
Citation: Naz, S.; Aroosh, A.; Caner,
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Abstract: Cutaneous Leishmaniasis (CL), a neglected vector-borne disease caused by protozoan
parasite Leishmania major (L. major), is a major public health concern, and the development of new
strategies to reduce the disease incidence has become a top priority. Advances in immunoinformatics
and in-silico epitope prediction could be a promising approach to designing a finest vaccine candidate.
In this study, we aimed to design a peptide-based vaccine against CL using computational tools
and identified ten B-cell-derived T-cell epitopes from the glycoprotein gp63 of L. major. All of the
potential immunodominant epitopes were used to design a vaccine construct along with a linker and
an adjuvant at the N-terminal for enhancing its immunogenicity. Additionally, many characteristics
of the proposed vaccine were examined, and it was confirmed to be non-allergenic, non-toxic, and
thermally stable. To assess the vaccine interaction with the innate immune toll-like receptor-4 (TLR-4),
a 3D structure of the vaccine construct was developed. Molecular docking and molecular dynamic
simulation were used to confirm the binding and to assess the stability of the vaccine-TLR4 complex
and interactions, respectively. In conclusion, our multi-epitope vaccine will provide a gateway to
analyze the protein function of a potential vaccine candidate against CL.

Keywords: Leishmania major; cutaneous leishmaniasis; glycoprotein; toll-like receptor-4; molecular
dynamic simulation

1. Introduction

Leishmaniasis is caused by an obligatory intracellular parasite belonging to the genus
Leishmania, which is transmitted via the bite of infected female phlebotomine sand-flies [1].
Approximately 20 different species of the sandfly can transmit the parasite to the mam-
malian host, either zoonotically or anthropologically [2,3], leading to a variety of disease
patterns, particularly cutaneous leishmaniasis (CL), visceral leishmaniasis (VL), and muco-
cutaneous leishmaniasis (MCL) [4–6]. Leishmaniasis is an important global health prob-
lem [7] and the seventh most neglected tropical infection, which is prevalent in 98 countries
and affects 350 million people globally [8–10].

The most commonly used drugs against CL are pentavalent antimonials, paromomycin,
liposomal amphotericin B (AmBisome, AmB) and oral miltefosine [11–13], which have
multiple adverse effects. AmB has replaced antimony as a first-line therapy for treatment,
but its use is limited due to the difficulty of administration, as well as its high cost [14–16].
Leishmania (L.) major, the causative agent of zoonotic CL, expresses three main types of
molecules: glycosylphosphatidylinositol, lipophosphoglycan (LPG), and glycoproteins
(GP). A 63 kDa surface proteinase (GP63), a glycoprotein, was identified as the major sur-
face antigen [17–19], with more than 500,000 copies expressed and distributed throughout
whole promastigote cell [20]. Its role in the survival of the parasite within macrophages
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promotes phagocytosis and takes control over the complement activation, which increases
the parasite’s resistance to complement-mediated lysis [21]. Due to its abundance and
ability to develop resistance, it has been suggested that GP63 could be a candidate for the
vaccine against leishmaniasis [22].

The emergence of its resistance and the increasing rate of therapeutic failures has led
to the critical need for novel anti-leishmanial treatment and the development of an effective
vaccine against CL [23,24]. In the last few years, immunoinformatic tools have offered
epitopes predictor programs to scan the whole genomes for the immunogenic epitopes
and for the selection of potential proteins for vaccine development [25–27]. Recently,
studies of the anti-leishmanial candidates for vaccine development have advanced due
to the understanding of the cell-mediated immunological mechanisms for controlling the
infection [28,29]. Minimal epitopes analogous to peptides are capable of inducing the T-cell-
specific responses that are essential to eradicating the intracellular parasite [30]. Based on
the understating of the mechanisms of immunology, several vaccines have been designed,
but none of them have been found to have any remarkable efficacy. However, the major
surface glycoprotein GP63 of L. major considered, a ligand involved in the interaction of
the parasite with the immune system, is a potential vaccine candidate that might interact
directly with the macrophages [31].

A DNA vaccine containing the GP63 protein of L. donovani T-cell epitopes was projected
to reduce the parasite load in the liver and spleen of the tested mice [32]. The GP63 protein
of L. infantum was also reported as a potent immuno-dominant epitope that is competent
enough to induce an immune response and elicit the infection against L. infantum [33–35].

The recent advances and extensive research in vaccine designing and development
have provided new insights for the Leishmania infection [36,37]. Moreover, it helps to design
new therapeutics and epitope vaccines for the molecular targets with low cost [38] and
providing a useful therapeutic tool to combat the infection [39]. The present study utilized a
combination of immuno-informatics strategies to develop a subunit-epitope vaccine against
CL, by obtaining antigenicity, allergenicity, as well as physiochemical properties, for the
vaccine protein. To check the complex stability and binding energy, molecular docking and
dynamic simulations of the vaccine constructs were also carried out. The GP63 protein of
Leishmania major was used in this study to develop a novel vaccine construct that may help
in preventing CL infection in human hosts.

2. Materials and Methods
2.1. Study Design

The design of a multi-epitope vaccine involved numerous technique steps. Figure 1
provides a summary of the general process utilized to design a multi-subunit vaccine and
pipeline for the current study.

2.2. Sequence Retrieval and Antigenicity Prediction

The FASTA formatted full amino acid sequence of the GP63 protein (ID: P08148)
from L. major was retrieved from Uniprot at www.uniprot.org. The antigenic nature of a
protein, or its capacity to generate an immunological response within the host body, was
screened using the Vaxijen 2.0 antigen prediction service (http://www.ddg-pharmfac.net/
vaxijen/VaxiJen/VaxiJen.html) (accessed on 2 March 2022). This server focuses on the auto
cross-covariance (ACC) transformation and alignment-independent prediction, which both
retain a predictive accuracy between 70–89% [40].

www.uniprot.org
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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Figure 1. Outline of methodology followed in this study to find B and T cell epitopes and designed
MEVs using immunoinformatics methods is shown in the flow chart above. Additionally, biophys-
ical investigation was carried out using integrated docking, modeling, and binding free energies
methodologies to determine the vaccine’s affinity for immunological receptors.

