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Abstract: The group B coxsackieviruses (CVBs) exist in six serotypes (CVB1 to CVB6). Disease
associations have been reported for most serotypes, and multiple serotypes can cause similar diseases.
For example, CVB1, CVB3, and CVB5 are generally implicated in the causation of myocarditis,
whereas CVB1 and CVB4 could accelerate the development of type 1 diabetes (T1D). Yet, no vaccines
against these viruses are currently available. In this review, we have analyzed the attributes of
experimentally tested vaccines and discussed their merits and demerits or limitations, as well as their
impact in preventing infections, most importantly myocarditis and T1D.
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1. Introduction

Enteroviruses belong to the Picornaviridae family, and Homo sapiens are the natural hosts
of enteroviruses, which are known to cause a wide range of diseases [1,2]. In the current
classification system, enteroviruses are sequentially numbered based on phenotypic and ge-
netic similarity, and are classified into four distinct species: polioviruses, coxsackieviruses,
echoviruses, and newly identified enteroviruses such as EV69, EV70, and EV71 [3,4]. While
echoviruses affect the upper respiratory tract and central nervous system [5], coxsack-
ieviruses can affect the cardiovascular, gastrointestinal, endocrine, neuromuscular, and
cutaneous systems [6–10]. Coxsackieviruses are classified into coxsackievirus group A
(CVA) and coxsackievirus group B (CVB) according to their organ tropism, organ damage,
and antigenic response [11,12]. While CVAs are commonly implicated in the causation of
hand, foot, and mouth disease [13], CVBs could induce diverse diseases.

CVB was isolated for the first time at the Hudson River town of Coxsackie, New
York, United States, in 1947 [14]. Six serotypes of CVBs (CVB1 to CVB6) have since
been identified, and they have been associated with several diseases related to the heart,
pancreas, brain, and gastrointestinal tract [15–18]. CVB1 is predominantly associated with
type 1 diabetes (T1D) and can also cause pleurodynia, aseptic meningitis, and neonatal
sepsis [15,19]. While CVB2 has been isolated from patients with acute myocarditis, aseptic
meningitis, and acute meningoencephalitis [20–22], which can lead to multiorgan failure
and cardiogenic shock [17], CVB3 infection is associated with myocarditis leading to dilated
cardiomyopathy (DCM) and heart failure [23,24]. Likewise, CVB4 has been implicated
in T1D development [16], while CVB5 is linked with conditions such as hand, foot, and
mouth disease, aseptic meningitis, viral encephalitis, acute flaccid paralysis, myocarditis,
and T1D [25–27]. However, isolated reports are available regarding the prevalence of
CVB6 infection, but co-infection with CVB5 has been reported in patients with acute
febrile illnesses, rash, severe acute respiratory disease, meningitis, myocarditis, and/or
pericarditis [27]. Although all these infections are preventable, no vaccines against them are
currently available, partly because it is impractical to develop serotype-specific vaccines.
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Furthermore, different CVB serotypes could affect different organs or they could induce
similar diseases but with varied severities [28,29]. This complexity presents a challenge to
determine which CVB serotypes should be considered in the vaccine design.

2. Virus Infection and Disease Pathogenesis

CVBs, positive-sense single-stranded RNA (ssRNA) viruses, are generally considered
lytic viruses, but they can persist in defective forms, as demonstrated with CVB3 [30]. They
are small (30 nm), non-enveloped viruses, and the viral genome consists of approximately
7.4 kilobases (kb) with a single open reading frame flanked by 5′ and 3′ non-translated
regions (NTRs) at the termini [31]. The viral genome lacks a 5′ cap structure, a typical
feature of most eukaryotic and many positive-sense viral RNAs [32,33]. In the absence of a
5′cap, the 5′NTR accounts for 10% of the viral genome and contains an internal ribosome
entry site that mediates the translation of positive-sense viral RNAs in infected cells [34–36].

CVBs are typically transmitted through the fecal–oral route. Infection of target cells
requires interaction with two main receptors: the decay accelerating factor (DAF) and
the coxsackievirus and adenovirus receptor (CAR) [37,38]; however, participation of other
receptors, such as major histocompatibility complex I and heparan sulfate, may be criti-
cal [39]. The initial attachment with the DAF results in the rearrangement of cytoskeletal
actin, making it easy for viruses to gain access to the CAR in tight junctions [11,38,40].
While all CVBs can bind, the CAR, CVB1, CVB3, and CVB5 could also bind the DAF.
However, interaction with the DAF alone is insufficient to infect the target cells. Conversely,
the binding of DAF-interactable CVBs in addition to binding with the CAR may facilitate a
more effective infection [41–44]. This property may explain why CVBs could infect different
organs since most hematopoietic and non-hematopoietic cells can express the DAF [45–47].
However, unlike the DAF receptor, the CAR exists in two isoforms (the seven exon-encoded
CAR and the eight exon-encoded CAR) resulting from differential splicing [48,49]. The
predominant form in humans is a transcript of ~6–6.5 kb (the eight exon-encoded CAR)
expressed relatively highly in the heart, testis, prostate, and pancreas, as compared to the
liver, brain, colon, and small intestine, but in mice, abundant expression of the CAR occurs
in the liver, kidney, lung, and heart [50]. However, it is unclear whether the expression of
one of the two isoforms described above is dispensable for infection; specifically dissecting
this complexity may enable us to understand the selective infection of tissues by different
CVB serotypes. Additionally, some CVB serotypes (CVB3 PD strain) could infect cells
independent of the CAR and the DAF using the heparan sulfate [51,52], suggesting that
alternative pathways could contribute to tissue specificity.

