CN SR CN SR CN SR CN SR CN SR
SF SE SF SE SF SE SF SE SS SE
SS YC SS YC SS YC SS YC SE YC
SR YS SR YS SR YS SR YS SF YS
SR YV SR YV SR YV SR YV YC YV
SE VS SE VS SE VS SE VS VS VS
SF VT SF VT SF VT SF VT VP VT
YC VN YC VN YC VN YC VN VN VN
YS VN YS VN YS VN YS VN VN VN
YS VV YS VV YS VV YS VV VV VV

(B)

Alpha Delta Beta Delta Gamma Delta Omicron Delta Sarbecoviruses Delta

IA IA IA IA IA IA IA IA IA IA
CL CL CL CL CL CL CL CL CL CL
GA GA GA GA GA GA GA GA GA GA
AC LV AC LV AC LV LV LV LV LV
LV LL LV LL LV LL LL LL LL LL
LL LR LL LR LL LR LR LR LR LR
LR MW LR MW LR MW MW MW MW MW

MW TI MW TI MW TI TI TI TI TI
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Table 5. Cont.

(B)

Alpha Delta Beta Delta Gamma Delta Omicron Delta Sarbecoviruses Delta

TI AC TI AC TI AC FL AC FL AC
FL EE FL EE FL EE FV EE FV EE
FV II FV II FV II FA II FA II
FA FL FA FL FA FL FA FL FA FL
FA LL FA LL FA LL FA LL FA LL
FA WI FA WI FA WI FN WI FN WI
FL LL LY LL LY LL LY LL LY LL
LY IT LG IT LG IT LG IT LG IT
LG NI LL NI LL NI LL NI LL NI
LL FA LM FA LM FA LM FA LM FA
LM FA FL FA FL FA FL FA FL FA
FL FA FL FA FL FA FL FA FL FA

(C)

Alpha Delta Beta Delta Gamma Delta Omicron Delta Sarbecoviruses Delta

QQ QQ QQ QQ QQ QQ QQ QQ QQ QQ
KD KD KD KD KD KD KD KD KK KD
ST IG ST IG ST IG ST IG QG IG
PA KK PA KK PA KK PA KK IG KK
QG QG QG QG QG QG QG QG KD QG
IG ST IG ST IG ST IG ST GT ST
SS PA SS PA KK PA KK PA KK PA
KK SS KK SS LD SS LD SS ST SS
LD GT LD GT LL GT LL GT DD GT
LL QI LL QI FY QI FY QI PA QI
FY TQ FY TQ YY TQ YY TQ GP TQ
YY LD YY LD YK LD YK LD DK LD
YK LL YK LL GK LL GK LL RI LL
GK YY GK YY GQ YY GQ YY PK YY
GQ GS GQ GS GS GS GS GS QI GS
GS GP GS GP GP GP GP GP YK GP
GP AA GP AA GT AA GT AA LP AA
GT DK GT DK AA DK AA DK RG DK
AA RG AA RG AA RG AA RG KG RG
AA RI AA RI AN RI AN RI PQ RI

(D)

Alpha Delta Beta Delta Gamma Delta Omicron Delta Sarbecoviruses Delta

VY VY VY VY VY VY VY VY NF VY
YS YS YS YS AL YS YS YS YE YS
YN YN YN YN AQ YN YN YN VY YN
VF VF VF VF FG VF VA VF VF VF
VA VA VA VA FN VA V VA TS VA
TS TS TS TS GA TS TS TS SN TS
TN TN TN TN GD TN TN TN SF TN
SN SN SN SN GF SN SN SN PF SN
NL NV NV NV GV NV NL NV NV NV
NG NL NG NL IA NL NG NL LD NL
IA NK NF NK IA NK IA NK IT NK
IA NG ND NG NF NG IA NG IA NG
GV NF IA NF SF NF GV NF GV NF
GF ND IA ND SN ND GF ND GD ND
GD GV GV GV TN GV GD GV FN GV
GA GF GF GF TS GF GA GF FG GF
FN GD GD GD VA GD FN GD DV GD
FG FN FN FN VF FN FG FN DI FN
AQ FG FG FG YN FG AQ FG AD FG
AL AQ AQ AQ YS AQ AL AQ AA AQ

3.8. Codon Context Revealed Highest Codon Pair Bias in Spike Protein

A substantial bias is present during codon pair utilization, called dicodon bias or codon
context. It is a well-recognized phenomenon and is considered to arise from GC-biased gene
conversion [87]. It is a direct cause of dinucleotide bias [18]. We performed codon context
analysis for four genes of SARS-CoV-2, and all kinds of contexts ((negative (residual values
less than−5), positive (residual values more than +5), insignificant (residual values between
−5 and 5), and no context (residual zero)) were found in these genes. The insignificant
context was absent in the envelope gene, while in the spike gene, the maximum positive
and negative codon pair biases were present (Figure 3A–D).
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two-color scale shows the codon context bias. Strongly preferred codon context bias is depicted as
pink, while strongly rejected codon context is depicted as green. In the case where the 3′ context is
not strongly biased, it is depicted as black. The Grey color shows the presence of no context. The
color scale is given in the figures.

