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Abstract: The emergence of novel RNA viruses like SARS-CoV-2 poses a greater threat to human
health. Thus, the main objective of this article is to develop a new mathematical model with a
view to better understand the evolutionary behavior of such viruses inside the human body and
to determine control strategies to deal with this type of threat. The developed model takes into
account two modes of transmission and both classes of infected cells that are latently infected cells
and actively infected cells that produce virus particles. The cure of infected cells in latent period as
well as the lytic and non-lytic immune response are considered into the model. We first show that
the developed model is well-posed from the biological point of view by proving the non-negativity
and boundedness of model’s solutions. Our analytical results show that the dynamical behavior of
the model is fully determined by two threshold parameters one for viral infection and the other for
humoral immunity. The effect of antiviral treatment is also investigated. Furthermore, numerical
simulations are presented in order to illustrate our analytical results.

Keywords: RNA viruses; SARS-CoV-2; immunity; antiviral treatment; mathematical modeling

1. Introduction

RNA viruses are one of the main causes of human infectious diseases and continue to
be a major public health problem worldwide, especially after the emergence of new types
of such viruses. For instance, coronavirus disease 2019 (COVID-19) is an infectious disease
caused by a novel coronavirus named severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) by the International Committee on Taxonomy of Viruses (ICTV) [1]. Since
the first case emerged in Wuhan, China at the end of 2019, the disease has spread rapidly
from country to country, causing enormous economic damage and many deaths around the
world. According to World Health Organization (WHO) statistics as 18 September 2022 [2],
SARS-CoV-2 has infected more than 609 million people worldwide and caused more than
6.5 million deaths.

Despite compliance with preventive measures and the administration of vaccines in
several countries, SARS-CoV-2 keeps on spreading. This has led researchers to develop
treatments or vaccines to prevent or stop the progression of this disease. Antiviral treatment
for COVID-19 remains a challenge. Some drugs have shown promising antiviral activity.
This is the case of Paxlovid which has been shown to be highly effective against SARS-CoV-2
with an effectiveness rate of 89% in high-risk patients [3].
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Recently, modeling the propagation of SARS-CoV-2 in human population has attracted
the attention of several researchers [4–8]. However, there are few models that describe
the dynamics of this virus inside the human body in presence of immunity. For this
reason, Hattaf and Yousfi [9] proposed a mathematical within-host model describing
the interactions between SARS-CoV-2, host pulmonary epithelial cells and cytotoxic T
lymphocyte (CTL) cells. Chatterjee et al. [10] studied a SARS-CoV-2 infection model
with antiviral drug and CTL immune response incorporating lytic and non-lytic immune
responses effect. Another model for SARS-CoV-2 infection with CTL immune response and
treatment was proposed in [11]. Following a SARS-CoV-2 infection, the humoral immune
system triggers production of a variety of antibodies. IgM, IgA and IgG are the most
frequently described antibodies involved in SARS-CoV-2 infection. IgM are the first to
be activated, they are detected on day 4 [12] and they last for 20 days to a month before
they disappear gradually [13]. IgA are produced in serum, saliva and bronchial mucosa.
Serum IgA are detected on day 6 to 8 [14], they reach the maximum on day 20 to 22 [14,15].
High levels of serum IgA are correlated positively with severity of SARS-CoV-2 infection.
Whereas mild disease is associated with temporary, late or even absent S-protein specific
serum IgA [16]. This suggests that in mild cases mucosal of IgA are activate instead of
systemic production. IgG are produced on day 10 to 14 [16,17], they reach the maximum
on day 25 and they last for weeks [17]. Neutralizing activity is achieved by synergic effect
of the three immunoglobulines classes [18]. Furthermore, humoral immunity exerted by
antibodies to neutralize viral particles is more effective than cellular immunity mediated
by CTL cells in some infections [19]. Motivated by the above mathematical and biological
considerations, we will introduce a model that takes into account the role of antibody
immune response in SARS-CoV-2 infection and other biological factors.

The main objective of this study is to answer the following research problem: how can
we describe the dynamics of SARS-CoV-2 infection in the presence of humoral immunity
and antiviral treatment? And what is the impact of this treatment on this dynamics? To
do this, we will propose a mathematical model that incorporates the two fundamental
modes of transmission of the virus which are direct cell-to-cell transmission via virological
synapses and virus-to-cell infection via the extracellular environments, and takes into
account the effects of cure of latently infected cells, lytic and non-lytic humoral immune
response. In addition, we study the impact of antiviral treatment on the dynamics of
SARS-CoV-2 infection via numerical simulations.