2.3. Immunoinformatics Analysis
2.3.1. B-Cell Epitope Prediction

The B-cell epitopes were predicted from the full-length protein sequences using the
BCPreds method with a cutoff score of >0.8 (http://tools.iedb.org/main/bcell/) (accessed
on 2 March 2022). The antigenicity of the predicted B-Cell epitopes was assessed using
VaxiJen 2.0 with a threshold of 0.4 [41].

2.3.2. MHC-I and MHC-II Epitopes Prediction

The CTL epitopes (9-mer) were predicted through consensus approaches, using the
EDB major histocompatibility complex MHC-I binding tool (http://tools.iedb.org/mhci/)
(accessed on 4 March 2022) [42]. In this investigation, the MHC allele frequency was modified
using the HLA allele reference set and the suggested algorithm from IEDB 2.1 [43]. The IEDB
recommended technique was utilized to predict the HTL epitopes (15-mer) using the IEDB
MHC-II binding tool (https://tools.iedb.org/mhcii/) (accessed on 4 March 2022) [44].

2.3.3. Epitopes Mapping

In order to determine the binding affinity potential for the dominant HLA II DRB*0101,
the chosen epitopes were then employed in MHCPred 2.0. Only those with IC50 values
of 100 nM were determined to be excellent DRB*0101 binders. After setting the cut-off to
>0.6, VirulentPred and Vaxijen 2.0 was used to highlight the antigenic epitopes. Two more
online servers, AllerTOP v2.0 (https://www.ddg-pharmfac.net/AllerTOP/) (accessed on 4
March 2022) [45] and ToxinPred (https://webs.iiitd.edu.in/raghava/toxinpred/protein.
php) (accessed on 4 March 2022) [46], were used to check the toxicity and allergenicity,
respectively, and all of the parameters were left at their default settings to ensure an 88.9%
prediction accuracy. We used the established peptide affinity measurements and, as the IC50

http://tools.iedb.org/main/bcell/
http://tools.iedb.org/mhci/
https://tools.iedb.org/mhcii/
https://www.ddg-pharmfac.net/AllerTOP/
https://webs.iiitd.edu.in/raghava/toxinpred/protein.php
https://webs.iiitd.edu.in/raghava/toxinpred/protein.php
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values 100nM are regarded as indicating the significant affinity, we used that value to select
the epitopes for further consideration [47]. Furthermore, the non-toxic epitopes were tested
using the IFN-epitope server (https://webs.iiitd.edu.in/raghava/ifnepitope/index.php)
(accessed on 4 March 2022).

2.3.4. MEVC Designing and Post Analysis

The subunit vaccine was designed by using only the filtered epitopes, with GPGPG
linkers placed at the intra-epitopic positions and APPHALS, a TLR4 peptide adjuvant,
coming before it in the N-terminal and being joined by EAAK linkers [48]. The ProtParam
tool of the EXPASSY server was used to examine the physiochemical characteristics of
the designed MEVC and the SCRATCH protein server’s 3Dpro was used to model the
three-dimensional (3D) structure of the vaccine construct from scratch [49]. Following that,
loop modelling was carried out in the construct’s 3D structure using GlaxyLoop [32] from
GlaxyWeb and improved using GlaxyRefine [50]. Disulphide engineering was used to
improve the Design 2.0 model of the design because disulphide bonds increase the stability
of the construction.

2.3.5. Codon Optimization and In-Silico Cloning

Additionally, the vaccine construct’s sequence was translated in a reversible manner
to optimize the codon usage for the Escherichia coli (E. coli) K12 expression system and
achieve a high rate of expression. The Java Codon Adaptation Tool (JCat) (CAI) was used
to calculate the expression rate of the cloned vaccine construct and was subsequently
cloned using SnapGene 4.2 (https://www.snapgene.com/snapgene-viewer/) (accessed on
6 March 2022) into the E. coli pET28a (+) vector.

2.4. Molecular Docking of Vaccine with TLR4 Receptor

The minimal TLR4 was chosen as a receptor from the RCSB PDB library (PDB ID:
4G8A), and the vaccination construct was utilized as a ligand (https://www.rcsb.org/)
(accessed on 6 March 2022). For molecular docking, the PatchDock server was used to eval-
uate the binding affinity between the designed vaccine construct and the minimized TLR4
receptor. PatchDock’s effective rigid docking technique maximizes the complementarity be-
tween geometric shapes [51]. The clustering Root Mean Square Deviation (RMSD) was left
at its default value of 4.0, and the Fast Interaction Refinement in Molecular Docking (Fire-
Dock) server was used to modify the output docked solutions for the interactions [52]. The
refined complex with the lowest global energy was ranked first after the refined complexes
were examined.

2.5. Molecular Dynamics Simulation with Vaccine-TLR4 Complex

The complex (vaccine-TLR4) comprising the best vaccine construct selected in the
previous phase was the only one for which a molecular dynamics simulation investigation
was conducted, using the previously described methods [53]. AMBER 20 was used for
the molecular dynamics simulation to evaluate and measure the protein flexibility and
analysis of the intermolecular interactions was conducted using the FF14SB force filed.
Additionally, several parameters, such as the RMSD (root mean square deviation), RMSF
(root mean square fluctuations), salt bridges analysis, simulated trajectories, and others,
were investigated to assess the complex stability.

2.6. Free Energy of Binding and Decomposition

Using the MMPBSA.py module of AMBER20, the free energies of the binding and
per-residue free-energy decomposition were calculated [54]. The following equations were
used to estimate the free binding energy of the designed complex, Gbind:

∆Gbind, solv = ∆Gbind, vaccum + ∆Gsolv, complex − ∆Gsolv, ligand − ∆Gsolv, complex (1)

∆Gsolv = ∆Gelectrostatic(ε80−1) + ∆Ghydrophobic (2)

https://webs.iiitd.edu.in/raghava/ifnepitope/index.php
https://www.snapgene.com/snapgene-viewer/
https://www.rcsb.org/
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∆Gvaccum = ∆Emolecular mechanics − T.∆Gnormal mode analysis (3)

The net free binding energy was decomposed into the individual residues to see which
ones interacted and remained stable.

3. Results
3.1. Protein Antigenicity

The antigenic score acquired upon the running sequence of the protein through the
Vaxijen 2.0 server was 0.5768, which signified that the protein is up to par immunogenicity.
Hence, after checking its antigenic potential, the protein was considered to design the
vaccine on the basis of its antigenic score, >0.5. The TMHMM server 2.0 transmembrane
topology prediction tools predicted only one transmembrane helix for the selected protein.