The E, M, N, and S genes encode structural proteins [88]. The S gene plays a crucial
role in receptor recognition and cell membrane fusion [89]. The sizes of the E, M, N, and S
genes are 228bp, 669bp, 1260bp, and 3822 bp, respectively. Translational selection shapes
codon context [90], and nonsense and missense suppression, elongation rate, the precision
of tRNA selection and polypeptide chain termination all appeared to be affected by codon
context [91]. Since the size of the S gene is the largest among all the envisaged genes, we
speculate that the above-stated factors will be more operative on larger genes due to the
very nature of the longer gene. Furthermore, at least in our envisaged genes, we found the
same pattern, and codon context bias increased with the size of the gene. Therefore, the
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comparatively larger size of the S gene is attributed to maximum codon context bias, and a
more positive context may be a molecular signature of the S gene.

3.9. Codons CGG (Arg), CCG (Pro) and CAC (His) Were Rare in All the Genes

Rare codons are not randomly present inside the mRNA sequence, indicating operative
selective forces. Rare codons help initiate proper protein folding in nascent peptides and
prevent the formation of secondary structures in mRNA in the 5′ region [92]. Like optimal
codons, rare codons are also maintained through evolutionary forces. The incorporation of
rare codons has been shown to reduce the translation of poliovirus capsid protein resulting
in virus attenuation [47]. Using Anaconda2 software, we calculated the number of rare
codons and then normalized them with gene length. An occurrence rate below 0.5% was
considered a rare gene codon, which is a default value given by Anaconda2 software.

CGG is the rarest codon in the SARS-CoV-2 genome, and inserting two tandem CGG
codons in the spike protein might result in ribosome pausing at rare codons. Ribosomal
pausing has a role in the efficient regulation of protein expression and co-translational
subdomain folding [93]. Codons CGG (Arg), CCG (Pro) and CAC (His) were rare in all
the genes. GGG (Gly), CCC (Pro), and TCG (Ser) codons were rare in at least three genes
(Figure 4). Codon CAA is highly used in NP (>5% of total codons) while used less than 1%
in E and S genes.
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 tRNA Isotype in Human Total Count 
Most Preferred Codon  

S NP M E 
Phe (F) AAA(0), GAA(10) 10 TTT TTC TTC TTC 

Leu (L) 
AAG(9), GAG(0), CAG(9),TAG(3), 
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Figure 4. Heat map depicting the percent occurrence of codons in SARS-CoV-2 envisaged structural
genes. Stop codons are included, and TGA is preferred over TAG and TAA. Color coding is given as
a sidebar.

For comparison among different strains of SARS-CoV-2 with delta strain, rare codon
analysis was carried out considering all four structural genes as one sequence for each of
the viral strains, and the number of rare codons was normalized. ACG, CAC, CCG, CGA,
CGG, CGC, GCG, GGG, and TCG were rare in the delta and all other envisaged strains and
had a frequency below 0.5%. Only the CGC codon frequency was slightly higher than 0.5%
(0.62%) in Sarbacoviruses. We then performed pairwise comparisons between the codon
frequencies and found no statistically significant difference. The analysis indicated that for
all the VoCs, including delta and Sarbacoviruses, nine codons are rare.

3.10. Codon Preference of SARS-CoV-2 Gene Delta Sequences Is towards Rare Human
Isoacceptor tRNAs

It is suggested that suboptimal usage of isoacceptor host tRNAs helps slow and
gradual translation of viral proteins to ensure correct folding [94]. Identification of the most
preferred codons (for each amino acid) in the envisaged structural genes of the SARS-CoV-2
delta strain and the most abundant isoacceptor tRNAs in human cells revealed that only for
ILeu codon, the preferred codon is matched with the respective most abundant isoacceptor
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tRNAs in human hosts (Table 6). Other than Ileu, out of 18 amino acids, only four amino
acids (Phe, Leu, Ala, and Tyr) preferred codons were matched with abundant isoacceptor
tRNA (in three genes out of four). The results suggested that the codons preferred by the
envisaged genes of the delta strain of SARS-CoV-2 do not match the abundant tRNA pool
in the human body (Table 6).