2. Materials and Methods
2.1. Mathematical Formulation

We use a new mathematical model to describe the dynamics of RNA viruses such as
SARS-CoV-2 that incorporates two modes of transmission (virus-to-cell and cell-to-cell),
two classes of infected cells, humoral immunity and antiviral treatment. The model is
formulated by the following nonlinear system of ordinary differential equations (ODEs):

dS
dt = σ− µ1S− β1SV

1 + q1W
− β2SI

1 + q2W
+ ρL,

dL
dt =

β1SV
1 + q1W

+
β2SI

1 + q2W
− (µ2 + δ + ρ)L,

dI
dt = δL− µ3 I,
dV
dt = k(1− ε)I − µ4V − pVW,
dW
dt = rVW − µ5W,

(1)

where the uninfected cells (S) are generated at rate σ, die at rate µ1S and become infected
either by free virus particles at rate β1SV or by direct contact with infected cells at rate
β2SI. The two modes of transmission are inhibited by non-lytic humoral immune response
at rate 1 + q1W and 1 + q2W, respectively. The latently infected cells (L) die at rate µ2L and
become productively infected cells rate δL. Also, the latently infected cells are assumed to
be cured at rate ρL, resulting from the clearance of virus through the non-cytolytic process
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as for HCV infection in [20] and HIV in [21,22]. The cure of infected epithelial cells was
also considered in a recent work of SARS-CoV-2 [23]. The productively infected cells (I)
die at rate µ3 I. Free viruses (V) are produced by infected cells at rate kI, cleared at rate
µ4V and neutralized by antibodies at rate pVW. Antibodies develop in response to free
virus at rate rVW and decay at rate µ5W. Here, the parameter ε represents the effectiveness
of the antiviral treatment which blocks the production of viral particles. The flow diagram
of the model is shown in Figure 1.

Figure 1. The flowchart representing the dynamics of model (1).

Most viruses can spread via two modes: by virus-to-cell infection and through direct
cell-cell contact [24–26]. A recent study provided evidence that SARS-CoV-2 spreads
through cell-cell contact in cultures, mediated by the spike glycoprotein [27]. Furthermore,
it is known that antibodies neutralize free virus particles and inhibit the infection of
susceptible cells [28]. They also contribute significantly to non-lytic antiviral activity [29].
For this reason, both modes of transmission with the lytic and non-lytic immune response
are considered into the model.

On the other hand, it is very important to note that the SARS-CoV-2 model presented by
system (1) includes many mathematical models for viral infection existing in the literature.
For instance, we get the model of Rong et al. [21] when q1 = 0, β2 = 0 and both treatment
and humoral immunity are ignored. The global stability of the model [21] was investigated
in [30]. In addition, the model of Baccam et al. [31] is a special case of system (1), it suffices
to neglect immunity and take σ = 0, µ1 = µ2 = ρ = 0, β2 = 0 and ε = 0. The last model
presented in [31] was recently used by Rodriguez and Dobrovolny [32] to determine viral
kinetics parameters for young and aged SARS-CoV-2 infected macaques. In the case where
latently infected cells not revert back to susceptible and when antibodies do not reduce
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cell-to-cell transmission, we have ρ = 0, q2 = 0 and system (1) reduces to the following
model: 

dS
dt = σ− µ1S− β1SV

1 + q1W
− β2SI,

dL
dt =

β1SV
1 + q1W

+ β2SI − (µ2 + δ)L,
dI
dt = δL− µ3 I,
dV
dt = k(1− ε)I − µ4V − pVW,
dW
dt = rVW − µ5W,

(2)

2.2. Equilibria and Threshold Parameters

The equilibria of the model are the stationary solutions of system (1). Then they
satisfied the following equations:

σ− µ1S− β1SV
1 + q1W

− β2SI
1 + q2W

+ ρL = 0, (3)

β1SV
1 + q1W

+
β2SI

1 + q2W
− (µ2 + δ + ρ)L = 0, (4)

δL− µ3 I = 0, (5)

k(1− ε)I − µ4V − pVW = 0, (6)

rVW − µ5W = 0. (7)

From Equation (7), we have W = 0 or V =
µ5

r
. So, we discuss two cases.

• If W = 0, then L =
µ3 I

δ
, V =

k(1− ε)I
µ4

and

I
(

k(1− ε)β1S
µ4

+ β2S− (µ2 + δ + ρ)µ3

δ

)
= 0.

(i) When I = 0, we have L = V = 0 and according to (3) we get S =
σ

µ1
. Thus,

model (1) admits an equilibrium point of the form E0 = (
σ

µ1
, 0, 0, 0, 0). This point

is called the infection-free equilibrium which corresponding to the healthy state
of the patient.

(ii) When I 6= 0, we have S =
µ3µ4(µ2 + δ + ρ)

δk(1− ε)β1 + δµ4β2
. By summing (3) and (4), we

obtain L =
σ− µ1S
µ2 + δ

=
δσ[k(1− ε)β1 + µ4β2]− µ1µ3µ4(µ2 + δ + ρ)

δ(µ2 + δ)[k(1− ε)β1 + µ4β2]
. Since I > 0,

we have δσ[k(1 − ε)β1 + µ4β2] > µ1µ3µ4(µ2 + δ + ρ). This leads to R0 > 1,
where

R0 =
σδ[k(1− ε)β1 + µ4β2]

µ1µ3µ4(µ2 + δ + ρ)
. (8)

