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Abstract: Therapeutic vaccines are a promising alternative for active immunotherapy for different
types of cancers. Therapeutic cancer vaccines aim to prevent immune system responses that are
not targeted at the tumors only, but also boost the anti-tumor immunity and promote regression or
eradication of the malignancy without, or with minimal, adverse events. Clinical trial data have
pushed the development of cancer vaccines forward, and the US Food and Drug Administration
authorized the first therapeutic cancer vaccine. In the present review, we discuss the various types
of cancer vaccines and different approaches for the development of therapeutic cancer vaccines,
along with the current state of knowledge and future prospects. We also discuss how tumor-induced
immune suppression limits the effectiveness of therapeutic vaccinations, and strategies to over-
come this barrier to design efficacious, long-lasting anti-tumor immune responses in the generation
of vaccines.

Keywords: cancer vaccine; immunotherapy; tumor microenvironment; immune checkpoint; tumor
cell; immune suppression

1. Introduction

The smallpox vaccine introduced by Edward Jenner’s ground-breaking article in 1798
opened new avenues in the field of advanced immunology [1]. Later, Dr. Willian Coley first
administered Coley’s Toxin, an inactivated mixture of Streptococcus pyogenes and Serratia
marcescens, to a cancer patient in 1891 in an effort to boost the immune system and improve
the patient’s health. The immune system attacked the patient’s tumor, causing it to disap-
pear. In the next 40 years, he continued to treat hundreds of soft-tissue sarcoma patients
using this immunotherapy and became the “Father of Immunology”, inspiring millions
of scientists and clinical scientists [2]. Based on research on vaccines over two centuries,
twenty-six infectious diseases are preventable through vaccination today. However, despite
many efforts, a number of other bacterial, viral, and parasitic illnesses continue to defy
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vaccination protection. The chronological progression of several cancer vaccines’ approval
is illustrated in Figure 1.
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of several cancer vaccinations, with the developments arranged in a sequential manner.

Despite extensive research and development, it has been difficult to design and utilize
cancer vaccines as effective therapeutics in the clinic. The U.S. Food and Drug Adminis-
tration (FDA) has nevertheless approved two preventative vaccines—one for the hepatitis
B virus, which is responsible for liver cancer, and another for the human papillomavirus,
which causes cervical cancer. Immunotherapy for cancer encompasses an extensive spec-
trum of modern and innovative potentially life-saving treatments aimed at eliminating
tumors by activating host anti-tumor immunity [3]. FDA approval of immune check-
point blocking (ICB) therapies and chimeric antigen receptor (CAR)-engineered T cell
immunotherapies has yielded substantial advancements in the field of cancer treatment.
However, it is important to note that these therapies may not exhibit optimal efficacy in
all individuals diagnosed with cancer, and their response varies among different types of
cancer [4]. Cancer vaccines, although they have not yet demonstrated a comparable clinical
impact, possess significant potential for both preventive and therapeutic purposes. They can
be utilized as single agent or in combination with other therapeutic approaches [5,6], and
have the ability to confer long-lasting immunity against cancer recurrence. Consequently,
they hold promise as a crucial component of future combinatorial immunotherapies [7,8].
Therapeutic cancer vaccines are given to cancer patients with the goal of eliminating can-
cer cells by augmenting the patient’s own immune responses, as opposed to preventive
vaccines, which are given to healthy individuals [9,10].

The term “vaccination” is now expanded beyond that, to refer to interventions that
target a disease’s specific antigen in order to treat or alleviate the existing pathology of the
disease. In addition to triggering a new immune response in immunocompromised or naïve
individuals, vaccinations can boost existing immunity and alter its type to better combat
the targeted diseases via systemic versus mucosal and Th1 versus Th2 responses [8,11].
The objective of this review is to provide a thorough examination of recent developments
in research in the realm of therapeutic cancer vaccines. Additionally, it seeks to assess the
present state of this field, identify the challenges that it faces, and outline possibilities for
the development of novel cancer vaccines as a promising therapeutic strategy in the future.

2. Cancer Vaccines
2.1. Therapeutic Cancer Vaccine

Cancer therapeutic vaccines can be classified as either cell-based or antigen-based. Cell
transfer is used in cell-based vaccinations to elicit targeted anti-tumor immunity [12,13].
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Some examples of whole-cell vaccines are adoptive T-cell transfer, in which healthy T cells
are transferred to a patient, and allogeneic (same-species) cancer cells. On the other hand,
vaccines based on antigens intend to improve the ability of the body to defend itself by
introducing a new antigen or a different way of presenting an existing one [14,15]. Types of
cancer vaccines are summarized in Figure 2.
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Figure 2. Overview of different types of targeted cancer vaccines. This figure was created using
Servier Medical Art Commons Attribution 3.0 Unported Licence (https://smart.servier.com/).