Table 6. Table for human tRNA isotype in human cells. The preferred codons corresponding to
the most abundant tRNA pool are given the bold font in each row corresponding to each gene.
* The amino acid is absent in a particular gene. The isoacceptor tRNAs used in disrupted codon pair
construct are given in italics.

tRNA Isotype in Human Total Count
Most Preferred Codon

S NP M E

Phe (F) AAA(0), GAA(10) 10 TTT TTC TTC TTC

Leu (L) AAG(9), GAG(0), CAG(9),TAG(3),
CAA(6), TAA(4) 31 CTT TTG CTT CTT

Ile (I) AAT(14), GAT(3), CAT(0), TAT(5) 22 ATT ATT ATT
ATT
ATC
ATA

Val (V) AAC(9), GAC(0), CAC(11), TAC(5) 25 GTT GTC GTA GTT

Ser (S) AGA(9), GGA(0), CGA(4), TGA(4),
ACT (8),GCT(8) 25 TCT TCA

AGT AGT TCT

Pro (P) AGG(9), GGG(0), CGG(4), TGG(7) 20 CCT CCA CCA CCT

Thr (T) AGT(9),GGT(0), CGT(5), TGT(6) 20 ACA ACT ACT ACA

Ala (A) AGC(22), GGC(0), CGC(4), TGC(8) 34 GCT GCT GCT GCG

Tyr (Y) ATA(0), GTA(13), 13 TAT TAC TAC TAC

His (H) ATG(0), GTG(10) 10 CAT CAT CAT *

Gln (Q) CTG(13), TTG(6) 19 CAA CAA CAA
CAG *

Asp (N) ATT(0), GTT(20) 20 AAT AAT AAC AAT

Lys (K) CTT(15), TTT(12) 27 AAA AAA AAA AAA

Asp (D) ATC(0), GTC(13) 13 GAT GAT GAC GAT

Glu (E) CTC(8), TTC(7) 15 GAA GAA GAA GAA
GAG

Cys (C) ACA(0), GCA(29), 29 TGT * TGT TGC

Arg (R) ACG(7), GCG(0), CCG(4), TCG(6),
CCT(5), TCT(6) 28 AGA CGT CGT

AGA
CGA
AGA

Gly (G) ACC(0), GCC(14), CCC(5), TCC(9) 28 GGT GGC GGA GGT

3.11. Vaccine Candidate Designing Using Information Generated in the Study

Viral fitness may be reduced by introducing rare codons for the virus [14], introducing
the codons that are one substitution away from stop codons [95], and deoptimizing codon
pairs [96]. Based on the analysis of envisaged genes, authors constructed three vaccine can-
didates (only the envisaged structural gene included), and those constructs were analyzed
systemically for viral fitness. The first construct was based on the information that our
sequences are TT and AA dinucleotide rich, and attenuation is correlated to an increase
in TA content and a decrease in TpT and ApA dinucleotide [53]. Therefore we recoded
three overrepresented TT-containing codons (CTT, GTT, and CTT codons) and replaced
them with low-occurrence TA-containing codons (Table 7). While designing the second
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construct, we replaced abundant codons with rare codons common to the envisaged genes
((Codons CGG (Arg), CCG (Pro), CAC (His) GGG (Gly), CCC (Pro), and TCG (Ser) were
introduced)). Finally, in the third construct, we disrupted preferred codon pairs (Table 7;
ACT-, AAT-, TTT-, TTG- GTT-, GGA, and CTT- initiated; only 5’ codon was deoptimized
from the favored codon pair).

Van Leuven and colleagues [13] verified in phage 174 that the folding stability of
the deoptimized codon mRNA is the best predictor of virus fitness, followed by CAI.
Furthermore, in the experimentation of Groenke and colleagues, it was proved that with
the lowest codon pair score, the highest virus attenuation is obtained [21]. Virus fitness
by codon deoptimization is correlated to the amount of recoding performed, and codon
deoptimization taking only one feature CAI (ignoring mRNA stability and codon pair
score) doesn’t result in sufficient attenuation [13]. Thus, systemically, we used all three
parameters to assess our construct’s fitness. mRNA stability was highest (folding energy
−1801.30 kcal/mol) for the construct where rare codons were introduced, and it was even
more negative than the native construct. Higher negative values exhibited higher virus
fitness (though CAI was the least and CPS was the lowest, exhibiting attenuation). MFE
was low for the construct recoded with TA ending codons (−1684.4 kcal/mol). The effect is
likely owing to the mRNA destabilizing effect of TA [97]; however, in this construct, the
CAI value was not much less, and the CPS score was also similar to that of the wild type.
Disruption of favored codon pairs resulted in reduced protein expression (low CAI), low
CPS and low mRNA stability (all three parameters we tested). Also, to construct three
out of seven codons, only two codons have abundant corresponding isoacceptor tRNA
(Table 6), and all remaining five isoaccptortRNA were suboptimal. Therefore from our
analysis, construct three recoded where the favored codon pair is disrupted by introducing
rare codons emerged as the most suitable candidate. In future studies, one may further
incorporate changes to have better deoptimization. Here it is noteworthy that virus fitness
is a complex term and results from many epistatic and genetic factors, which we ignored
here due to the study limitations.
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Table 7. Exhibition of codons recoded in the single construct having all four envisaged genes with intracodon and junctional CpG and TpA with O/E of CpG and
TpA.