Generally, the CAR acts as an internalization receptor for viral entry into the cytoplasm.
After uncoating, the positive-sense ssRNA genome is translated, leading to the production
of a single polyprotein followed by proteolytic cleavage, which generates structural viral
proteins (VPs) 1 to 4 and nonstructural proteins namely, 2Apro, 2B, 2C, 3A, 3B, 3Cpro,
and 3Dpol. While the structural proteins, also called capsid proteins, contribute to the
assembly of the virus capsid, non-structural proteins are essential for viral replication and
modulation of host responses [53–56]. The progeny of the virus is finally released through
cell lysis. During the replication cycle, however, viral RNA could persist by forming a
double-stranded RNA complex, as demonstrated with CVB1, but their ability to become
infectious viral particles and their functions are unknown [53,54,57,58].

Pathologically, both viral and host factors contribute to tissue damage in the affected
organs [53,59,60]. Because CVBs are lytic viruses, tissue injury can result from apoptosis
and necrosis of target cells. Additionally, nonstructural viral proteins can significantly alter
the structure and functions of cellular proteins by various means, including shutting down
of host proteins (eukaryotic initiation factor-4γ, Poly (A) binding protein, and cytoskeletal
dystrophin) and cleavage of transcription factors (TATA-binding protein, octamer binding
transcription factor, and cAMP response element binding protein), cell cycle arrest, and inhi-
bition of vesicular transport [53]. Likewise, the host response to CVB infections contributes
to inflammation and tissue destruction through the production of cytokines and lysis of
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infected cells by a variety of innate and adaptive immune cells that infiltrate the target
organs [59,60]. It is unclear how different CVB serotypes cause different organ-specific
diseases. For example, frequent disease associations have been made for almost all six CVB
serotypes with respect to the heart, pancreas, brain, lungs, skin, eyes, and testes, followed
by other organs such as muscles, the liver, pharynx, kidneys, and joints (Figure 1). Among
these, the importance of CVBs in causing myocarditis and pancreatitis/insulitis has been
better appreciated, as described below.
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Figure 1. Organs affected by various serotypes of CVBs in humans. The serotypes affecting various
organs are color-coded in each box. The red text indicates more commonly detected serotypes than
others (blue and green) in that order, and the black text indicates no such differences. The information
indicated in the figure was synthesized from Feigin and Cherry’s Textbook of Pediatric Infectious
Diseases, 8th Edition 2019, and the figure was created using biorender.com.

Of the many types of heart disease, myocarditis is one predominant cause of heart fail-
ure in pediatric populations and young adolescents [61–64], and is the third leading cause
of death in competitive athletes [65]. The global prevalence of myocarditis is estimated to
range from 10.2 to 105.6 per 100,000 with an annual occurrence of ~1.8 million cases as of
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2017 [66]. Most individuals affected with myocarditis remain asymptomatic, and the dis-
ease is spontaneously resolved. However, up to 30% of those affected can develop chronic
disease leading to DCM, with an incidence of 3.5–8.5 cases per 100,000 population [61,67],
and the highest numbers of mortalities resulting from cardiomyopathy/myocarditis were
reported in the United States of America in 2019. Approximately half of DCM patients
undergo heart transplantation due to a lack of chemotherapy options [68,69]. As to triggers,
various infectious and non-infectious etiologies have been implicated in the causation of
myocarditis, but the common suspects are viruses. In contrast to the earlier prevailing
notion that enteroviruses and adenoviruses were found to be associated with viral my-
ocarditis in North America and Europe, respectively, recent data suggest other viruses, such
as human herpesvirus 6 and parvovirus B19, as well as coronaviruses [70], are increasingly
being reported [71]. However, the major challenge is being able to demonstrate infectious
virions in patients with myocarditis/DCM at the time of clinical presentation when viruses
would have done the damage and be cleared from the bloodstream of affected patients.
Thus, viral signatures may be the only readouts to determine their associations. In these
scenarios, serologically, CVB-reactive antibodies are found in ~50% of DCM patients, while
enterovirus genomic material can be detected in up to 70% [72–82], suggesting that CVB can
be an important trigger of myocarditis/DCM, which may involve autoimmune responses
to cardiac antigens [31].

Likewise, diabetes has become a major health concern with a global prevalence estimated
at 537 million in 2021 with a projected increase to 643 million by 2030 (occurring in ~9% of
adults) [83], and the incidence of T1D was 15 per 100,000 people with a prevalence of
9.5% [84]. The Centers for Disease Control estimates approximately 37 million Americans
(~11.3%) are affected with diabetes, of whom nearly 1.9 million children and adolescents
younger than 20 years have T1D. Among various types of viruses that may trigger T1D [60],
two CVB serotypes (CVB1 and CVB4) are commonly linked with the development of T1D,
as evidenced by serology, virus-recovery, and polymerase chain reaction analysis of viral
genomic material from affected patients [85–87]. Additionally, T1D can be seen in families
with no history of the occurrence of T1D [88,89]; type 2 diabetes (T2D) could coexist with
T1D and T2D patients may have enterovirus levels higher than unaffected controls [90–92].

Since CVB infections are considered to be favored candidates in the occurrence of
myocarditis/DCM and T1D, their prevention through vaccination can possibly lessen the
incidence of both diseases.