DNA and mRNA cancer vaccines are an effective and adaptable form of immunother-
apy. Humoral and cellular immunity can be induced by these cancer vaccines due to the
encoding and expression of tumor-associated antigens (TAAs), tumor-specific antigens
(TSAs), and related cytokines. Engineered DNA molecules, either alone or in combination
with other immunomodulatory substances, that encode one or more designated TAs [16],
are the basis of cancer DNA vaccines. In order to activate transcription, a DNA vaccine
must enter the cytoplasm of antigen presenting cells (APCs), cross the cell membrane, and
make its way to the nucleus. The resulting mRNAs go into the cytoplasm to be translated
into TAs. These proteins can undergo degradation by proteasomes and undergo intracellu-
lar processing within the endoplasmic reticulum, resulting in the generation of intracellular
antigens. These antigens are then presented as peptide-MHC-I complexes. However, the
genetic information for TAs is also delivered via mRNA vaccines. They are created by
in vitro transcription of template DNA using RNA polymerase [17,18]. Tumor-derived
mRNA can be amplified by polymerase chain reaction (PCR) to produce a significant
quantity of complementary DNA encoding patient-specific TAs.

The delivery of DNA and mRNA vaccines into the cell is the most challenging aspect
of these therapies. These vaccinations have to get through the cell membrane, which is a
lipid bilayer containing zwitterionic negatively charged phospholipids, ion pumps, and
channels that all work to keep the cell at a negative potential. In addition, DNA and
RNA sensors and endonucleases form an intercellular barrier. The vaccine is taken up and
processed by endocytic pathways before being released into the cells once it reaches the
plasma membrane. Protonation of the lipid nanoparticle (LNP) residual amines disrupts

https://smart.servier.com/
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the endosomal membrane, allowing a small percentage of LNPs to escape the endocytic
route [19,20]. This causes the LNP cargo to be released into the cell too soon, reducing
the vaccine’s efficacy. The success of DNA and mRNA vaccines relies heavily on the
mechanism of administration. Vaccine efficacy and safety are influenced by the anatomical
and physiological characteristics of the immunization location [17], which can be the skin,
a lymphoid organ, or muscle. Systemic delivery is one of the strategies when the vaccine is
injected into the bloodstream (intravenously) to reach and influence immune cells in the
body [21]. However, vaccines can also be delivered directly to the site of action by local
injections (subcutaneously). The potential for systemic delivery-related adverse effects is
diminished when the drug is administered subcutaneously. DNA and mRNA vaccines are
often administered via intramuscular injection. The vast vascular network that makes up
muscles brings a wide variety of immune cells, including APCs, to the injection site [22].
DNA and mRNA vaccines can also be injected intradermally or intranodally, where APCs
and other immune cells can quickly interact with and ingest them [23,24].

Moreover, proteins or DNA can be injected directly to stimulate the immune system, or
they can be delivered via a vector to prevent degradation and further stimulate the immune
system [25,26]. These vectors include attenuated bacteria (Salmonella, Mycobacterium,
Listeria, or Shigella), yeast (nonpathogenic Saccharomyces cerevisiae), and modified viruses
(adenovirus or poxvirus, with the vaccinia virus being the most common). All the bacteria
mentioned here are intracellular and can directly target antigen-presenting cells (APCs),
interfering with different antigen-presenting pathways (MHC class I or MHC class II)
depending on where in the APC they are located [27,28].

Targets aimed at tumor inoculations can be categorized into two groups: one is tumor-
associated antigens (TAAs) and the other is tumor-specific antigens (TSAs). TAAs as, or in
the form of, self-antigens could be selectively or peculiarly expressed in cancer cells. On
the other hand, TSAs, encompassing neoantigens as well as onco-viral antigens, are tumor
specific and have been recognized in onco-viral cancers such as human papillomavirus
(HPV)-linked cervical cancer and human herpesvirus 8-linked Kaposi sarcoma [29]. These
neoantigens (NeoAgs) are formed as a byproduct of somatic mutations developed through
carcinogenesis. The NeoAgs that are shared among patients are commonly observed across
different individuals, and their presence is determined by oncogenic driver mutations. On
the contrary, the mainstream of NeoAgs is exclusive to singular patients’ tumors (private
NeoAgs) [30]. With the advancements in sequencing technologies, the extrapolation of
major histocompatibility complex (MHC)-tied epitopes and their enrichment strategies
enable steering of tumor NeoAg assortment on the specific patient of interest [31].

Cancer stem cells (CSCs) have been contemplated as potential therapeutic targets
for cancer treatment because of their possession of self-renewal capability, etc. The regu-
lation of various biological activities of CSCs is directed with the help of widely known
pluripotent TFs, such as Sox2, Nanog, KLF4, OCT4, and MYC. Along with these regu-
lators, various signaling intracellular networks of JAK-STAT, NF-κB, Hedgehog, Notch,
Wnt, PI3K/AKT/mTOR, TGF/SMAD, and PPAR influence CSCs. Other crucial regula-
tors are extracellular factors, in the form of cancer-associated mesenchymal stem cells,
tumor-associated macrophages, cancer-associated fibroblasts, hypoxia, exosomes, and ex-
tracellular matrix [32]. Recent reports have confirmed the efficacy of the CSC-DC vaccine in
inhibiting the metastasis of primary tumors and stimulating the humoral immune reactions
against CSCs [33]. Programmed death ligand 1 (PD-L1) enhances the persistence of tumor-
reactive T lymphocytes against cancer cells by binding to programmed death-1 [34,35].
Furthermore, both cell-based and antigen-based vaccines, as described in Table 1, are being
trialed or under development for their respective target cancer types.
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Table 1. Type of therapeutic vaccines/immunotherapies and mechanism.