From
Codon Frequency To

Codon Frequency CAI Nc CPS MFE
(kcal/mol) %G+C Intracodon

CpG

CpG at
p3-1
Unc-
tion

Total
CpG ∆CpG Intracodon

TpA

TpA at
p3-1
Unc-
tion

Total
TpA ∆TpA CpG-

O/E
TpA-
O/E

1.
Wild-type

SARS-CoV-2
Delta strain

- - - - 0.699 48.6 0.158 −1776.90 40.1 66 34 100 – 181 192 373 – 0.268 1.005

2.

Overrepresented
codons to TA

ending codons
leading to TpT
dimer to TpA
(Construct 1)

CTT 31.6 CTA 10

0.666/659 45 0.158 −1684.40 39.98 66 34 100 0 421 144 565 192 0.268 1.386
ATT 32.6 ATA 11.5

GTT 30.1 GTA 12.5

3.
Introduction

of rare codons
(Construct 2)

CCT 19.5 CCG 1.5

0.558 43.4 0.143 −1801.30 43.89 194 43 237 137 181 149 330 −43 0.635 0.874

CAT 10 CAC 3.5

CGT 10.5 CGG 2

GGT 32.1 GGG 3.5

CCA 19.5 CCC 1.5

TCT 25.1 TCG 3

4.

Disruption of
favored codon

pairs at
the 5′ end

(Construct 3)

ACT 33.1 ACG 4

0.577 41 0.152 −1747.80 45.41 137 90 227 127 241 105 346 −27 0.63 0.938

AAT 36.6 AAC 24.1

TTT 32.6 TTC 18.5

TTG 17.5 CTG 6

GTT 30.1 GTA 12.5

AGG 6.5 CGG 2

CTT 31.6 CTG 6
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3.12. CpG Suppression in Different Constructs

Zinc finger antiviral protein (ZAP) powerfully restricts the viruses with elevated CpG
and TpA dinucleotide frequencies [98,99], and the same is proved by knock-out experiments
where attenuation in CpG- and UpA-high viruses was reversed in ZAP knock-out cell
lines. CpG suppression in RNA and reverse transcribing viruses previously reported to be
ZAP sensitive with odds ratio Sindbis virus (0.90), Semliki forest Virus (0.89), Venezuelan
equine encephalitis virus (0.76), Ebolavirus (0.60), Hepatitis B virus (0.52), Moloney Murine
Leukemia Virus (0.51), Marburg virus (0.53), Alphavirus M1 (0.89), Ross River Virus (0.82).
In contrast, the odds ratio was less for ZAP-insensitive HIV-1 (0.21), the Yellow fever virus
(0.38), and the Vesicular stomatitis virus (0.48) [98], suggesting that for higher odds ratios,
the virus becomes ZAP-sensitive. For our constructs, the odds ratios were 0.268, 0.268,
0.635, and 0.63 for the wild-type delta construct and constructs 1, 2, and 3, respectively,
with the highest odds ratio of 0.635 for construct 2 reported. It indicates the ZAP sensitivity
of recoded constructed 2 and 3. The CpG suppression was highest in construct 2.