The threshold parameterR0 is called the basic reproduction number. Biologically,
this threshold parameter represents the average number of secondary infections
produced by one productively infected cell at the beginning of infection. It can be

rewritten asR01 +R02, whereR01 =
kδσβ1(1− ε)

µ1µ2µ4(µ2 + δ + ρ)
is the basic reproduc-

tion number of the virus-to-cell transmission mode andR02 =
σδβ2

µ1µ3(µ2 + δ + ρ)
is the basic reproduction number of the cell-to-cell transmission mode.
WhenR0 > 1, model (1) has another biological equilibrium called the infection
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equilibrium without humoral immunity of the form E1 = (S1, L1, I1, V1, 0), where

S1 =
σ

µ1R0
, L1 =

σ(R0 − 1)
(µ2 + δ)R0

, I1 =
δσ(R0 − 1)

µ3(µ2 + δ)R0
and V1 =

kδσ(1− ε)(R0 − 1)
µ3µ4(µ2 + δ)R0

.

• If W 6= 0, then V =
µ5

r
. It follows from (3) to (6) that L =

σ− µ1S
µ2 + δ

, I =
δ(σ− µ1S)
µ3(µ2 + δ)

,

W =
rkδ(1− ε)(σ− µ1S)− µ3µ4µ5(µ2 + δ)

pµ3µ5(µ2 + δ)
and

µ5(µ2 + δ)β1S
r(1 + q1W)

+
δβ2S(σ− µ1S)
µ3(1 + q2W)

= (µ2 + δ + ρ)(σ− µ1S).

Since W ≥ 0, we have S ≤ σ

µ1
− µ3µ4µ5(µ2 + δ)

rkδµ1(1− ε)
. This implies that there is no

biological equilibrium when S >
σ

µ1
− µ3µ4µ5(µ2 + δ)

rkδµ1(1− ε)
or

σ

µ1
− µ3µ4µ5(µ2 + δ)

rkδµ1(1− ε)
≤ 0.

Let s∗ =
σ

µ1
− µ3µ4µ5(µ2 + δ)

rkδµ1(1− ε)
and F be the function defined on the closed interval

[0, s∗] as follows

F (S) =
µ5(µ2 + δ)β1S
r(1 + q1g(S))

+
δβ2S(σ− µ1S)
µ3(1 + q2g(S))

− (µ2 + δ + ρ)(σ− µ1S),

where g(S) =
rkδ(1− ε)(σ− µ1S)− µ3µ4µ5(µ2 + δ)

pµ3µ5(µ2 + δ)
. On the other hand, we have

F (0) = −σ(µ2 + δ + ρ) < 0 and

F ′(S) =
µ5(µ2 + δ)β1

(
1 + q1g(S)− q1Sg′(S)

)
r
(
1 + q1g(S)

)2

+
δβ2(σ− µ1S)

(
1 + q2g(S)− q2Sg′(S)

)
µ3
(
1 + q2g(S)

)2

+µ1

(
µ2 + δ + ρ− δβ2S

µ3(1 + q2g(S))

)
.

When the humoral immune response has not been established, we have rV1 − µ5 ≤ 0.
Hence, we define another threshold parameter called the reproduction number for
humoral immunity as follows

RW
1 =

rV1

µ5
, (9)

where
1

µ5
is the average life span of antibodies and V1 is the quantity of viruses at the

steady state E1. So, the numberRW
1 can biologically determine the average number of

antibodies activated by viral particles.

As F (s∗) =
µ3µ4µ2

5(µ2 + δ)2[k(1− ε)β1 + µ4β2]

δµ1r2k2(1− ε)2

(
RW

1 − 1
)
> 0 ifRW

1 > 1, we deduce

that there exists a S2 ∈ (0, s∗) such that F (S2) = 0. Further, we have F ′(S2) > 0.
This establishes the uniqueness of S2 and therefore model (1) has an unique in-
fection equilibrium point with humoral immunity E2 = (S2, L2, I2, V2, W2) when

RW
1 > 1, where S2 ∈

(
0, s∗

)
, L2 =

σ− µ1S2

µ2 + δ
I2 =

δ(σ− µ1S2)

µ3(µ2 + δ)
, V2 =

µ5

r
and

W2 =
rkδ(1− ε)(σ− µ1S2)− µ3µ4µ5(µ2 + δ)

pµ3µ5(µ2 + δ)
.

Summarizing the cases discussed above in the following result.
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Theorem 1.

(i) If R0 ≤ 1, then model (1) has a unique infection-free equilibrium E0 = (S0, 0, 0, 0, 0), where
S0 =

σ

µ1
.

(ii) IfR0 > 1, then model (1) has a unique infection equilibrium without humoral immunity E1 =

(S1, L1, I1, V1, 0) besides E0, where S1 =
σ

µ1R0
, L1 =

σ(R0 − 1)
(µ2 + δ)R0

, I1 =
δσ(R0 − 1)

µ3(µ2 + δ)R0

and V1 =
kδσ(1− ε)(R0 − 1)

µ3µ4(µ2 + δ)R0
.