3.2. B-Cell Epitope Prediction

The IEDB B-cell epitope prediction tool was used to predict the linear B-lymphocytes
(LBL) epitopes from the chosen protein candidate GP63, and the benchmarks for the
selection from the projected findings included the linear epitope, illustrated in Figure 2.
Nine peptides with eight or fewer amino acid residues were disqualified from the results,
yielding a total of nineteen peptide fragments. Table 1 displays the remaining nine epitope
candidates. According to an antigenicity score of 1.3077, a 22-mer peptide with the sequence
EVEDQGGAGSAGSHIKMRNAQD at positions 321–342 had the most antigenic potential.
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Table 1. Selected B-cell epitopes based on linear epitope prediction method.

No. Start End Peptides Length Antigenicity Score

1 40 48 HAGALQHRC 9 0.7469

2 54 106 QARVRQSVADHHKAPGAVSAVGLPY
VTLDAAHTAAAADPRPGSARSVVRDVNW 53 0.7005

3 166 206 QLHTERLKVQQVQGK
WKVTDMVGDICGDFKVPQAHITEGFS 41 0.5666

4 277 292 FEDARIVANVPNVRGK 16 0.6676
5 321 342 EVEDQGGAGSAGSHIKMRNAQD 22 2.1090
6 428 452 TRHPGLPPYWQYFTDPSLAGVSAFM 25 0.4103
7 460 489 PYSDGSCTQRASEAHASLLPFNVFSDAARC 30 0.8693
8 492 507 GAFRPKATDGIVKSYA 16 0.6250
9 565 585 CQGNVQAAKDGGNTAAGRRGP 21 1.4080

3.3. Prediction of MHC-I and MCH-II Binding Epitopes

These B-cell peptide sequences were evaluated for the T-cell epitope prediction and the
binding sites for MHC-I and MHC-II were identified. The rapid immunological response
caused by the CD+ T-cells’ recognition of the MHC-I molecules on the nucleated cell surface
resulted in the death of the presenting cells. On the other hand, the MHC-II molecules were
found on the antigen-presenting cells (APCs) and were recognized by the CD4+ T cells.
Only those epitopes that are common to both classes were taken into consideration after
filtering out the MHC-III predicted epitopes based on the percentile scores and comparing
them with the MHC-I allele selected epitopes. The shortened 48 common MHC-I and
MHC-II epitopes were tested for antigenicity. Here, the ability of the filtered T-cell epitopes
produced from the B-cells to induce and bind with the products of adaptive immunity
was examined. The 29 epitopes that were produced can bind with the most common
DRB*0101, with an average IC50 score of 34.5, a maximum of 97.5, and a minimum of
3.24. In order to remove the allergic peptides that can result in allergic reactions, the
antigenic epitopes underwent allergenicity validation. Nine epitopes were non-toxic and
generated IFN-gamma, while eight allergic epitopes and nineteen non-allergenic epitopes
were investigated. The final set of nine epitopes obtained through various rounds of the
epitope mapping phase is given in Table 2, along with the additional information that six
epitopes were likely non-antigens and six demonstrated poor solubility.

Table 2. The filtered antigenic T-cell epitopes predicted for multi subunit peptide vaccine construct.

T Cell
Epitopes

Percentile Score MHCPred
Score (nM)

Allergenicity Antigenicity Solubility IFN-γ Toxicity Virulency
MHCI MHCII

RVRQSVADH 0.4 19 50.12 Non-
allergen 0.6 Good

soluble + Non-toxin 0.6586

AADPRPGSA 1.3 6.4 55.72 Non-
allergen 0.8052 Good

soluble + Non-toxin 0.6586

RSVVRDVNW 0.1 14 24.27 Non-
allergen 0.9752 Good

soluble + Non-toxin 0.6586

RLKVQQVQG 0.08 0.81 26.61 Non-
allergen 0.7406 Good

soluble + Non-toxin 0.6586

LHTERLKVQ 20 0.81 97.5 Non-
allergen 0.8995 Good

soluble + Non-toxin 0.6586

FEDARIVAN 1.3 0.73 5.93 Non-
allergen 1.1664 Good

soluble + Non-toxin 0.6586

NVFSDAARC 1.6 25 3.24 Non-
allergen 1.0135 Good

soluble + Non-toxin 0.6586

YSDGSCTQR 0.94 75 10.38 Non-
allergen 0.8450 Good

soluble + Non-toxin 0.6586

DGGNTAAGR 2.5 75.38 31.12 Non-
allergen 0.9705 Good

soluble + Non-toxin 0.6586
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3.4. Construction of Multi-Epitope Peptide Vaccine (MEPVC)

The EAAK linker related to the adjuvant (50S ribosomal protein L7/L12, a TLR4
agonist) at the N-terminal of the vaccine construct in order to create a stable and coherent
multi-epitope peptide vaccine construct. Then, a GPGPG linker was inserted between the
epitope sequences to connect the prioritized B-cell-derived T-cell epitopes. The earlier
studies have emphasized that TLR4 is a member of a larger class of toll-like receptor
proteins that play a critical role in initiating the cascades of immune responses against
an antigen, involving both the innate immune system and the adaptive immune system,
and that the EAAAK linker amplifies the bioactivity of the vaccine protein. The schematic
diagram of the chimera sequence is shown in Figure 3A and the final MEV construct
composed of 119 amino acids residues are represented in Figure 3B,C.
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first seven amino acids are TLR4 adjuvant linked with five residues of linker followed by nine
immunodominant epitopes joined together by GPGPG linker (A) chimera sequence (B) and 3D
structure of original predicted vaccine construct (C).

3.5. Antigenic and Non-Allergic Evaluation of MEPVC

The conserved predicted epitopes from the preceding steps were further analyzed for
allergenicity, antigenicity, and immunogenicity properties before conceding as the potential
vaccine candidates. Thus, by following the analysis, we cut off allergenic, non-antigenic and
toxic epitopes and the final eight epitopes from the above list were obtained by eliminating
the allergen epitope. A 9-mer epitope, DGGNTAAGR, predicted allergen was discarded
from further analysis. The AllerTOP 2.0, AlgPred, and AllergenFP 1.0 servers investigated
the allergenicity of the multi-epitope vaccine that was ultimately developed. According
to the results of AllerTOP 2.0, the designed build does not cause inflammatory reactions.
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According to ANTIGENpro’s and VaxiJen’s estimates of the probability of vaccination
antigenicity, the MEPVC can effectively elicit cellular and humoral immune responses
against the pathogens (0.6685 and 0.5872, respectively).