An experiment of CpG enrichment from 02 CpGs to 39 CpGs in mutant L and 02
to 43 CpGs in LCG-HI in HIV-1 demonstrated ~100-fold lower replication than WT in
primary lymphocytes [100]. In MEF-1 poliovirus, a type 2 wild poliovirus prototype
strain with neurovirulence in humans, with the increasing substitutions, virus fitness was
decreased but reduced most efficiently by increasing the frequencies of CpG and UpA
dinucleotides [101]. The changes were brought in capsid region and CpG high constructs,
namely ABc7 (80 CpG and 34 TpA) and ABc8 (90 CpG and 26 TpA), which exhibited a
reduction in relative plaque area and relative plaque yields compared to reference construct
having 28 CpG and 36 TpA. In the Influenza virus, smaller plaque sizes in CpG-high and
TpA-high mutants were observed than in WT or permuted virus that brought no changes
in overall A/T composition [102]. In the present study, in constructs 2 and 3, the CpG
content was increased from 98 (for native delta construct) to 237 and 227, respectively, so we
may expect the reduction of expression in our recoded constructs also. In the E7 genome,
two segments were taken for the study, contributing to 16.7% and 14.2% of the full-length
genome. CpG or TpA dinucleotides were altered from both regions. It was possible to
reduce the CpG and TpA frequencies to approximately one-third or to enhance to 2.5–3-
fold the wild-type levels in a gene sequence. The infectivity of permuted control sequence
was similar to that of the wild type. CpG high in both segments resulted in viral output
approximately 7000-fold lower, while TpA high in both segments had approximately
30-fold lower viral output after 24 h. This means the attenuation was higher for CpG
enhancement than for TpA enhancement [40]. CpG and TpA alteration with their impact
on virus replication has been given in Table 8. The same concord with our results, where
we found introducing rare codon and codon pair disruption more effective than enhancing
TpA content.

Regarding the role of spacing between CpGs, it is demonstrated that when CpG is
present in pairs, the DC stimulation is enhanced, and CD8 T cells are highly activated [103].
In the present study, in the native construct, no CpG dimer was present, while 04, 09, and
06 CpG dimers were present in constructs 1, 2, and 3. More CpGs in the sequence lead to
increased IL10 and IL12 secretion [103]; thus highest IL10 and IL12 secretion will be there
with construct 2.
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Table 8. Impact of CpG and TpA enhancements and genomic compositions on different viruses.

Name of Virus Virus Type/Name
Assigned %GC CpG TpA ∆CpG ∆TpA Impact of CpG and TpA Enhancement Reference

HIV-1

WT * 02 – – – High replicative fitness

[100]L * 39 – 37 –
~100-fold lower levels than HIV-1 WT

LCG-HI * 43 – 41 –

Influenza A
virus

Wild type 46 28 43 – – High replicative fitness

[102]CpG high 46 114 45 +86 +2 10–100 fold reduced viral loads in the lungs of mice infected with 200PFU
and substantially greater attenuation of pathogenicity

TpA high 46 29 116 +1 +73 10–100 fold reduced viral loads in lungs of mice infected with 200PFU

Polio virus
Capsid Region

Wild 47.1 28 36 – – High replicative fitness

[101]ABC7 53.3 80 34 52 −2 Relative plaque area is 0.651, and relative plaque yield is 0.72 at 37 ◦C

ABC8 59.3 133 29 105 −7 Relative plaque area is 0.549, and relative plaque yield is 0.36 at 37 ◦C

Zika

Wild 49.8 60 43 – – Lethal to mice

[104]

Permuted 49.8 60 43 0 0 Lethal to mice

E+32CpG 49.9 92 42 32 −1 Replication not reduced

E+102CpG 49.9 162 43 102 0 Reduced replication in VERO and RD cells lines

E/NS1-176CpG 49.9 236 43 176 0 Reduced replication in VERO and RD cells lines

Dengue virus
type 2

Wild-type
E * 20 55 – –

Increased frequencies of CpG and TpA attenuated the virus to degrees
proportional to the numbers of additional CpG and UpA
dinucleotides incorporated

[105]

E recoded * 87 86 67 31

Wild Type NS3 * 32 68 12 13

NS3 recoded * 99 111 79 56

Wild type NS5 * 62 91 42 36

NS5 recoded * 147 134 127 79
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Table 8. Cont.

Name of Virus Virus Type/Name
Assigned %GC CpG TpA ∆CpG ∆TpA Impact of CpG and TpA Enhancement Reference

E7 virus
segment 1

Native (W) 47.6% – – −51 −62
High replicative fitness

[40]

Permuted (P) 47.6% 51 62 – –

CpG-zero (c) 44.3% 0 70 51 8 A 100-fold increase in relative luminescence as early as 4 h post-transfection
in E7 replicon having a luciferase gene that replaces structural genesUpA-low (u) 50.9% 56 19 5 −43

Both-low (cu) 47.5% 0 19 −51 −43 10-fold enhancements in replication, two-fold greater resistance to IFNβ

than WT

CpG-high (C) 56.5% 180 52 129 −10 100- to 10,000-fold impairments in replication
# C/W has 144-fold less replication
# U|W has 10 fold greater amplificationUpA-high (U) 40.9% 38 171 −12 109