(iii) If RW
1 > 1, then model (1) has a unique infection equilibrium with humoral immunity

E2 = (S2, L2, I2, V2, W2) besides E0 and E1, where

S2 ∈
(

0,
σ

µ1
− µ3µ4µ5(µ2 + δ)

rkδµ1(1− ε)

)
, L2 =

σ− µ1S2

µ2 + δ
I2 =

δ(σ− µ1S2)

µ3(µ2 + δ)
, V2 =

µ5

r
and

W2 =
rkδ(1− ε)(σ− µ1S2)− µ3µ4µ5(µ2 + δ)

pµ3µ5(µ2 + δ)
.

3. Analytical Results

This section is devoted to the analytical results including the well-posedness of the
model and the stability analysis of equilibria.

3.1. Well-Posedness

The model presented by system (1) describes the dynamics of cells and virus which
are nonnegative and bounded biological quantities. Since the second member of the system
(1) is continuously differentiable, we deduce that the solution of (1) exists and it is unique.
Next, we prove the non-negativity and boundedness of the solutions of (1) by establishing
the following theorem.

Theorem 2. Each solution of system (1) starting from nonnegative initial values remains nonnega-
tive and bounded for all positive time.

Proof. By system (1), we get

dS
dt
|S=0 = σ + ρL > 0 for all L ≥ 0,

dL
dt
|L=0 =

β1SV
1 + q1W

+
β2SI

1 + q2W
≥ 0 for all S, I, V, W ≥ 0,

dI
dt
|I=0 = δL ≥ 0 for all L ≥ 0,

dV
dt
|V=0 = k(1− ε)I ≥ 0 for all I ≥ 0,

dW
dt
|W=0 = 0.

According to Proposition B.7 of [33], we deduce that the solutions S(t), L(t), I(t), V(t) and
W(t) are nonnegative if (S(0), L(0), I(0), V(0), W(0)) ∈ R5

+.
For the boundedness of solutions, we consider the following function

T (t) = S(t) + L(t) + I(t) +
µ3

2k(1− ε)
V(t) +

pµ3

2k(1− ε)r
W(t).

Then

dT
dt

= σ− µ1S(t)− µ2L(t)− µ3

2
I(t)− µ3µ4

2k(1− ε)
V(t)− pµ3µ5

2k(1− ε)r
W(t)

≤ σ− µT (t),
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where µ = min{µ1, µ2,
µ3

2
, µ4, µ5}. Hence,

lim sup
t→∞

T (t) ≤ σ

µ
.

This ensures the boundedness of solutions.

3.2. Stability Analysis

In this subsection, we analyze the dynamical behaviors of our model. First, we
investigate the stability of the infection-free steady state E0.

Theorem 3. The infection-free steady state E0 is globally asymptotically stable if R0 ≤ 1 and
becomes unstable ifR0 > 1.

Proof. Let u = (S, L, I, V, W) be a solution of (1) and construct a Lyapunov functional as
follows

H0(u) = S0Φ
(

S
S0

)
+ L +

µ2 + δ + ρ

δ
I +

β1S0

µ4
V +

pβ1S0

rµ4
W +

ρ(S− S0 + L)2

2S0(µ1 + µ2 + δ)
,

where Φ(x) = x− 1− ln x, for x > 0. By a simple computation, we have

dH0

dt
= −µ1

(
1
S
+

ρ

S0(µ1 + µ2 + δ)
+

ρL
SS0

)(
S− S0

)2 − ρ(µ2 + δ)L2

S0(µ1 + µ2 + δ)

− q1β1S0

1 + q1W
VW − q2β2S0

1 + q2W
IW +

µ3(µ2 + δ + ρ)

δ
I
(
R0 − 1

)
− pµ5β1S0

rµ4
W.

Hence,
dH0

dt
≤ 0 forR0 ≤ 1 and with equality if and only if S = S0, L = 0, I = 0, V = 0 and

W = 0. It follows from LaSalle’s invariance principle [34] that E0 is globally asymptotically
stable ifR0 ≤ 1.

WhenR0 > 1, the characteristic equation of model (1) at E0 is given by

(µ1 + λ)(µ5 + λ)P0(λ) = 0, (10)

where

P0(λ) = λ3 + (µ2 + µ3 + µ4 + δ + ρ)λ2

+(µ3µ4 − δβ2S0 + (µ3 + µ4)(µ2 + δ + ρ))λ

+µ3µ4(µ2 + δ + ρ)(1− R0).

We have lim
λ→+∞

P0(λ) = +∞ and P0(0) = µ3µ4(µ2 + δ + ρ)(1 − R0) < 0 if R0 > 1.

Therefore, the characteristic Equation (10) has at least one positive eigenvalue if R0 > 1,
which implies that E0 is unstable whenR0 > 1.