3.6. Physiochemical Assessment and Protein Stability

The Expassy server’s ProtParam tools revealed several important features, as shown
in Table 3. The molecular weight of the vaccine construct was calculated to be around
11.8 kDa, and the theoretical pI of the protein was expected to be 9.68. Size exclusion
chromatography can be used to separate such small size proteins and the projected pI
value showed that the vaccine construct was substantially acidic in nature. There are
13 positively charged amino acid residues and 9 negatively charged amino acid residues
in total. In addition, a half-life of 4.4 h in the mammalian reticulocytes (in vitro), >20 h in
the yeast (in vivo), and >10 h in the Escherichia coli (in vivo) were calculated. The predicted
instability index (II) was 25.96, as a value less than 40 is considered to be a stable protein,
and this classifies the vaccine construct as stable. The construct’s aliphatic index was
found to be 51.68, indicating it is thermo-stable. A high aliphatic index indicates that the
protein is stable across a wide temperature range. Its GRAVY value was calculated to be
−0.682; the negative score indicated that it is hydrophilic and has better contact with the
water molecules around it. The Protein-sol and Solpro servers predicted the solubility
of the vaccine with a high degree of accuracy [55]. The Protein-sol calculated 0.714 and
the Sol-pro calculated 0.903, indicating that the proposed MEV is more soluble upon its
overexpression in E. coli. To summarize, the developed vaccine is expected to be extremely
acidic, thermo-stable, and hydrophilic.

Table 3. Physiochemical properties of final vaccine construct.

Criteria Score

No. of amino acids 119
Molecular Weight 11,825.08

Total number of negatively charged residues 09
Total number of positively charged residues 13

Theoretical pI 9.68
Estimated half-life in mammalian

reticulocytes in vitro 4.4 h

Instability Index (II) 25.96
Aliphatic Index 51.68

Grand average of hydrophaticity (GRAVY) −0.682
Solubility 0.71, 0.903

3.7. Prediction of Secondary and Tertiary Structure and Validation

According to the RaptorX Property, the MEPVC consists of 9% α-helix, 12% β-sheets,
and 78% coils. The predictions demonstrated that 75% of the constituent amino acid
residues were exposed, 14% were medium, and 10% were buried in terms of solvent
accessibility. As no suitable template for homology modeling and threading methods
was available, the 3D model of the MEPVC was created using an ab initio SCRATCH
Protein Predictor.

Furthermore, utilizing the GalaxyRefine server to refine a selected 3D structure of
a multi-peptide vaccine, five 3D refined models were proposed. Model 5 had a higher
Rama favored region (89.7) and overall acceptable GDT-HA (0.9769), RMSD (0.327), and
MolProbity (2.341), as well as a lower clash score (16.5) and poor rotamers (1.2). As a
result, this improved model was chosen as the best model for additional pool validation
and was subjected to ProSA-web, Ramachandran Plot, and verified 3D model servers for
the potential error evaluation. The refined model had a −2.37 z-score calculated through
the ProSa-web, which is within a range of scores seen in native proteins of similar size
(Figure 4A). According to the Ramachandran plot data, there were 66 (88%) residues in
favorable, 8 (10.77%) residues in favored, 08 (10.7%) residues in allowed regions, and 1
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(1.3%) residues in disallowed regions (Figure 4B). To assess the modelled structure, the
ERRAT and verify 3D servers were used. The quality factor of the 3D refined model
was 84.90 percent, according to the ERRAT findings (Figure 4C). The findings of the 3D
score verification showed that 92.44% of the amino acid residues had a 3D-1D score >= 0.2.
(Figure 4D) and in an improved 3D model, all of the residues were found to be in an
acceptable side chain environment.
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Figure 4. Validation of the 3D structure model of refined vaccine construct (A). Z-core of construct
model calculated −2.37 which in range of conformation scores of native protein (B). Ramachandran
plot validation indicates; 88%, residues are in favored, 10.7% residues in allowed and 1.3% residues
in disallowed region (C). ERRAT factor of final construct structure was 84.90%. In ERRAT plot, gray
lines are showing regions of 3D model that can be rejected at 95% confidence level and yellow lines
depicting regions that can be rejected at 99% level (D). The 3D score of the final model was 92.44%
and amino acid residues with an average 3-1D score greater than zero are regarded as reliable.

3.8. Disulphide Engineering, Codon Optimization and In Silico Cloning Analysis

The MEVP was disulphide engineered to improve the molecular interactions and pro-
vide significant stability by obtaining the accurate geometric conformation. Thirteen pairs
of residues were selected to be replaced with cysteine amino acids. These pairs are ALA1-
GLY66 (χ3 angle, −65.07, energy value, 5.16 kcal/mol), PRO2-ARG45 (χ3 angle, +71.08,
energy value, 2.6 kcal/mol), VAL14-VAL18 (χ3 angle, +112.54, energy value, 5.62 kcal/mol),
GLY26-VAL43 (χ3 angle, −79.7, energy value, 2.69 kcal/mol), ALA27-GLY33 (χ3 an-
gle, −107, energy value, 3.79 kcal/mol), PRO39-LYS57 (χ3 angle, −65.07, energy value,
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5.16 kcal/mol), SER42-ARG73 (χ3 angle, +117.5, energy value, 4.85 kcal/mol), VAL47-
GLN59 (χ3 angle, +98.63, energy value, 2.54 kcal/mol), PRO51-ARG55 (χ3 angle, +78.8,
energy value, 2.63 kcal/mol), VAL61-GLY64 (χ3 angle, −114, energy value, 5.16 kcal/mol),
GLY80-ASP85 (χ3 angle, +124.83, energy value, 4 kcal/mol), ASN91-ARG104 (χ3 angle,
+101.81, energy value, 6.56 kcal/mol), PRO95-VAL98 (χ3 angle, +121.4, energy value,
2.42 kcal/mol). These residues have either a higher energy level i.e., >2 kcal/mol, or a
χ3 angle out of range (<−79 and +71), and were selected on purpose for their stability.
Disulphide bonds are a form of post-translational modification that often determines the
protein structure and function. They also protect proteins against oxidants and proteolytic
enzymes in extracellular environments, which can render proteins inactive. Disulfide
linkages can increase the half-life of proteins and protect them from deterioration by sta-
bilizing the proteins’ structure. Figure 5A depicts the MEPVC’s native and disulphide
mutant structures. The native and mutant structures of the MEPVC were superimposed
(Figure 5B), while the RMSD value for 76 pruned pairs is 0.650 Å, and across all 119 pairs,
7.128 Å. Codon optimization was then applied to the translated sequence using the JCat
web server to produce a high-level protein expression in E. coli. Our optimized nucleotide
sequence has a codon adaptation index (CAI) of 0.933 and a nucleotide sequence length
of 64.426. These findings suggested that this optimized DNA sequence would have the
highest level of expression in E. coli (Figure 6).
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black lines.