3. Current Status of CVB Vaccines

During the past two centuries, various vaccine platforms have been established, such
as live-attenuated vaccines, inactivated vaccines, subunit vaccines, viral and bacterial
vector vaccines, and nucleic acid vaccines, among others [93,94]. Many of these approaches
have also been experimentally used to develop vaccines against CVB infections (Figure 2).
Generally, the CVB3 infection model has been used in all platforms to test the efficacies
of vaccines, likely because CVB3 infection consistently induces both myocarditis and
pancreatitis in susceptible mouse strains. Thus, we first describe the characteristics of each
vaccine design approach pertaining to CVB3, followed by other serotypes.
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Figure 2. Experimental vaccines tested for various CVBs in the preclinical models. Several vaccine
platforms shown with the upper-case text outside the big circle have been used to evaluate the
efficacy of CVB vaccines in various preclinical models. While vaccines against CVB3 have been tested
by using all the indicated approaches, killed vaccines have been tested for all six CVB serotypes,
whereas VLP vaccines were tested only for CVB1, CVB3, and CVB5. The figure was created using
biorender.com.

3.1. Modified Live-Attenuated Vaccines (MLVs)

The major advantage of MLVs is their ability to induce both humoral and cell-mediated
immune (CMI) responses, especially cytotoxic T lymphocytes (CTLs), which are critical
in eliminating established infections. MLVs for CVBs have been derived by either serially
passaging the viruses in various cell lines or introducing mutations in the structural proteins,
namely VP1 or VP2 or stem-loops II and V. As indicated in Table 1, the CVB3 vaccine strain
termed p14V-1 was developed by attenuation after 14 serial passages in dermal fibroblasts
(Table 1). In severe combined immunodeficiency disease mice, a mutation from aspartic acid
[D] to glycine [G] in position 155 located near the viral canyon in the VP2 region, was shown
to be responsible for the attenuated phenotype [95]. In subsequent studies, the p14V-1
was shown to be protected against CVB3-induced myocarditis and pancreatitis [96–98],
and myosin-reactive antibodies were remarkably low [96]. This is a critical observation
because CVB3 infection can lead to the de novo appearance of autoantibodies [59,99,100].
Additionally, we have demonstrated that CVB3 infection can lead to the generation of
pathogenic cardiac-specific T cells by using major histocompatibility complex class II
tetramers/dextramers [28,101]. Since cardiac antibodies were still detected in vaccinated
(p14V-1) and challenged animals, it is possible that the vaccine recipients might have
experienced some degree of heart damage.

biorender.com
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Table 1. Efficacy of vaccines used for various CVB serotypes.

Type Approach Model Outcome Ref

Live attenuated

CVB3: p14V-1 Mutation:
D155G in VP1 SWR/Ola and Balb/c

Induced nAbs and low levels of
anti-cardiac antibodies, but
myocarditis was absent

[95–98]

CVB3 (RD) Mutation:
T151S of VP2

C3H/HeJ, C57BL/6,
Balb/c, and
C57BL/6-beige

Low nAbs and low viral titers in
hearts and pancreata with pancreatic
cell necrosis.

[102–104]

CVB3 (KR/EG/DE) and
(KR/EG/PM) A/J

Low viral titers in the heart and
generated nAbs; myocarditis was
absent, but mild pancreatic damage
was present

[105,106]

CVB3 (H3) Mutations:
Y240F and Y254F in the
C-terminal region of VP2

Balb/c
Induced high nAbs and CTL response,
but myocarditis and pancreatitis were
absent

[107]

CVB3 Sabin3-like
Mutation: Stem-loop V
(nt U475C)

Swiss Albinos
Induced low nAbs against CVB3 and
CVB4-E2, but a few lesions were
present in the heart and pancreas

[108,109]

CVB3: Clinical isolates
Mutation: Stem-loop II
(nt 88–186)

C3H/HeJ and A/J
Low viral titers in the heart and
pancreas; protected against CVB3
myocarditis

[106,110–112]

CVB3/GA C3H/HeJ Protected against CVB3-induced
myocarditis and pancreatitis [113]

CVB3: CPV/49
CVB3 5′NTR replaced
with type 1 poliovirus

C3H/HeJ
nAbs against CVB3 and complete
protection against both myocarditis
and pancreatitis

[114]

CVB3:
Temperature-sensitive
mutants

CD-1

Low viral titers in hearts, but
myocarditis was absent; induced a low
level of neutralizing IgG antibodies
but low IFN-γ response

[115–118]

CVB3-PL2-Ad2L1
CVB3/0 encoding Ad2
hexon L1 loop and
protease 2A (2Apro)

Balb/c
Low nAbs against both CVB3 and
Ad2, but myocarditis and pancreatitis
were absent; high IgG1 titer

[119]

CVB3: Incorporation of
target sequences for
miRNA-133 and
miRNA-206 into the 5‘
UTR

Balb/c
High nAbs and survival rates,
although mild tissue injury was seen
in the heart and pancreas

[120,121]

Mt-10 CVB3 A/J and NOD

High nAbs and virus-specific Ab and
T cell responses; significant
cross-reactive T cell and Ab responses
against CVB1, CVB3, and CVB4;
complete protection against
CVB3-induced myocarditis and
pancreatitis in A/J mice; significant
protection (92%) against
CVB4-induced myocarditis and
pancreatitis in A/J mice; and
significant protection (87%) against
CVB4- accelerated T1D in NOD mice

[122–124]
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Table 1. Cont.