Next, we establish the asymptotic stability of the two infection steady states E1 and E2
by supposing thatR0 > 1 and the following further hypothesis

q1
(
W −Wi

)( 1 + q1W
1 + q1Wi

− V
Vi

)
≤ 0,

q2
(
W −Wi

)( 1 + q2W
1 + q2Wi

− I
Ii

)
≤ 0,

(H)
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where Ii, Vi and Wi are productively infected cells, viruses and antibodies components of
the infection equilibrium Ei, for i = 1, 2.

Theorem 4. Assume that (H) is satisfied for E1. Then the infection steady state without humoral

immunity E1 is globally asymptotically stable if RW
1 ≤ 1 < R0 ≤ 1 +

µ2 + δ

ρ
and unstable if

RW
1 > 1.

Proof. The characteristic equation at E1 is given by

(rV1 − µ5 − λ)P1(λ) = 0, (11)

where

P1(λ) =

∣∣∣∣∣∣∣∣
−µ1 − β1V1 − β2 I1 − λ ρ −β2S1 −β1S1

β1V1 + β2 I1 −(µ2 + δ + ρ)− λ β2S1 β1S1
0 δ −µ3 − λ 0
0 0 k −µ4 − λ

∣∣∣∣∣∣∣∣.
Hence, λ1 = rV1 − µ5 is a root of the characteristic equation (11). SinceRW

1 = rV1
µ5

> 1, we

have λ1 > 0. Then E1 is unstable ifRW
1 > 1.

For the global stability, we consider the following Lyapunov functional

H1(u) = S1Φ
(

S
S1

)
+ L1Φ

(
L
L1

)
+

µ2 + δ + ρ

δ
I1Φ
(

I
I1

)
+

β1S1V1

k(1− ε)I1
V1Φ

(
V
V1

)

+
pβ1S1V1

rk(1− ε)I1
W +

ρ
(
S− S1 + L− L1

)2

2S1(µ1 + µ2 + µ3)
.

Then

dH1

dt
=

(
1− S1

S

)(
σ− µ1S− β1SV

1 + q1W
− β2SI

1 + q2W
+ ρL

)
+

(
1− L1

L

)(
β1SV

1 + q1W
+

β2SI
1 + q2W

− (µ2 + δ + ρ)L
)

+
µ2 + δ + ρ

δ

(
1− I1

I

)(
δL− µ3 I

)
+

β1S1V1

k(1− ε)I1

(
1− V1

V

)(
k(1− ε)I − µ4V − pVW

)
+

pβ1S1V1

rk(1− ε)I1

(
rVW − µ5W

)
+

ρ

(µ1 + µ2 + µ3)S1

(
S− S1 + L− L1

)(
σ− µ1S− (µ2 + δ)L

)
.
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Since σ = µ1S1 + β1S1V1 + β2S1 I1− ρL1 = µ1S1 + (µ2 + δ)L1, δL1 = µ3 I1 and k(1− ε)I1 =
µ4V1, we get

dH1

dt
= − 1

SS1

(
µ1S1 − ρL1 +

ρµ1S
µ1 + µ2 + µ3

+ ρL
)(

S− S1
)2

−ρ(µ2 + δ)(L− L1)
2

(µ1 + µ2 + µ3)S1
+

pµ5β1S1

rµ4

(
RW

1 − 1
)

W

+β1S1V1

(
4− S1

S
+

V
(1 + q1W)V1

− I1L
IL1
− SVL1

(1 + q1W)LS1V1
− V

V1
− V1 I

VI1

)
+β2S1 I1

(
3− S1

S
+

I
(1 + q2W)I1

− SIL1

(1 + q2W)S1 I1L
− I

I1
− I1L

IL1

)
.

Thus,

dH1

dt
= − 1

SS1

(
µ1S1 − ρL1 +

ρµ1S
µ1 + µ2 + µ3

+ ρL
)(

S− S1
)2

−ρ(µ2 + δ)(L− L1)
2

(µ1 + µ2 + µ3)S1
+

pµ5β1S1

rµ4

(
RW

1 − 1
)

W

+β1S1V1

(
− 1− V

V1
+

V
(1 + q1W)V1

+ (1 + q1W)

)
+β2S1 I1

(
− 1− I

I1
+

I
(1 + q2W)I1

+ (1 + q2W)

)
+β1S1V1

(
5− S1

S
− I1L

IL1
− SVL1

(1 + q1W)S1V1L
− IV1

I1V
− (1 + q1W)

)
+β2S1 I1

(
4− S1

S
− I1L

IL1
− SIL1

(1 + q2W)S1 I1L
− (1 + q2W)

)
.

Then

dH1

dt
= − 1

SS1

(
µ1S1 − ρL1 +

ρµ1S
µ1 + µ2 + µ3

+ ρL
)(

S− S1
)2

−ρ(µ2 + δ)(L− L1)
2

(µ1 + µ2 + µ3)S1
+

pµ5β1S1

rµ4

(
RW

1 − 1
)

W

+β1S1V1

(
− 1− V

V1
+

V
(1 + q1W)V1

+ (1 + q1W)

)
+β2S1 I1

(
− 1− I

I1
+

I
(1 + q2W)I1

+ (1 + q2W)

)
− β1S1V1

[
Φ
(

S1

S

)
+Φ

(
I1L
IL1

)
+ Φ

(
SVL1

(1 + q1W)S1V1L

)
+ Φ

(
IV1

I1V

)
+ Φ(1 + q1W)

]
−β2S1 I1

[
Φ
(

S1

S

)
+ Φ

(
I1L
IL1

)
+ Φ

(
SIL1

(1 + q2W)S1 I1L

)
+ Φ(1 + q2W)

]
.