3.9. Docking Interaction of MEPVC and TLR4 Receptor

In order to decipher the MEPVC’s potential for binding to induce the innate immune
response, bioinformatics modeling-driven molecular docking of the proposed MEPVC to
one representative innate immune response receptor (TLR4) was performed. The docking
evaluation predicted the top 20 complexes, which were predominantly sorted based on the
scoring function and the area size of the interacting molecules. The real rigid transforma-
tions of the complexes were then submitted to the FireDock online server for the refinement
experiments. This permits a deep refinement of the predictions and makes it possible to
minimize the docking procedure flexibility flaws, which lowers the possibility of false
positive docking computations. With a net global energy of 8.12 kJ/mol, solution 5 was
rated as having the highest level of energy. This energy is a combination of −0.57 kJ/mol
hydrogen bond energy, 0.16 kJ/mol repulsive van der Waals, and −1.18 kJ/mol attractive
van der Waals (vdW) (Table 4). The docked conformation of the MPEV with TLR4 and
chemical interaction residues are illustrated in Figure 7. The visual assessment of the
complex reveals deep MEPVC binding at the TLR4’s center, which favors weak van der
Waals and rigorous hydrogen contacts with the other TLR4 residues.
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Table 4. Refined PatchDock complexes as an outcome of FireDock assay.

Solution
Rank

Solution
Number

Docking
Global
Energy

Attractive
van der
Waals
Energy

Repulsive
van der
Waals
Energy

Atomic
Contact
Energy

Hydrogen
Bonding
Energy

1 5 8.12 −1.18 0.16 1.74 −0.57
2 7 8.12 −23.52 13.15 18.17 −4.27
3 9 12.76 −2.38 0.64 1.29 −0.48
4 4 31.29 −16.52 25.75 13.70 −3.23
5 6 51.16 −11.81 6.06 7.43 −0.65
6 1 127.18 −54.05 242.23 4.95 −7.53
7 10 170.66 −50.85 292.63 −2.23 −5.51
8 2 867.90 −66.81 1157.25 12.48 −10.11
9 3 3487.64 −80.82 4489.93 24.81 −15.97

10 8 6092.43 −127.20 7856.27 16.37 −34.99
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Figure 7. Inspection of a proposed chimeric peptide vaccine construct and the TLR4 complex using
molecular docking. (A) Vaccine construct’s predicted docked mode in relation to TLR4. The vaccine
construct is shown in red using the New-Cartoon drawing approach, while the TLR4 chains are
depicted using various colored beads: Chain A (plum) Chain B (cyan) chain C (dark cyan) and
Chain D (yellow). (B) Vaccine construct’s interactions within five Angstrom region of TLR4 Receptor.
Chains B (cyan) and D (Yellow) shows interaction with Vaccine construct. The vaccine design is
shown in a red cartoon, while TLR4 chain interaction residues depicted as spheres in magenta color.
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3.10. MD Simulation Assays to Study Conformational Stability and Residual Flexibility

Molecular Dynamics Simulation (MDS) is a widely used technique for examining
micro-interactions between vaccine/ligand and receptor/protein complexes. To obtain a
better understanding of the dynamics and stability, we ran 100 ns MD simulations of the
vaccine ensemble docked-complex with TLR4 followed by RMSD and RMSF. Through a
100 ns MD simulation production run, the stability of the vaccine construct-TLR4 interaction
and the complex’s dynamic behavior were clarified. Figure 8 illustrates the many statistical
metrics used to assess the system stability and structural changes necessary to ensure that
the vaccine construct adheres properly to the TLR4 binding site. By graphing the root mean
square deviation (RMSD) over time, we were able to determine and define the complex’s
conformational stability. The RMSD is the distance between the backbone carbon alpha
atoms of the stacked proteins. The system exhibited a steadily growing RMSD, initially
gradually rising until it reaches 40 ns, but then reached equilibrium for a short time, and
the RMSD stayed uniform until 70 ns. The RMSD rose when the convergence between 80
and 100 ns was seen. However, no significant convergence indicated that the TLR4-vaccine
complex is stable. Overall, the findings revealed that the complex exhibited stable behavior
over the 100 ns simulation, as shown in Figure 8A. The RMSF was used to determine each
complex’s residual flexibility. The residual fluctuation in the TLR4-vaccine complex was
larger within residues 430–600 and 1000–1230. Increased residual fluctuation was seen in
the complex. Overall, the results reveal that the docked complex has substantial behavior.
Figure 8B shows the RMSFs of the complexes.

Figure 8. MD simulation paths are statistically analyzed. RMSD (A) and RMSF (B) are the two output
values shown here.