E7 virus
segment 2

Native (W) 47.1% – −18 – −48
High replicative fitness

Permuted (P) 47.6% 18 48 0 0

CpG-zero (c) 45.5% 0 48 −18 0 6-fold increase in relative luminescence as early as 4 h post-transfection in
E7 replicon having a luciferase gene that replaces structural genesUpA-low (u) 50.0% 21 14 3 −34

Both-low (cu) 48.5% 0 38 −18 −10 10-fold enhancements in replication, two-fold greater resistance to IFNβ

than WT

CpG-high (C) 56.4% 135 38 116 −10 100- to 10,000-fold impairments, two-fold greater susceptibility to IFNβ

# W|C has1500-fold less replication
# WU like UUUpA-high (U) 39.2% 15 151 −3 103

* Not provided in MS. # When one segment is modified, and one segment is wild type (W).
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Compositional analysis of each construct revealed that in native and construct 1, where
TpT was converted to TpA ending codons, as expected, T/A composition was the same
(60.2%). While for constructs 2 and 3, overall AT composition was less than the native
construct, 56.11% and 54.59%, respectively. We have examples of viruses like IAV [102] or
Zika [104] where, despite no changes in overall genomic AT/GC composition, enhancement
in CpG and TpA, attenuated virus. On the other hand, in polio [101] and the E7 virus [40],
CpG and TpA alterations with genome composition changes attenuated viruses, suggestive
of a role of CpG and TpA in virus attenuation rather than composition.

4. Discussion

The SARS-CoV-2 delta strain has caused millions of death and has already proven to
be one of the significant variants of concern. To counter the virus, scientists worldwide are
continuously working to develop efficacious vaccine candidates. Since vaccine candidate
development is a time-consuming process, if preliminary studies are done in-silico, it will
save much time and resources. In the present study, we envisaged different molecular
features of four structural genes, E, M, NP and S, from the perceptive of vaccine candidate
development. The analysis is helpful in incorporating essential features during designing
through the synthetic biology approach, and later, the viable attenuated virus can be
rescued by using the reverse genetics approach.

Pasteurella multocida is an avian cholera pathogen, and to construct an attenuated
vaccine candidate, it was cultured from 37◦ to 45◦. Among many descendants, one devel-
oped with low virulence and high immunogenicity [106]. In the experiment of Xia and
colleagues [107], genomic features, including the GC content and dinucleotide frequencies,
were envisaged to identify possible reasons behind thermal attenuation. In the attenuated
low pathogenicity strain, the GC content was low despite the fact that more GC content
would enhance thermal stability during raised temperature, and GC-rich codons encoded
amino acids alanine and arginine would impart in thermal stability of the proteins. Investi-
gation of other attenuated viruses revealed that without altering overall genomic AT/GC
composition, only enhancement in CpG and TpA content attenuated viruses like Zika [104]
and IAV [102]. Contrarily, in the polio [101] and E7 viruses [40], CpG and TpA alterations
with genome composition changes attenuated the viruses, suggesting that the CpG and
TpA have a more significant role in attenuation than composition.

Selection for disfavoured codon pairs leads to unintended increases in CpG and UpA
dinucleotide frequencies that also attenuate replication. In the viral genomes, CpG and
UpA dinucleotides are present at low frequencies. Tulloch and colleagues manipulated a
human gut virus, namely echovirus 7, where they made two sets of mutations. In one set,
the codon pair frequencies were altered, keeping CpG and TpA constant. In contrast, in the
second set, codon pair frequencies were kept the same while the CpG and TpA content was
altered. The results revealed that alteration in codon pair frequency doesn’t alter the viral
fitness, but an increase in CpG or TpA weakens the virus, and it is possibly attributed to
the viruses being targeted readily by the host immune system post increase in CpG content
and not due to altered virus fitness [19]. Considering all the facts together, we suggest that
while constructing SARS-CoV-2 vaccine candidates through synthetic biology approach,
CG or TA content should be optimized in a way that CG content should neither be that
low for the virus that helps in escaping the host defense system nor should be too high that
before eliciting sufficient immune response it is eliminated by the immune system.

Furthermore, the ApA, TpA, and TpT dinucleotides were higher, and those of ApT,
GpC, and CpG dinucleotides were lower in the vaccine strain of the P. multocida strain
than in the virulent strain. In the structural genes of the delta strain of SARS-CoV-2, TpT,
ApA, CpT and TpG were overrepresented, while GpG, CpC, GpA, and CpG dinucleotides
were underrepresented.