According to (H), we obtain

−1− V
Vi
+ (1+q1Wi)V

(1+q1W)Vi
+ 1+q1W

1+q1Wi
=

q1
(
W −Wi

)
1 + q1W

(
1 + q1W
1 + q1Wi

− V
Vi

)
≤ 0,

−1− I
Ii
+ (1+q2Wi)I

(1+q2W)Ii
+ 1+q2W

1+q2Wi
=

q2
(
W −Wi

)
1 + q2W

(
1 + q2W
1 + q2Wi

− I
Ii

)
≤ 0.

(12)
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IfRW
1 ≤ 1 and ρL1 ≤ µ1S1, then

dH1

dt
≤ 0 with equality if and only if S = S1, L = L1, I = I1,

V = V1 and W = 0. Further, the condition ρL1 ≤ µ1S1 is equivalent to R0 ≤ 1 + µ2+δ
ρ .

Therefore, E1 is globally asymptotically stable ifRW
1 ≤ 1 < R0 ≤ 1 + µ2+δ

ρ .

Remark 1. Since lim
ρ→0+

µ2 + δ

ρ
= +∞ and lim

δ→+∞

µ2 + δ

ρ
= +∞, we deduce that

(i) E1 is globally asymptotically stable ifRW
1 ≤ 1 < R0 and ρ = 0.

(ii) E1 is globally asymptotically stable ifRW
1 ≤ 1 < R0 and δ is sufficiently large.

Theorem 5. Assume that (H) is satisfied for E2. If RW
1 > 1 and µ1S2 − ρL2 ≥ 0, then the

infection steady state with humoral immunity E2 is globally asymptotically stable.

Proof. Consider the following Lyapunov functional

H2(u) = S2Φ
(

S
S2

)
+ L2Φ

(
L
L2

)
+

µ2 + δ + ρ

δ
I2Φ
(

I
I2

)
+

β1S2V2

k(1− ε)(1 + q1W2)I2
V2Φ

(
V
V2

)

+
pβ1S2V2

rk(1− ε)(1 + q1W2)I2
W2Φ

(
W
W2

)
+

ρ
(
S− S2 + L− L2

)2

2S2(µ1 + µ2 + µ3)
.

By σ = µ1S2 +
β1S2V2

1+q1W2
+ β2S2 I2

1+q2W2
− ρL2 = µ1S2 + (µ2 + δ)L2, δL2 = µ3 I2, k(1 − ε)I2 =

µ4V2 + pV2W2, rV2 = µ5 and using the same technique of computation as inH2, we obtain

dH2

dt
= − 1

SS2

(
µ1S2 − ρL2 +

ρµ1S
µ1 + µ2 + µ3

+ ρL
)(

S− S2
)2

+
−ρ(µ2 + δ)

(µ1 + µ2 + µ3)S2
(L2 − L)2 − β1S2V2

1 + q1W2

[
Φ
(

I2L
L2 I

)
+ Φ

(
S2

S

)
+Φ

(
V2 I
I2V

)
+ Φ

(
SL2V(1 + q1W2)

S2LV2(1 + q1W)

)
+ Φ

(
1 + q1W
1 + q1W2

)]
+

β1S2V2

1 + q1W2

(
− 1− V

V2
+

V(1 + q1W2)

V2(1 + q1W)
+

1 + q1W
1 + q1W2

)
− β2S2 I2

1 + q2W2

[
Φ
(

I2L
L2 I

)
+ Φ

(
S2

S

)
+ Φ

(
SL2 I(1 + q2W2)

S2LI2(1 + q2W)

)
+ Φ

(
1 + q2W
1 + q2W2

)]
+

β2S2 I2

1 + q2W2

(
− 1− I

I2
+

I(1 + q2W2)

I2(1 + q2W)
+

1 + q2W
1 + q2W2

)
.

It follows from (12) and the condition µ1S2 − ρL2 ≥ 0 that
dH2

dt
≤ 0 with equality if and

only if S = S2, L = L2, I = I2, V = V2 and W = W2. Hence, E2 is globally asymptotically
stable.

4. Numerical Results
4.1. Parameters Estimation

Since the equilibrium point E0 = (
σ

µ1
, 0, 0, 0, 0) is the healthy state of our model, we de-

duce that
σ

µ1
represents the total number of healthy pulmonary epithelial cells. According

to [9], this number was estimated to be between 5.7757× 104 and 1.2× 107 cells/mL. It fol-
lows from [35] that µ1 = 10−3 day−1. Thus, σ becomes between 57.757 and
1.2× 104 cells mL−1 day−1.
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The rate to become productively infected cells, δ, was assumed to be 4 day−1 in [36,37],
between 1 and 5 day−1 in [38]. Further, the parameter δ was estimated to be 7.88 day−1

in [39]. Then δ can be estimated between 1 and 7.88 day−1, which implies that the latently
infected cells started producing virus about 3 to 24 h after they were infected.