3.11. Determination of the Binding Free Energy of TLR4-Vaccie Ensemble Complexes

The MM-PBSA was utilized as a post-simulation processing to verify the vaccine
construct’s affinity for TLR4, and the MD simulation trajectories were used to determine
the molecules’ free energies in solution. As an end state free energy computation method,
MM-PBSA.py was used because it is user-friendly, more accurate than docking scoring,
and cheaper than free energy perturbation. The various binding free energies discov-
ered using the GB and PB techniques are summarized in Tables 5 and 6. The MM-PBSA
analysis found that the net delta energy in GB was −272.2354 kcal/mol and in PB was
−410.5471 kcal/mol. The delta energies of the complex, TLR4, and vaccine construct are
−144,847.5215 kcal/mol, −109,303.9694 kcal/mol, and −35,271.3167 kcal/mol, respectively,
in GB. The vaccine design contributed the most to PB (−35,207.3949 kcal/mol), followed by
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the complex (−144,514.7558 kcal/mol) and the TLR4 receptor (−108,896.8137 kcal/mol).
In both GB and PB, the net electrostatic energy is substantially dominant and contributes
favorably to the net binding energy. The system is projected to provide a net electro-
static energy contribution of −4443.1483 kal/mol to both GB and PB. In both GB and
PB, the electrostatic contribution of the vaccine construct (−113,422.7858 kcal/mol) to
the net PB is much greater than that of the receptor TLR4 (−81,782.776 kcal/mol) and
the complex (−27,196.8614 kcal/mol). Additionally, the van der Waals energy is advan-
tageous to the total free energy. This energy is −467.0527 kcal/mol for both GB and PB
(complex = −13,331.9017 kcal/mol, TLR4 receptor = −10,091.7946 kcal/mol, vaccine con-
struct = −2773.0544 kcal/mol). The net solvation free energy is found to be less than the
total energy in both GB (4637.9657 kcal/mol) and PB (4499.654 kcal/mol), owing mostly to
the polar energy (GB = 4705.7822 kcal/mol and PB = 4552.4332 kcal/mol). In comparison,
non-polar salvation seems to contribute just a little amount, as GB has a −67.8165 kcal/mol
and PB has a −52.7792 kcal/mol.

Table 5. Calculation of the generalized Born ESURF utilizing ‘LCPO’ surface areas. Each value is
given in kcal/mol.

Generalized Born

Complex:
Energy Component Average Std. Dev. Err. of Mean

VDWAALS −13,331.9017 51.5473 5.1547
EEL −113,422.7858 113.5974 11.3597
EGB −18,564.5203 85.5735 8.5573

ESURF 471.6862 2.6545 0.2654
G gas −126,754.6874 115.0917 11.5092
G solv −18,092.8341 85.3047 8.5305
TOTAL −144,847.5215 87.4204 8.742

Receptor:
Energy Component Average Std. Dev. Err. of Mean

VDWAALS −10,091.7946 45.7379 4.5738
EEL −81,782.776 118.6831 11.8683
EGB −17,803.7552 89.6395 8.9639

ESURF 374.3564 2.2659 0.2266
G gas −91,874.5705 119.4938 11.9494
G solv −17,429.3988 88.5926 8.8593
TOTAL −109,303.9694 82.1018 8.2102
Ligand:

Energy Component Average Std. Dev. Err. of Mean
VDWAALS −2773.0544 20.5908 2.0591

EEL −27,196.8614 85.3765 8.5376
EGB −5466.5473 65.2155 6.5216

ESURF 165.1464 1.205 0.1205
G gas −29,969.9158 83.196 8.3196
G solv −5301.4009 65.3738 6.5374
TOTAL −35,271.3167 42.7365 4.2737

Differences (Complex-Receptor—Ligand):
Energy Component Average Std. Dev. Err. of Mean

VDWAALS −467.0527 10.8948 1.0895
EEL −4443.1483 64.8796 6.488
EGB 4705.7822 56.3535 5.6354

ESURF −67.8165 0.8586 0.0859
DELTA G gas −4910.2011 62.5925 6.2592
DELTA G solv 4637.9657 55.8599 5.586
DELTA TOTAL −272.2354 12.1577 1.2158
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Table 6. Calculations of the Poisson Boltzmann equations are carried out utilizing sander’s internal
PBSA solver. Each value is given in kcal/mole.

Poisson Boltzmann

Complex:
Energy Component Average Std. Dev. Err. of Mean

VDWAALS −13,331.9017 51.5473 5.1547
EEL −113,422.7858 113.5974 11.3597
EPB −18,084.3392 74.7642 7.4764

ENPOLAR 324.2708 0.9841 0.0984
G gas −126,754.6874 115.0917 11.5092
G solv −17,760.0684 74.5556 7.4556
TOTAL −144,514.7558 91.3773 9.1377

Receptor:
Energy Component Average Std. Dev. Err. of Mean

VDWAALS −10,091.7946 45.7379 4.5738
EEL −81,782.776 118.6831 11.8683
EPB −17,279.2394 91.9939 9.1994

ENPOLAR 256.9962 0.7679 0.0768
G gas −91,874.5705 119.4938 11.9494
G solv −17,022.2432 91.7489 9.1749
TOTAL −108,896.8137 82.893 8.2893
Ligand:

Energy Component Average Std. Dev. Err. of Mean
VDWAALS −2773.0544 20.5908 2.0591

EEL −27,196.8614 85.3765 8.5376
EPB −5357.5329 61.3195 6.132

ENPOLAR 120.0538 0.6479 0.0648
G gas −29,969.9158 83.196 8.3196
G solv −5237.4791 61.554 6.1554
TOTAL −35,207.3949 46.5701 4.657

Differences (Complex-Receptor—Ligand)
Energy Component Average Std. Dev. Err. of Mean

VDWAALS −467.0527 10.8948 1.0895
EEL −4443.1483 64.8796 6.488
EPB 4552.4332 57.0836 5.7084

ENPOLAR −52.7792 0.5371 0.0537
EDISPER 0 0 0

DELTA G gas −4910.2011 62.5925 6.2592
DELTA G solv 4499.654 56.8086 5.6809
DELTA TOTAL −410.5471 14.1814 1.4181

In order to specify the TLR4 residues that serve as a hotspot for binding or stabilizing
the vaccine construct at the docked location, the net free energy of the binding in both PB
and GB was further deconstructed into each TLR4 residue. For the purpose of learning
more about the local interactions in a system, free energy must be decomposed. It enables
the user to figure out how much each residue contributes to the net total free energy. The
TLR4 and vaccine design residues in GB and PB that significantly contribute to the stability
of the complex are listed in Table 7.
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Table 7. Hotspot residues from TLR4 and Vaccine ensemble highly contributes to complex stabilization.