Type Approach Model Outcome Ref

Inactivated

CVB3: BPL treatment Not reported Low nAbs against CVB3 with a
survival rate of 74%. [125]

Formalin-treated
polyvalent CVB1 to CVB6

CD1 and New Zealand
white rabbits

Low nAbs and viral titers in the
pancreas, but no mortalities [126,127]

Formalin-treated
CVB4-E2 NOD Delayed onset of T1D, but enhanced

antibodies to Islet β-cell auto-antigens [128]

Formalin-treated
hexavalent vaccine
(CVB1-6)

C57BL/6J, Balb/c,
SOCS-1-Tg, and NOD
Rhesus macaques

Strong nAbs; protection against acute
CVB infections, CVB-induced
myocarditis, and T1D
Immunogenic and induced nAbs

[129,130]

Formalin-treated CVB1
monovalent vaccine SOCS-1-Tg and NOD Strong nAbs; protection against CVB1

infection and CVB1-accelerated T1D [129–133]

Formalin-treated CVB4
monovalent vaccine NOD

Moderate nAbs with complete
protection against CVB4-accelerated
T1D

[129]

Recombinant
subunit

Rma DnaB intein
cyclization of CVB3 VP1 Balb/c

Increased VP1-specific IgG, IFN-γ+ T
cells with 60% survival rate but mild
myocarditis and viral loads were
detected in hearts

[134]

CVB3:
FimH-Chitosan-pVP1 Balb/c and C57BL/6

Increased sIgA and virus-reactive T
cells with a 60% survival rate, but
mild myocarditis and virus load were
detected in hearts

[135]

CVB3: ABD-VP1 fusion
protein Balb/c

A 73% survival rate with mild
myocarditis and viral load was noted,
accompanied by increased CTL and
virus-specific memory T cell responses

[136]

CVB3 sVP1-C3d3,
constructed from
recombinant Ads

Balb/c Induced nAbs and CTL response [137]

CVB3: ISCOMs Balb/c
High level of nAbs and all animals
survived the challenge; complete
protection against CVB3 infection

[125,138]

Tag-free VP1 inclusion
body nanoparticles Balb/c

Increased mucosal response and
moderate protection against CVB3
myocarditis

[139]

Vector

CVB3: rVSV-VP1 Balb/c
A 67% survival rate, reduced
myocarditis and viral loads, and
induced nAbs and CMI responses

[140]

CVB3/IFN-γ Balb/c
No tissue damage; no detectable virus;
and no inflammation in the heart and
pancreas

[141]

DNA

CVB3: pCMV/VP1 Balb/c
Reduced cardiomyocyte destruction,
low nAbs, and elevated IFN-γ and
IL-6 with a ~72% survival rate

[142,143]

CVB3: Chitosan DNA
vaccine
/HMGB1/AIM2/LTN

Balb/c

Increased mucosal sIgA and IgG, CTL
responses in spleens with a 42–75%
survival rate and reduced myocarditis
and viral loads

[144–147]
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Table 1. Cont.

Type Approach Model Outcome Ref

CVB3: pcDNA3-
STxB/C3d3/MDC/mBD2-
VP1 and
rAd/MDC-VP1

Balb/c

Increased nAbs and CTL response;
and reduced viral load with a 40–75%
survival rate, but mild myocarditis
was noted

[148–150]

CVB3: pCA-VP3,
pCA-VP1 Balb/c

Detected VP-reactive Abs, but not
nAbs; increased survival rates were
noted with VP3 DNA

[151]

RNA

CVB3: pH3IH1 C57BL/6
A 50% survival rate; no infectious
particles generated; and reduced viral
titers, but pancreatitis was evident

[152]

CVB3: MET-2C lenti Balb/c

A 50% survival rate; no infectious
particles were generated; and reduced
viral titers, myocardial lesions, and
pro-inflammatory cytokines

[153]

VLP

CVB3: pBlueBac4.5/cb3
expressed in Baculovirus
expression system

SWR/J
A 100% survival rate with enhanced
Ab responses, but mild myocarditis
was detected in 90% of animals

[154]

CVB3: Dual cassette
pFastBac CVB3 Balb/c No challenge studies were performed;

but induced high nAbs [155]

Recombinant
virus-derived
nanoparticles from CVB1,
norovirus, and rotavirus

Balb/c Strong nAbs; IgG1 and IgG2a
responses [156]

CVB5: Baculovirus
expression system Balb/c Complete protection of suckling mice

against CVB5 [157]

Formalin-treated
CVB1-VLP Balb/c and C57BL/6 High nAbs and CVB1-specific IgG1

response [158,159]

Likewise, the CVB3-RD strain, which was attenuated after serial passaging of the
CVB3 Nancy strain in human rhabdomyosarcoma cells, had a mutation in the puff VP2
region (T151S), rendering the virus non-cardio virulent [102,103]. Similarly, the CVB3-RD
strain was shown to be efficacious against CVB1 infection as a vaccine candidate, but
pancreatic necrosis was still evident [104] (Table 1). Similarly, a series of attenuated strains,
CVB3 (KR/EG/DE) and CVB3 (KR/EG/PM) were created by site-directed mutagenesis
at D155E in the VP1 EF loop and P126M in the VP1 DE loop on a double mutant virus
[CVB3 (KR/EG)] [105,106]. While studies with these mutants were shown to be non-
cardiovirulent, small foci of pancreatic damage were still present in challenged mice
(Table 1). Using the CVB3-H3 Woodruff strain, mutations were introduced by site-directed
mutagenesis at Y240F, Y254F, and YYFF (both Y to F mutations at 240 and 245 together) in
the C-terminal VP2 region of CVB3 [107]. The Y254F and YYFF mutations offered complete
protection from CVB3-induced myocarditis and pancreatitis [107] (Table 1). Superior
vaccine-induced neutralizing antibodies (nAbs) and CTL response, as noted with CVB3
(H3), suggest that MLVs bearing mutations in the C-terminal region may play an important
role in viral pathogenesis. Such mutant viruses could structurally be defective but remain
attenuated, leading to the induction of CTL responses. Other mutant viruses showing
Sabin 3-like mutation in the stem-loop V (U475C) or mutations in the stem-loop II (88–186)
were tested [106,108–112]. Although nAbs were noted against both CVB3 and CVB4,
limited damage was noted in the myocardium and pancreas, especially by intraperitoneal
route in the pancreas in the CVB3 Sabin 3-like virus/challenged animals. However, the
animals administered with the clinical isolates with mutations in the stem-loop II (nt
88–186) showed low viral titers in the heart and pancreas and were protected against
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CVB3 infection [112]. These observations highlight the significance of point mutations in
determining the virulence of viruses and their utility as vaccine candidates.