The death rate of productively infected cells, µ3, was estimated to be between 1.5 and
5.2 day−1 in [36], 0.6 day−1 (95% confidence interval (CI)= 0.22–0.97) in [38], and around
1.7 day−1 in [37]. Hence, µ3 can be estimated between 0.6 and 5.2 day−1, corresponding to
infected cells life-spans of 4 to 40 hours.

The virus-to-cell infection rate, β1, was estimated to be between 4.8 × 10−8 and
4.5× 10−5 mL virion−1 day−1 in [40], 3.2× 10−8 mL virion−1 day−1 in [37], and 5× 10−6 mL
virion−1 day−1 in [36]. So, the parameter β1 can be estimated between 3.2× 10−8 and
4.5× 10−5 mL virion−1 day−1.

The viral production, k, was estimated to be between 88 and 580 virions cell−1 day−1 in
[9], 45.3 virions cell−1 day−1 in [37], and 22.71 virions cell−1 day−1 (95% CI= 0–59.94) in [38].
Hence, the parameter k can be estimated between 22.71 and 580 virions cell−1 day−1.

The clearance rate, µ4, was estimated to be 10 day−1 in [37], 2.44 and 15.12 day−1

in [9]. Further, Gonçalves et al. [38] assumed a viral clearance µ4 of 5 or 20 day−1 in order
to characterize the viral load dynamics of 13 hospitalized patients in Singapore. Therefore,
the parameter µ4 can be estimated between 2.44 and 20 day−1. The estimation of the other
parameters are summarized in Table 1.

Table 1. The 16 parameters of the model (1) with their values.

Parameter Definition Value Source

σ Epithelial cells 57.757–1.2× 104 [9]
production rate cells mL−1 day−1

µ1 Death rate of uninfected 10−3 day−1 [35]
epithelial cells

β1 Virus-to-cell infection rate 3.2× 10−8–4.5× 10−5 Estimated
mL virion−1 day−1

β2 Cell-to-cell infection rate 0–1 mL cell−1 day−1 Assumed
µ2 Death rate of latently 0.08–0.59 day−1 Assumed

infected epithelial cells
δ Rate to become productively 1–7.88 day−1 Estimated

infected cells
µ3 Death rate of productively 0.6–5.2 day−1 Estimated

infected epithelial cells
k Virion production rate per 22.71–580 Estimated

infected epithelial cell virions cell−1 day−1

µ4 Virus clearance rate 2.44–20 day−1 Estimated
r Activation rate of 0–1 mL virion−1 day−1 Assumed

antibodies
µ5 Death rate of antibodies 0–1 day−1 Assumed
p Neutralization rate of 0–1 Assumed

virus by antibodies mL molecules−1 day−1

q1 Non-lytic strength against 0–1 mL molecules−1 Assumed
virus-to-cell infection

q2 Non-lytic strength against 0–1 mL molecules−1 Assumed
cell-to-cell infection

ρ Cure rate of latently 0–1 day−1 Assumed
infected cells

ε Effectiveness of 0–1 Assumed
antiviral treatment

4.2. Sensitivity Analysis

Sensitivity analysis helps understand how changes in model parameters affect the
dynamics of SARS-CoV-2 infection. Since the value of the basic reproduction numberR0
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determines the eradication or the persistence of the virus in the human body, we so compute
the sensitivity index ofR0 against model parameters. By using the explicit formula ofR0
given in (8), such index with respect a parameter q is calculated as follows

Γq
R0

=
q
R0

∂R0

∂q
. (13)

Note that, by applying above Equation (13) and from the data in Table 1, we conclude that
the most sensitive parameters to the basic reproduction number R0 of the SARS-CoV-2
model are σ, β1, β2 and κ. Clearly, an increase of the value of any one of these parameters
will increase the basic reproduction number. While, an increase of the value of other
parameters ρ, µ1, µ2 and µ3 will decreaseR0 (Table 2). Then, we get the following results
and illustrate it in Figures 2 and 3.
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Figure 2. The relationship betweenR0 and several parameters.

Table 2. Sensitivity ofR0 with respect to the parameters.

Parameter Value Sensitivity Index

σ 500 1
µ1 0.001 −1
β1 0.0000011 0.88
β2 0.00000012 0.0115
µ2 0.088 −0.687
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Table 2. Cont.

Parameter Value Sensitivity Index

δ 4.5 0.844
µ3 0.088 −1
k 88 0.88
µ4 10 −0.885
ρ 0.02 −0.156
ε 0.2 −0.2212
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Figure 3. Sensitivity indices diagram forR0.