GB PB

Total Sidechain Backbone Total Sidechain Backbone

MET15 −2.08462 MET15 −2.40965 PHE237 −1.06161 MET15 −1.44671 MET15 −1.60689 SER60 −0.77127
GLU16 −1.17813 GLU16 −1.05225 LEU782 −1.66875 GLU16 −2.13704 GLU16 −1.92609 THR84 −0.8626
ASP34 −5.04397 ASP34 −5.29744 LEU783 −1.58457 ASP34 −5.13311 ASP34 −4.97831 GLY85 −0.74245
PHE37 −5.19558 SER36 −1.51823 PHE842 −1.14768 PHE37 −3.32421 PHE37 −3.20194 PHE237 −1.31058
ASP58 −1.43186 PHE37 −4.89467 LYS981 −1.69243 ARG61 −4.5124 ARG61 −4.35588 ARG238 −1.8331
ARG61 −3.40484 ASP58 −1.70757 TYR982 −0.15898 VAL108 −1.37047 VAL108 −1.32842 LEU782 −2.03181
THR84 −2.70391 ARG61 −4.11754 ASP984 −0.10635 HIE133 −3.00269 HIE133 −2.95278 LEU783 −1.1302
VAL108 −1.40956 THR84 −2.12421 SER995 −0.10725 ASP155 −5.04159 ASP155 −4.86819 PHE842 −1.28279
HIE133 −2.04865 VAL108 −1.38103 ASN996 −0.05226 LYS204 −2.44477 LYS204 −2.36699 ARG843 −1.5378
ASP155 −6.43927 HIE133 −2.03865 Residue ARG208 −2.46066 ARG208 −2.46258 LYS981 −1.28934
LYS204 −1.98953 ASP155 −6.65367 ARG231 −5.28115 ARG231 −5.18781
ARG208 −1.22748 LYS204 −2.1196 PHE237 −4.21487 PHE237 −2.90432
ARG231 −4.5883 ARG208 −1.62838 ARG238 −8.6338 ARG238 −6.80086
VAL233 −0.92789 ARG231 −4.66365 ASN239 −3.62178 ASN239 −3.18728
PHE237 −5.58086 VAL233 −1.0402 ARG263 −2.76684 ARG263 −2.66258
ARG238 −7.69397 PHE237 −4.51921 TYR266 −1.41979 TYR266 −1.18676
ASN239 −3.91616 ARG238 −6.94139 VAL290 −2.20019 VAL290 −1.80646
ARG263 −1.27341 ASN239 −3.97193 LEU393 −1.78254 LEU393 −1.92587
TYR266 −1.13488 ARG263 −1.57907 LEU418 −2.08328 LEU418 −1.89394
VAL290 −2.1697 TYR266 −1.14303 PHE437 −3.73036 PHE437 −3.53362
LEU393 −2.0549 VAL290 −2.03742 MET620 −2.2787 MET620 −2.80336
LEU418 −2.06666 LEU393 −2.26239 GLU621 −3.29011 GLU621 −3.11259
PHE437 −4.37701 PHE414 −1.07004 ASN637 −3.3685 ASN637 −3.3096
MET620 −3.03892 LEU418 −2.17538 ASP639 −5.13609 ASP639 −5.00157
GLU621 −1.5327 PHE437 −4.36564 PHE642 −3.84124 PHE642 −3.71211
ASN637 −3.12 MET620 −3.41881 ASP663 −1.4491 ASP663 −0.92414
ASP639 −4.40471 GLU621 −1.50262 ARG666 −3.2697 ARG666 −3.41851
PHE642 −5.54916 ASN637 −3.09983 VAL713 −1.93046 VAL713 −1.73128
ASP663 −2.19012 ASP639 −4.64608 GLU714 −1.81689 GLU714 −1.58249
SER665 −1.68462 SER641 −1.18362 LYS732 −5.19682 LYS732 −5.02788
ARG666 −2.60525 PHE642 −5.27163 HIE738 −2.23817 HIE738 −1.90826
THR689 −2.49328 ASP663 −2.32401 LEU782 −3.40719 LEU782 −1.37525
VAL713 −1.62158 SER665 −2.22498 ARG806 −10.0732 ARG806 −9.55822
GLU714 −3.33969 ARG666 −3.3758 HIE808 −1.15354 HIE808 −0.93046
LYS732 −3.27881 THR689 −2.1897 HIE835 −1.17941 HIE835 −1.06968
HIE738 −1.19432 VAL713 −1.71425 PHE842 −4.72342 PHE842 −3.44065
HIE758 −1.06866 GLU714 −2.94628 ARG843 −6.34089 ARG843 −4.80317
LEU782 −3.33685 LYS732 −3.87176 ASN844 −4.46346 ASN844 −4.10789
LEU783 −2.21718 HIE738 −1.20185 ARG868 −1.40767 ARG868 −1.24233
ARG806 −7.8341 HIE758 −1.10525 TYR871 −1.50897 TYR871 −1.29594
HIE808 −2.951 LEU782 −1.66809 VAL895 −1.67395 VAL895 −1.68745
HIE835 −1.78933 ASN784 −1.06739 PHE956 −2.18221 PHE956 −2.07051
PHE842 −6.00546 ARG806 −7.91147 LYS981 −1.76858 LYS981 −2.28329
ARG843 −6.33914 HIE808 −3.27018 TYR982 −1.39534 TYR982 −1.03322
ASN844 −5.59359 ARG813 −1.28889 ASN996 −2.69019 ASN996 −2.59746
ARG868 −1.71646 HIE835 −1.95128 LEU998 −1.85412 LEU998 −1.80163
ALA870 −1.02429 PHE842 −4.85791
TYR871 −1.17867 ARG843 −5.3531
VAL895 −2.11224 ASN844 −5.27324
HIE913 −1.32297 ARG868 −2.16871
THR936 −1.09677 TYR871 −1.13235
PHE956 −2.67546 VAL895 −1.88138
LYS981 −2.23869 HIE913 −1.44291
TYR982 −2.93645 ARG934 −1.00448
ASN996 −3.03567 PHE956 −2.74494
LEU998 −2.06441 TYR982 −2.7774

ASN996 −2.98316
LEU998 −2.14224

3.12. TLR4-MEPVC Stability and Salt Bridges

When two ionized states come into contact, salt bridges, which are non-covalent
structures, arise. These interactions involve both a hydrogen bond and an electrostatic
contact. In salt bridges, glutamine or aspartate serves as the acid and lysine or arginine
serves as the base. The bridge is created when a proton can move from the carboxylic acid
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group to the amine groups of guanidine and arginine. The strongest non-covalent contacts
are salt bridges, which are important for bimolecular stability. As shown in Figure 9, there
were six salt bridges detected between the TLR4 (Lys732, Glu757, Arg806, Glu955, Glu1004,
Lys1056) and the vaccine ensemble (Asp1506, Arg1517, Arg1527, Glu1558 and 1570 within
the cut-off distance of 3.2 Å).
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4. Discussion

The process of finding a new vaccine candidate and validating it in vitro and in vivo
is costly and very time consuming [56]. However, immunoinformatics and bioinformatics
technologies are now more effective than one antigen or classic deactivated pathogen
vaccines and it is time saving to design multi-epitope peptide-based vaccinations [57].
Some significant studies have also demonstrated the benefits and validity of vaccines
developed using these methods. These approaches are quite useful for swiftly screening
antigenic vaccine compounds and many peptide-based vaccines for infectious diseases
developed with immunoinformatics technologies have been experimentally confirmed and
are now in use as effective vaccines [58].