Several clinical isolates of CVB3 collected over the years were tested to determine the
major nucleotide determinants of cardio virulence, which led to the identification of nu-
cleotide 234 in the 5′NTR as the primary determinant of cardiac virulence of CVB3 [110,111].
Further studies revealed that the stem-loop II structure in the genome of the CVB3/GA
isolate was responsible for virus clearance. Immunization with this mutant virus protected
mice from CVB3-induced myocarditis and pancreatitis in challenge studies [113] (Table 1).
Likewise, upon replacing 5′NTR from CVB3 with that of type 1 poliovirus, the newly gener-
ated CPV/49 virus induced nAbs and offered complete protection against both myocarditis
and pancreatitis [114]. The protective effects of CPV/49 might be due to the finding that
the 5′NTR of CVB3 is critical for viral positive-strand RNA translation and its absence may
have caused the virus to lose virulence.

Similar observations were noted with the temperature-sensitive mutants of CVB3 that
replicate at 34 ◦C or 39.5 ◦C as vaccine candidates [115]. These mutants had defects in
viral RNA synthesis, poor capsid stability, and virion assembly. Studies using temperature-
sensitive mutants in CD-1 mice revealed protective effects through Immunoglobulin (Ig) G
and IgM antibodies. The mice developed no myocarditis upon challenge, but interferon
(IFN)-γ levels were low, indicating that the temperature-sensitive mutants may confer
protection through antibody responses (Table 1) [116–118].

Attempts have been made to create a multivalent vaccine by creating an attenuated
CVB3 encoding the L1 loop of the adenovirus (Ad2) hexon protein and the protease 2A
protein, which induced nAbs against both CVB and Ads, but protective effects of the
vaccine were not investigated [119]. Likewise, an approach to creating attenuated viruses
by incorporating muscle-specific micro RNAs [miRNAs] (miRNA-133 and miRNA-206 into
the 5′NTR has been described [120,121]). These attenuated viruses induced high nAbs and
protected against CVB3 infection in challenge studies, although mild lesions were seen
in the heart and pancreas. While such vaccines could potentially be used therapeutically
and preventatively, off-target effects of micro RNAs miRNAs, if any, cannot be ruled out.
Recently, we reported a mutant strain of CVB3 (Mt10), which we created by introducing
the mutation in the CAR-binding region of the viral canyon within the VP1, expecting the
attenuated virus to lose pathogenicity without affecting infectability, which is critical to
induce CMI responses [123]. In addition to inducing nAbs against homologous (CVB3) and
heterologous (CVB1 and CVB4) serotypes, the Mt10 vaccine protected completely against
both myocarditis and pancreatitis induced by CVB3 in A/J mice [123]. More recently, we
reported that the Mt10 virus could also offer significant protection (92%) against pancreatitis
induced by CVB4 infection in A/J mice [122], and a similar level of protection (87%) was
noted against CVB4-accelerated T1D in non-obese diabetic (NOD) mice [124]. The Mt10
vaccine virus was also found safe, as demonstrated by the absence of cardiac injury markers
and cardiac-reactive T cells [123]. Although we have not tested the efficacy of the Mt10
vaccine against other CVB serotypes, the monovalent Mt10 vaccine virus has the potential
to confer protection against multiple CVB serotypes through the generation of cross-reactive
immune responses. In that direction, we are currently investigating the protective effects of
the Mt10 virus vaccine in diversity outbred mice, whose genetic makeup has been derived
from a combination of eight inbred mouse strains, including three wild-derived mouse
strains [160]. Such preclinical studies in vaccine research are valuable since the observations
made in the diversity of outbred mice may be relevant to the outbred human population,
as testing in one inbred mouse strain is genetically akin to testing in a single person.

Taken together, numerous approaches have been adopted to investigate the use of
MLVs with mixed successes. Despite their ability to induce antibody and CMI responses,
attenuated viruses can potentially revert to their virulence. Conversely, should the vaccine
viruses retain mutations for a period of at least ~one month in vivo, protective immune
responses would have been generated by then. Likewise, MLVs for CVB infections should
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be free of the autoimmune responses described above. These limitations can be overcome
by developing inactivated/killed vaccines.