4.3. Numerical Simulation

To illustrate our analytical results, we use the values of the parameters presented in
Table 1 by choosing σ = 60, µ1 = 0.001, µ2 = 0.09, δ = 1.5, µ3 = 0.75, µ4 = 15, µ5 = 0.3,
β2 = 1.2× 10−8, q1 = 0.01, q2 = 0.02, p = 0.5, ρ = 0.01, ε = 0.2, k = 50 and the other
parameters as r and β1 are varied. Thus, the choice of the values of the two last parameters
leads to the following scenarios:

Scenario 1: If we put r = 2.4× 10−3 and β1 = 4.6× 10−6, then R0 = 0.9209 < 1. In
this case, the dynamical behavior of model (1) converges to the infection-free equilibrium
E0 = (6× 104, 0, 0, 0, 0) from different initial values. This result is plotted by Figure 4.

Scenario 2: When we choose β1 = 1.3× 10−5 and keeping the value of r in Scenario 1,
we haveR0 = 2.6009 > 1 andRW

1 = 0.9910 < 1. Figure 5 displays the dynamical behavior
of model (1) approaches to E1 = (2.3069× 104, 23.2270, 46.4541, 12.3877, 0) from different
initial values.

Scenario 3: If r = 4× 10−3 and β1 = 1.3× 10−5 and keeping the value of β1 in Scenario
2, we get RW

1 = 1.6517 > 1 and the the dynamical behavior of model (1) approaches to
globally asymptotically stable E2 = (3.2263× 104, 18.0990, 36.2015, 75.0259, 8.6286) from
various initial values. Figure 6 shows that result.

Finally, we study the impact of antiviral treatment on of the dynamics of SARS-CoV-2
infection. According to the explicit formula of the basic reproduction numberR0 presented
in (8), we notice that R0 is a decreasing function with respect to ε. From the numerical
results (see, Figure 7), we notice the value ofR0 becomes less than 1 when the effectiveness
of the antiviral treatment exceeds 70%. This biologically implies that SARS-CoV-2 infection
will disappear from the human body whenR0 < 1.
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Figure 4. Dynamical behavior of model (1) whenR0 = 0.9030 < 1.

Figure 5. Dynamical behavior of model (1) whenR0 = 2.6009 > 1 andRW
1 = 0.9910 < 1.

Figure 6. Dynamical behavior of model (1) when R0 = 2.6009 > 1 and E2 = (3.2263 ×
104, 18.0990, 36.2015, 75.0259, 8.6286).
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Figure 7. Impact of treatment on the dynamics of SARS-CoV-2 infection.

5. Conclusions and Discussion

In this study, we have developed a new mathematical model that describes the dy-
namics of RNA viruses such as SARS-CoV-2 inside the human body. The developed model
takes into account the two modes of transmission and both classes of infected cells that are
latently infected cells and actively infected cells that produce virus particles. The cure of
infected cells in latent period, both the lytic and non-lytic immune response are considered
in our model. We first presented the result of the proposed model’s well-posedness in terms
of non-negativity and boundedness of the solutions. We found two threshold parameters
that completely determine the dynamics of this SARS-CoV-2 infection model while looking
for biologically feasible equilibria. The first is the basic reproduction number, denoted by
R0 and the second is the reproduction number for humoral immunity, denoted byRW

1 . Our
results indicate that the infection-free equilibrium E0 is globally asymptotically stable when
R0 ≤ 1. This means that SARS-CoV-2 has been completely eradicated from human lungs.
However, whenR0 > 1, E0 becomes unstable and the virus persists in human lungs. Also,
two scenarios appear depending on the value of the reproduction number for humoral
immunityRW

1 . More precisely, the infection equilibrium without humoral immunity E1 is
globally asymptotically stable ifRW

1 ≤ 1. Whereas, whenRW
1 > 1, E1 becomes unstable,

and the infection-immunity equilibrium E2 is globally asymptotically stable. Moreover, the
sensitivity analysis showed that the evolution of the infection is influenced by the different
parameters of the model. Finally, from the numerical simulations it is deduced that the use
of the drugs makes the basic reproduction numberR0 of the patient less than or equal to 1,
which automatically leads to the eradication of SARS-CoV-2 from the patient’s lungs. This
shows the impact of treatment on the dynamics of infection by RNA viruses, in particular
SARS-CoV-2. As well as, there are more results that we got it from sensitivity analysis
as some parameters influence on the reproduction number. And then we get an accurate
understanding of the behavior of the SARS-CoV-2 for example: σ, β1, β2 and k. Clearly, an
increase of the value of any one of these parameters will increaseR0. While, an increase of
the value of other parameters ρ, µ1, µ2 and µ3 will decreaseR0 (see Figures 2 and 3).

Immunologic memory is a major feature of adaptive immunity. It consists in the ability
of the immune system to recognize antigens, to which it was formerly exposed, and triggers
a more robust and more efficient response than the first exposure [41]. For that reason, it
will be more interesting to investigate the effect of immunological memory on the dynamics
of the developed model as presented in [8,42,43]. This will be the our future scope.
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