In the present study, we designed a peptide-based vaccine using immunoinformatics
tools against the L. major parasite that causes CL. Based on earlier research, we predicted
several epitopes derived from the L. major antigenic heat shock protein, GP63. Heat shock
proteins (HSPs) are intracellular proteins that are extremely conserved molecules that
perform key roles in protein complex formation, protein folding, and protein translocation
in parasite cells, as well as being involved in a variety of immunological processes [59].
GP63 was previously identified as a CL vaccine target in an immunoproteomics study that
showed above 90% sequence similarity with various other Leishmania species, including
L. infantum and L. donovani. On the surface of Leishmania, there is a zinc-dependent metal-
loprotease known as GP63, also known as leishmanolysin, which causes human humoral
reactions [60,61]. It has been discovered that metalloproteases GP63, the main Leishmania
surface antigen, serve a variety of vital roles in parasite’s survival. Multiple genes, whose
copy counts change significantly between various species, encode GP63. One of the several
vaccine possibilities being tested, primarily against CL, is Gp63 protein and numerous
studies point to this surface-expressed virulence factor’s crucial function. The L. donovani
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GP63 surface protein’s possibly immunogenic T cell epitopes were designed utilizing the
EpiMatrix tool kit in a study [1,12]. Additionally, in preliminary research, Gp63 antigens
and a novel recombinant vaccine against L. infantum created using computational methods
were chosen as promising immunodominant epitopes to elicit immunological responses.
Hence, the current in-silico study was designed to identify the immunogenic epitopes of
Gp63of L. major as a basis for future vaccinology studies.

In the immune system, T-cells detect peptide epitopes, which are provided by MHC
molecules. These molecules are antigen-presenting cell surface proteins that are recognized
by T-cell receptors (TCRs) and are divided into two classes. Almost all nucleated cells
include Class I MHC molecules, which present processed proteins to CTLs via the cytosolic
pathway. Class II MHC molecules, on the other hand, are present on antigen-presenting
cells and represent pathogen surface proteins that are delivered to CD4+ T cells and helper
T lymphocytes via the endocytic pathways [62,63]. We predicted B-cells-derived T-cells that
promote the humoral and cellular immune system. Based on the structural characteristics
and physiochemical properties, the immunoinformatics study revealed that our proposed
multi-epitope vaccine has a large number of high affinities epitopes. Although multi-
epitope vaccines offer many advantages, their most considerable disadvantage is their low
immunogenicity [64]. To solve this problem, adjuvants are added to the N-terminal of
the construct involved in immune system stimulation. However, several clinical patterns
suggest that the T-cell responses, particularly the Th1 effector mechanisms, appear to be
involved in the acquired resistance to the leishmaniasis.

Consequently, designing a successful vaccination can be possible if the suitable anti-
gens are chosen and combined with adjuvants that stimulate a Th1 immune response [65]
TLR4 is unique among the other TLRs as it engages both the MyD88/MAL and TRIF/TRAM
signaling pathways and triggers TFN generation and NF-κB induction at the same time [66].
This adjuvant, on the other hand, secretes IFN- and IL2-components that fight against pro-
tozoan parasites by activating CD+ and CD8+ T-cells [67]. We also examined whether the
multi-epitope peptide vaccine had a substantial affinity for the TLR4 receptor, and MD
modelling confirmed the stability of the vaccine-TLR4 complex. As a result, the vaccine-
TLR4 complex may trigger the TLR4-dependent signaling pathways that protect against the
infection of Leishmania. In order to promote the bioactivity, stability and in peptide structure
of the vaccine, EAAAK also linked the adjuvant TLR4 to the start point. The EAAAK linker
is quite rigid, with a helical structure that is used to create and maintain space between the
functional domains [68]. Linkers, which play both functional and structural roles in vaccine
construction, are an important component of the multi-epitope peptide vaccine [69,70].
Additionally, GPGPG linker was used to join the assembled protein in this study. This
flexible linker, which is made up of tiny non-polar amino acids similar to glycine and polar
amino acids i.e., threonine and serine, was used to connect the functional domains that
required inter-domain interactions. These linkers also provide flexibility and mobility to
the multi-epitope vaccine construct [71].

Further, we assessed the physiochemical features, such as the toxic potential and
allergic nature, of the final vaccine construct. It was found that the designed vaccine
was highly antigenic, non-allergic, thermostable, and non-toxic. Thus, the secondary and
the tertiary structures were investigated. The secondary structure is made up of −helix
(9%), sheets (12%), and coils (78%) and the final construct’s 3D model was evaluated and
confirmed to have a stable 3D structure. The interaction of the vaccination with an innate
immune receptor (TLR4) was examined using this improved docking mode. TLRs are
cell-surface receptors that are present on dendritic cells, macrophages, and some other
immune cells and are able to recognize specific epitopic regions on parasites [72]. To combat
the infection, it forms a complex and starts a downstream cascade. It has been observed
that the TLR4 receptor had a considerable affinity for MEVS, and MD simulations also
validated the stability of the vaccine-TLR4 complex. As a result, the vaccine-TLR4 complex
may trigger the TLR4-dependent signaling pathways that protect against the infection of
Leishmania. This in silico-developed vaccine has significant immunogenic potential and
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should be evaluated for an in vitro experimental study in the next phase of research. The
current in silico study obtained thoroughly screened potential immunogenic epitopes for
the L. major gp63 protein that could be used alone or in combination with other candidate
antigens/epitopes to engineer a finely tuned, multi-epitope vaccine construct to be tested
against CL in the ongoing vaccinology studies.

5. Conclusions

On the basis of this in silico study, future in-vitro and in-vivo studies should confirm
the studied vaccine candidate’s performance in terms of the effective dose, cross-reaction,
lymphocyte proliferation, cytokine production assays, as well as any potential toxicity in
the relevant animal model challenges.
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