3.2. Inactivated Vaccines

Inactivated vaccines have been traditionally prepared by killing the whole pathogen
using formaldehyde, ultraviolet rays, X-rays, γ rays, β-Propiolactone (BPL), hydrogen
peroxide, and zinc-finger reactive compound treatments, among others [161]. Although
the killed vaccines do not revert to their pathogenic forms and are more stable, they
tend to have reduced immunogenicity and require an adjuvant or multiple boosters to
induce effective protective responses [161]. One of the first inactivated CVB3 vaccines
was developed using BPL to inactivate CVB3 [125] (Table 1). Using Quil A matrix as
an adjuvant, mice were immunized with BPL-inactivated CVB3 and later challenged
with CVB3. The vaccine recipients had low nAb titers, with a survival rate of ~74% in
challenge studies [125]. Subsequently, a polyvalent CVB1-6 formalin-inactivated vaccine
was developed that gave protection against all six serotypes of CVB, but mild pancreatitis
was still observed in some animals after the challenge [126]. Additionally, a three-dose
regimen was needed to confer better protection [126], which also led to the induction of
nAbs, but levels varied [126,127]. Further evaluation of this vaccine in New Zealand white
rabbits revealed protection against all six CVB serotypes and induced nAbs against twelve
clinical isolates. As to the prevention of T1D in the NOD model, formalin-inactivated CVB4-
E2 delayed the onset of T1D, but autoantibodies to several Islet β cell autoantigens were
elevated, potentially resulting from cross-reactivity [128]. More recently, another formalin-
inactivated hexavalent vaccine was developed by incorporating all six CVB serotypes and
tested against CVB1 and CVB4-induced T1D using CVB1 and CVB4 monovalent vaccines as
positive controls [129–133] (Table 1). The vaccine-induced protection against multiple CVB
serotypes in the Balb/c, NOD, and suppressor of cytokine signaling-1 (SOCS-1) transgenic
mice models, preventing CVB3-induced myocarditis and pancreatitis with no mortalities, as
well as preventing CVB1- and CVB4-induced T1D. The immunogenicity of the hexavalent
vaccine was also recapitulated in non-human primates. The three-dose vaccine regimen
eliciting virus-reactive Abs may have contributed to the protective response. Although it
was unclear whether T cell responses were generated in vaccinated animals, induction of
IgG responses in vaccine recipients supports the possibility that the hexavalent vaccine
might have induced virus-reactive T cells, as their help is critical for isotype switching.

3.3. Recombinant Subunit Vaccines

Recombinant vaccines are routinely developed against infectious diseases, but only
a few have been developed against CVB3. The VP1 protein has been used as a target
to develop CVB3 recombinant vaccines. One study engineered a split intein from the
dnaB gene of Rhodothermus marinus (Rma), termed Rma DnaB intein, which created a split
functional N- and C-terminal intein to cyclize the VP1 protein of CVB3 in Escherichia coli
(E. coli) [134]. This vaccine provided moderate efficacy, as only 60% of the mice survived,
and mild myocarditis was present, despite generating VP1-specific IgG Abs and IFN-γ+

T cell responses [134] (Table 1). Further studies using a mucosal chitosan platform to
incorporate a bi-functional protein from E. coli, termed FimH, revealed M-cell targeting
and toll-like receptor 4-agonistic properties that also acted as an adjuvant was tested as a
vaccine candidate [135] (Table 1). The vaccine responses included the generation of VP1-
specific nAbs and T cell responses in mesenteric lymph nodes. However, the vaccine failed
to provide complete protection, as only 60% of animals survived, and mild myocarditis
and viral loads were still present [135]. More recently, a streptococcal protein-G derived,
draining lymph node-targeting albumin-binding domain (ABD) peptide fused with the VP1-
protein vaccine was tested in Balb/c mice. The data revealed ~73% survival rates, but mild
myocarditis and viral loads were still evident. However, the vaccine induced the generation
of IFN-γ+ CD8+ T cells in draining lymph nodes with enhanced CTL responses [136]
(Table 1). An attempt was made to derive soluble VP1 constructed using adenovirus that
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induced nAbs and CTL response, but the vaccine efficacy was not tested [137]. Moderate
efficacies of the vaccines described above may mean that the inclusion of other structural
proteins is necessary to design subunit vaccines. In that direction, immunostimulating
complex technology was used to incorporate all the structural proteins of CVB3 (VP1 to
VP4). The immunostimulating complex produced high nAbs, and the challenged animals
did not develop myocarditis, but the ability to prevent pancreatitis was not tested [125,138].
More recently, tag-free VP1 inclusion body nanoparticles were produced using the truncated
Ssp DnaX mini-intein spontaneous C-cleavage system in E. coli. Oral administration of
these inclusion bodies induced mucosal immune responses and the vaccine recipients were
protected from CVB3 myocarditis with a survival rate of 60% [139]. While such adjuvant-
free platforms are interesting vaccine candidates, their ability to prevent infection in other
organs, especially the pancreas, is critical, since CVBs generally induce pancreatitis.

3.4. Vector Vaccines

Recombinant viral vectors have been used since the late 1980s to deliver foreign
genes, with the most common being the Ad vectors. One study reported the develop-
ment of a vesicular stomatitis virus vector expressing CVB3 VP1 (Table 1), and intranasal
administration of this vaccine led to the protection of 70% of animals against a lethal
challenge of CVB3, and the vaccine induced high nAbs and CMI responses [140]. Like-
wise, recombinant CVB3 expressing IFN-γ led to protection against myocarditis, as well as
pancreatitis [141]. However, one major disadvantage of the use of vector vaccines is the
generation of vector-reactive antibodies that act as a barrier to inducing memory responses
upon booster vaccinations. While this limitation can be overcome with a prime-and-boost
strategy with a recombinant viral protein, the lack of well-characterized immunogenic
proteins may further impede the progress of vector vaccines. Alternatively, the use of
vectors similar to those derived for severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) vaccines may help reduce the induction of vector-specific immune responses, but
the occurrence of vector-borne side effects may occur in vaccine recipients [162].