While constructing the vaccine candidate with the synthetic biology approach, know-
ing how much nucleotide content needs to be changed to get attenuation is essential. In
echovirus 7, ten-fold or greater attenuation in cell culture was achieved by replacing >12–15%
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of the genome with codon pair deoptimized sequences that typically increased the fre-
quencies of CpG and UpA from 0.4–0.6 to 1.4–1.6 (CpG) and from 0.5–0.8 to 1.1–1.4 (UpA)
respectively [19].

Since TpA is commonly underrepresented in organisms [108,109], a further decrease
in TpA content is helpful in attenuating viruses for developing vaccine candidates against
animal viruses also. One example is the classical swine fever virus (CSFV), where the
codon deoptimization technique was used in the glycoprotein E2-coding region of CSFV,
where deoptimization increased TpA. Inoculation with this virus showed the animal’s
survival and remained clinically normal [110], indicating efficacy as a vaccine candidate
for animal use. On the other hand, the Minute virus of mice, a Parvovirus, exhibited no
attenuation followed by increasing TpA and showed a similar replication pattern as of
wild-type virus [111]. Thus the effect of the elevation of TpA has a virus-specific impact
and needs to be tested for viruses separately.

Hence it is suggested that for constructing the SARS-CoV-2 vaccine candidate, the
overall permissible change in a genome is 10–15%. It is noteworthy that not all the ORFs
experience the same degree of CpG suppression. CpG suppression is least in the E gene
and ORF10, and both use underrepresented codon pairs, and CpG usage is high compared
to other ORFs [112]. Hence while deciding the CpG content, it is also essential to keep
in mind the original CpG usage of individual ORFs. This observation will be relevant to
future strategies for a rationally attenuated SARS-CoV-2 vaccine.

For codon deoptimization, one may have the choice of using non-optimal codons or
codon pairs from the host or virus itself (mentioned in the above section). In the present
study, we envisaged various parameters like preferred codons, preferred codon pairs, and
rare codons that may be used to recode the virus genetic sequence and design a codon-
deoptimized vaccine candidate. We analyzed both the preferred and rejected codon pairs
for gene recoding. Codons CGG (Arg), CCG (Pro) and CAC (His) were rare in all the genes
envisaged. GGG (Gly), CCC (Pro), and TCG (Ser) codons were rare in at least three genes.
Codons ACG, CAC, CCG, CGA, CGG, CGC, GCG, GGG, and TCG were rare in the delta
strain, and all other envisaged strains and had a frequency below 0.5% except for CGC
having slightly higher (0.62%) in Sarbacoviruses. Judicial usage of these rare codons, along
with their intelligent placements (like placements near the 5′ region) in the recoded virus, is
expected to attain an attenuated phenotype with the ability to evoke an immune response.

Generally, it is considered that for obtaining an attenuated vaccine candidate, it is
essential to incorporate deoptimized (rare) codons [113] or codon pairs [7]. But there
are examples where attenuated vaccine candidates have been designed by using excess
optimized codon pairs. For example, in the attempt to construct an attenuated vaccine
candidate against Vesicular Stomatitis Virus (VSV) by computer-aided design, two recom-
binant versions were prepared. One version contained the excess underrepresented codon
pairs (L1Min), and the other one contained excess overrepresented codon pairs (L1sdmax),
where all the manipulations were carried out into the polymerase gene ‘L.’ Multistep
growth kinetics and plaque phenotypes of the wild type and the engineered one revealed
that the L1sdmax version was both immunogenic and attenuated. This attenuation was
not host range specific since it generated small plaques in all the cell lines tested [114].
This observation is likely attributed to overrepresented codon pairs altering the translation
rate, leading to disrupted coordination between translation and protein folding. Here it
is important to note that CpG is more effective in attenuation than TpA. The evidence
is from the Influenza A virus, where both CpG and TpA high viruses were attenuated
with 10–100 fold reductions in the viral loads in the lungs of infected mice. However,
the pathogenicity of CpG-high viruses was substantially reduced [102]. The E7 virus was
modified using 02 segments representing 16.7% and 14.2% of the full-length genome. When
both segments were replaced with CpG high or TpA high segments, 100- to 10,000-fold im-
pairments in replication were observed. However, out of two segments, if only one segment
was CpG or TpA high and the second segment was WT, then CpG high/WT combination
exhibited 144-fold less replication. Contrarily, TpA high/WT exhibited 10 folds greater
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amplification [40]. All the points indicate the more significant role of CpG in attenuation
than TpA.