3.5. DNA Vaccines

The DNA vaccination strategy was developed in the early 1980s when Enzo Paoletti
and Dennis Panicali genetically engineered DNA from the cowpox virus and inserted genes
from other viruses, such as herpes simplex, influenza, etc. [163]. Using this approach, a
DNA vaccine was generated by cloning CVB3 VP1 DNA sequences into plasmid porcine cy-
tomegalovirus and inoculating mice with the recombinant plasmid DNA [142,143] (Table 1).
In this study, only 72.2% of the mice were protected from a lethal CVB3 challenge, with
low levels of VP1-specific nAbs. Although IFN-γ and Interleukin-6 were elevated, mild
myocarditis was evident in a few animals [142,143]. Likewise, a mucosal chitosan DNA vac-
cine platform targeting the nasal/oral tract was developed [144]. The initial development
of the chitosan vaccine incorporated the CVB3 VP1 DNA sequence in the pcDNA3 vector
encapsulated in chitosan (natural mucus adsorption enhancer), leading to the expression of
recombinant CVB3-VP1 DNA in the mouse nasopharynx after intranasal inoculation [144].
The vaccine-induced specific secretory IgA, IgG, and CTLs conferred moderate protection
(43%) of vaccinated mice. A virus was detected in the heart, and mild myocardial lesions
were present [144]. To circumvent this problem, high-mobility group box 1 (HMGB1) and
absent in melanoma 2 (AIM2) expression plasmids were co-transfected with VP1 plasmid,
leading to the generation of recombinant chitosan VP1 vaccines [145–147]. Both HMGB1
and AIM2/chitosan VP1 vaccines enhanced sIgA and CTL responses and increased survival
rates from 42 to 75%, leading to a decrease in the incidence of myocarditis (Table 1).

Later, a novel approach to creating CVB3 DNA vaccines was investigated, whereby
CVB3 VP1 DNA sequences were fused with either macrophage-derived chemokine (MDC),
C3d3, Shiga toxin B subunit (STxB), or mouse beta-defensin-2 (mBD2) DNA sequences
and inserted into the pcDNA3 vector [148–150]. Of these, pcDNA3/MDC-VP1 and
pcDNA3/VP1-C3d3 induced better immune responses with reduced viral loads in blood,



Vaccines 2023, 11, 274 12 of 22

whereas enhanced CTL responses and Ab titers were noted with pcDNA3/STxB-VP1 and
pcDNA3/mBD2-VP1 fusion vaccines [148]. Further studies with a DNA prime-protein
boost vaccine regimen using rAd/MDC-VP1 and pcDNA3/MDC-VP1 vaccines revealed
survival rates between 40–75% against a lethal CVB3 challenge, accompanied by enhanced
immune responses and significantly reduced viral loads [149,150] (Table 1). Likewise, by
constructing the DNA vaccines for CVB3 VP1 and VP3 proteins, the recombinant plasmids
induced VP-reactive Abs but not the nAbs [151]. However, challenge studies revealed
increased survival rates for the VP3 DNA vaccine relative to VP1 in challenge studies
indicating that VP3-induced protection might have been contributed by T cell responses,
but that was not investigated. Overall, although DNA vaccines could induce both antibody
and cellular responses [164–166], their delivery platforms need to be optimized to induce
effective responses. However, there have also been concerns regarding the insertion of
foreign DNA into the host genome with the use of DNA vaccines in addition to a possibility
of affecting genes controlling cell growth (activation of oncogenes or inactivation of tumor-
suppressor genes) and development of tolerance or autoimmunity [167,168]. Nonetheless,
reports suggest that the occurrence of random integration of plasmid DNA into the host
genome appears to be low or negligible [169–171].

3.6. RNA Vaccines

The RNA vaccine approach to creating CVB3 vaccines has been adapted to address
three expectations: (a) the mRNA encoding the vaccine expresses a full-length mutant CVB3
polyprotein; (b) it would undergo self-cleaving to generate mature viral proteins for antigen
processing and presentation; and (c) it would not give rise to infectious virus particles. One
study created a plasmid pH3IH1 encoding CVB3 with a mutated cleavage site between
viral 2A and 3B proteins to avoid infectious particle generation, leading to deletions at the
beginning of the 5′NTR region [152] (Table 1). The RNA vaccine could confer only 50%
protection to immunized mice, and pancreatitis was evident in many animals. Another
study utilized the lentiviral system to deliver short hairpin RNAs against sequences in the
highly conserved cis-acting replication element within the 2C protein of CVB3, designated
MET-2C lenti. This vaccine induced a reduction in viral titers, myocardial lesions, and
pro-inflammatory cytokines, but with a survival rate of only 50% [153] (Table 1).

3.7. Virus-like Particles (VLPs)

VLPs are similar in shape and size to a natural virus but lack genomic material
(nucleic acids), and hence are non-infectious and do not revert to a virulent form by
reversion, recombination, or re-assortment. VLPs are highly immunogenic and are expected
to stimulate B and T cell immune responses [172–174]. Two VLP-based vaccines have
been tested against CVB3 (Table 1). One of the initial studies used the entire coding
sequence of the CVB3 genome (~6.6 kbs); it was cloned to create the pBlueBac4.5/cb3
vector [154]. Following a three-dose vaccination scheme, high nAbs were observed with
no mortalities, but 90% of the mice had mild myocardial lesions and only one mouse
was completely protected. Another study used a dual baculovirus transfer vector system,
whereby one cassette included the P1 region of CVB3 and another included the whole
genome except for the P1 region [155] (Table 1). The VLPs were produced in baculoviruses,
and immunization of mice with these VLPs resulted in high CVB3-nAbs, but no challenge
studies were performed to evaluate the vaccine’s efficacy. The VLP platform was further
expanded to investigate immune responses to three enteroviruses: CVB1, norovirus, and
rotavirus [156]. This combination of VLPs led to the production of high nAbs, IgG1,
and IgG2a, but their use in challenge studies has not been reported. Likewise, VLPs
produced in the baculovirus expression system were tested against CVB5 by injecting
pregnant mice [157]. The passively transferred antibodies protected against CVB5 infection
provide another strategy to prevent infections in newborns. Similarly, VLPs for CVB4
VP1 were also successfully generated in the baculovirus, but their potential use as vaccine
candidates was not investigated [175]. Nonetheless, attempts have been made to improve
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the immunogenicity of VLPs by formalin inactivation that led to the induction of high
nABs and virus-specific IgG1 response [158,159].

Overall, multiple approaches have been used to develop CVB vaccines (Table 1). A
promising vaccine candidate is expected to elicit good B and T cell responses with no side
effects. Live attenuated vaccines have been successful. However, the possibility of the
attenuated viruses reverting to their pathogenic form cannot be excluded. Conversely,
inactivated vaccines are safer than MLVs, but their inability to induce robust T cell responses
is less than ideal for eliminating established virus infections. Alternatively, the generation
of inactivated vaccines that induce high-affinity nAbs would have a significant impact
on the prevention of CVB infections, given the lack of well-characterized immunogenic
subunits with the CVBs to be able to produce effective vaccines by other formats such as
subunits, nanoparticles, nucleic acids, and vector vaccines.

4. Challenges and Future Perspectives

In contrast to other infectious diseases, vaccines for CVB infections have received
little attention for many reasons. First, diseases caused by CVB are not severe enough
to determine the immediate impact of CVB vaccines. However, from the perspective of
myocarditis/DCM and T1D, the development of CVB vaccines may have merit. Still, their
use is unlikely to have a dramatic effect on the occurrence of both diseases, since many
non-CVBs and non-viral agents can trigger myocarditis and T1D [60]. Arguably, however,
CVBs can still be the important triggers of both diseases [74,75,78–80,82,85,176,177]. Indeed,
estimates indicate that the use of CVB vaccines can lessen the prevalence of T1D by at
least 50% [176]. Second, determining the target population and age group for vaccinations
may become contentious. While children represent the vulnerable population for viral
myocarditis that can lead to congestive heart failure/DCM, evidence from the prototypic
T1D model in non-obese diabetic mice suggests that exposure to CVB infection can delay the
onset of T1D in young mice [178]. On the other hand, the same infections can aggravate T1D
in adult mice with a possibility of developing anti-diabetogenic regulatory T cells [179–181].
These observations, however, may or may not be relevant to humans. Nonetheless, it is
to be noted that the spontaneous development of T1D arising from genetic predisposition
cannot be prevented by early exposure to CVB infections. Conversely, vaccinating young
populations could mitigate the destruction of residual Islet β cells that would otherwise
potentiate exposure to CVBs if left unvaccinated [182,183]. Third, the CVB vaccines should
be safe to use. As they are RNA viruses, CVBs are prone to mutations and can revert to
virulence as might occur with MLVs. Likewise, vaccines should be free of autoimmune
responses, but such an event requires a well-established clinical disease to be able to induce
tissue destruction in the heart [28,101]. The phenomenon of molecular mimicry has been
proposed as an additional mechanism for the induction of autoimmunity to CVB. Such
a possibility is unlikely at least for the generation of cross-reactive T cells due to a lack
of significant homologies between CVB genomes and self-proteins [101]. However, the
possibility of CVB infections indirectly inducing autoimmunity exists if, autoantibodies
generated against one self-antigen cross-react with another as demonstrated with cardiac
myosin [184,185]. Moreover, the data need to be cautiously interpreted because the mere
appearance of autoantibodies does not necessarily mean that autoimmune reactions ensue.
Nonetheless, major side effects of MLVs can be overcome by using inactivated vaccines that
induce good nAbs. Fourth, it is not practical to develop vaccines for all six CVB serotypes
individually since multiple serotypes can induce similar diseases. Therefore, a one-size-
fits-all approach is needed. In that direction, polyvalent approaches, such as hexavalent
and mRNA vaccines, are attractive candidates for development. Alternatively, monovalent
vaccines that can induce cross-reactive protective responses against multiple serotypes,
as demonstrated with the Mt10 vaccine virus, may have merit. Finally, the commercial
viability can be a major barrier since the pharmaceutical industries may not come forward
to market the CVB vaccines. This impediment can be overcome by emphasizing the need
for CVB vaccines at a global level rather than focusing on selective geographical locations.
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Thus, to take the vaccines from bench to bedside, observations made in the preclinical
models must be evaluated in non-human primate models and clinical trials. To date, only
one clinical trial is currently in progress in Finland in relation to the use of a polyvalent
whole virus-inactivated vaccine (ClinicalTrials.gov Identifier: NCT04690426). Any positive
outcomes of this trial should boost efforts for developing similar vaccines that may lead to
widespread acceptance.

The lessons learned from the use of vaccines against other RNA viruses, such as SARS-
CoV-2, indicate that immune responses generated against vaccines may become irrelevant
for escape mutants that may involve the phenomenon of original antigenic sin [186–188].
Such ineffective vaccine responses, especially non-neutralizing cross-reactive antibodies could
potentially enhance the cellular uptake of virions in future encounters [188]. In these scenarios,
it becomes a challenge to develop vaccines for newer variants, and obtaining continuous
updates for their use may not be practical for CVBs because of the less severe nature of
diseases induced by these viruses. Additionally, there may be a possibility that frequent
administration of multiple boosters, as might occur with SARS-CoV-2 vaccines, may lead to
immune exhaustion that may compromise the ability of naïve B cells to produce efficient and
novel antibodies [188]. However, all factors considered, not using effective vaccines when
available should not be an option for the public good. Perhaps we would still be living with
smallpox today if the smallpox vaccine was not used. Thus, to be able to fight preventable
infections, administrative efforts are required to create awareness in the public and to alleviate
concerns and myths associated with the issues related to vaccine hesitancy.
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