ACT-, AAT-, TTT- and TTG-initiated codons (Threonine, Asparagine, Phenylalanine
and leucine) were preferred in at least 3 genes out of the four envisaged, whereas GTT-,
GGA and CTT- initiated (Val, Gly and Leu) codons were preferred in at least two genes. In
the E gene, Phenylalanine-, Leucine-, Serine-, and Tyrosine-initiated codons are preferred
in all genes. In the delta, Valine-initiated codons were also preferred, while in other VoCs
and Sarbecoviruses, Serine initiated (06) codon pairs were preferred. Phenylalanine and
Leucine-initiated codon pairs were preferred for the M gene in all envisaged strains. In the
N gene and S genes, Glycine-initiated codon pairs were preferred in all VoCs, including
delta strain apart from Sarbecoviruses. Since codon preference is similar for all viruses,
similarity in codon pair preferences is also expected, and as expected, many of the codon
pair usages are the same for delta compared to other strains; however, some unique patterns
were also present, which could be molecular signatures. Authors suggest investigators use
the information where highly preferred codon pairs are initiated with specific codons for
recoding viruses through excessive codon optimization or deoptimization.

Since the genetic code is redundant, 18 out of 20 amino acids are encoded by two, three,
four, or six synonymous codons. The observed usage of these codons is different from
what is expected and called codon bias. This bias can be species-specific and correlated
with the tRNA pool. Together the tRNA pool and codon usage determine how efficiently
a protein will be translated. Since the virus depends on host cell cellular machinery for
protein translation, many viral genomes contain more host-preferred codons. In an elegant
work of Chen et al.,(2020), it was demonstrated that if host codon usage is similar to that of
viral codon usage, it reduces the burden on host translation machinery while increasing
viral gene expression. Human genes, which have a similar codon usage pattern to viral
genes, are upregulated during infection between the host and virus is very similar for
symptomatic hosts than natural hosts [115], suggesting more severe outcomes of having
high codon usage similarities between the host and the pathogen. SARS-CoV-2 delta strain
virus also preferred codons; for them, fewer isoacceptor tRNAs were present, and it appears
to be a strategy where, in the key structural motifs, the pace of translation is kept low to
facilitate proper folding of viral protein. Our result corresponds to the results found in the
Nipah Virus by Khandia et al. [74], where a suboptimal tRNA pool was used for encoding
viral genes. Similarly, in the hepatitis A virus (HAV), which presents a highly biased codon
usage as opposed to the host codon usage and usage of inefficient IRES, the virus is able to
synthesize its proteins owing to the usage of less abundant tRNA pool of host that results
in a poor replication rate, and thus it is difficult to culture virus in cell culture [116]. The
attempt to make the tRNA pool more available to the HAV virus, in fact, resulted in a loss
of fitness and which later recovered through a re-deoptimization [117]. Based on our study,
we concluded that while constructing attenuated vaccine candidates through synthetic
biology approach using structural genes, disruption of favored codon pairs is a better
strategy compared to incorporating “one to stop” TA dinucleotide or incorporating rare
codons. Further, through reverse genetics, the desired deoptimized recombinant recoded
virus may be rescued from cell culture and used to investigate efficacy and protection in
the future.

5. Conclusions

Virus recoding, taking advantage of the synthetic biology approach, is an emerging
technique in constructing vaccine candidates. Changing the overall nucleotide composition,
CpG and TpA content, codon or codon pair deoptimization or excessive optimization, and
knowledge related to the host tRNA pool are a few strategies currently being adapted
for attenuating pathogens for vaccine candidate development. In the present study, we
envisaged various molecular features of four structural genes of the SARS-CoV-2 virus delta
strain. The study’s outcome encompasses information relating to the overall composition,
where we found the genome rich in A/T nucleotides, specifically in T nucleotides. The
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information related to dinucleotide proportion may be used to carefully recode the virus so
that its CpG content remains in a way that it will not escape the immune response.

On the other hand, it should not be too high to be removed instantly by the immune
system. Codons CGG (Arg), CCG (Pro) and CAC (His) are rare in all the envisaged
genes, while most of them preferred ACT-, AAT-, TTT-, and TTG-initiated codons. We
also envisaged a positive codon context in S gene. The information related to the human
isoacceptor tRNA pool and preferred codons in delta virus also might be helpful while
considering the codons while recoding. Overall the information generated in the present
study will be beneficial for researchers who are considering synthetic biology approach to
develop a vaccine candidate again the deadly SARS-CoV-2 strain, and they may choose to
have various options in combination to achieve a safe and efficacious vaccine candidate.
Instead of incorporating rare codons, disruption of favored codon pairs is a more viable
strategy in obtaining better vaccine candidates owing to both reduced protein expression
and lower transcript stability.
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