Vaccine Method Targets Mechanism Vaccine Type Type of Cancer Reference

Allogenic whole
cancer cells with
BCG stimulant

All tumor cell
antigens

T cells, NK cells,
macrophages,
eosinophils

Cell-based
Prostate cancer,
heterogenous
metastatic melanoma

[36,37]

APC based vaccine Tumor-associated
antigen

Activation and
maturation of DCs for
CTL-based response

Cell-based Metastatic prostate
cancer [38]

Adoptive T cell
transfer

Tumor associated
antigen CTL-based response Cell-based Prostate cancer,

metastatic melanomas [39–41]

Proteins Tumor-associated
carbohydrates

Antibody development,
T cell response Antigen-based Melanoma, lung

cancer [28,42]

Whole bacteria Bacterial antigen
CTL and Ab response
through immune
stimulation

Antigen-based

Leukemia, bladder
cancer, lung cancer,
melanoma, and
other neoplasms

[25]

DNA Tumor associated
antigen CTL and Ab response Antigen-based

Melanoma, mammary
carcinoma, colon
and lung carcinoma

[26,27,43]

2.2. Cell-Based Vaccines

In 2010, the first therapeutic cancer vaccine, Sipuleucel-T (ProvengeTM), was licensed
by FDA for clinical use in prostate cancer treatment [44]. Patients with symptomatic
illness were shown to have a 4.1-month median survival benefit and an 8.7% prolonged
3-year survival when treated with Sipuleucel-T compared to placebo [45,46]. Metastatic
castration-resistant prostate cancer is treated with the vaccination, which is an autologous
active cellular immunotherapy. APCs, such as dendritic cells (DCs) and macrophages, are
isolated from the patient’s peripheral blood and then activated in vitro with a recombinant
fusion protein (PA2024) of prostatic acid phosphatase and granulocyte macrophage colony
stimulating factor (PAP-GM-CSF). Immunostimulatory granulocyte macrophage colony-
stimulating factor (GM-CSF) is fused to a prostate antigen (prostatic acid phosphatase) in
this fusion protein. The reintroduced activated APCs will subsequently stimulate a CTL
immunological response against the prostate tumor cells. Sipuleucel-T is administered as a
60 min infusion every two weeks for three doses, and each dosage consists of a minimum
of 50 million activated autologous CD54+ cells [38,47]. Adoptive T-cell transfer is another
promising method for inducing an anticancer CTL response. This allows in-vitro selection,
generation, and activation of a large number of anticancer T-cells that detect tumor antigens
prior to their reintroduction into the host [39,40]. Clinical trials of allogeneic whole cell
vaccines have also shown promise. The goal of this treatment is to stimulate an immune
response against the numerous antigens released by cancer cells by injecting irradiation
of entire cancer cells from another host with the same tumor type into the patient. Since
whole tumor cells are not very immunogenic, other immune-stimulating chemicals must
be included in the vaccine formulation [36,37].

2.3. Autologous Tumor Cell Vaccine

Cancer vaccines that are made from the patient’s own tumor cells are called autologous
tumor vaccines. Typically, these tumor cells are irradiated, mixed with an immunomod-
ulatory adjuvant, and then given back to the patient from whom they were originally
isolated [48–50]. Cancers including lung cancer, colon cancer, melanoma, kidney cancer,
and prostate cancer have all been studied using autologous tumor cell vaccines [49,51–54].
It is possible to confer immunostimulatory properties on autologous tumor cells by genetic
modification. These engineered tumor cells are safe and have a positive effect on patients’
by generating anti-tumor immune memory cells [55]. Via the mechanism of the autologous
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tumor cell vaccine, immunization with engineered tumor cells leads to the production of
IL-2, a crucial cytokine that promotes Th1 immunity, as well as the development of a strong
tumor suppression impact via high IFN-γ production and elevated NK cells and cyto-toxic
cells. This is the mechanism by which autologous tumor cell vaccines work to prevent
tumor growth. Immunization with engineered tumor cells also leads to the production
of IL-2 [56]. For example, multiple tumor models, including ESb lymphoma and B16
melanoma, have demonstrated that autologous tumor cells infected with Newcastle disease
virus produce tumor protective immunity [57]. Another extensively investigated vaccina-
tion, GM-CSF transduced autologous tumor cells vaccine (GVAX), recruits DCs for antigen
presentation and priming cytotoxic T cells. Additionally, it activates macrophages, DCs,
and NKT cells [58,59]. Overall, autologous cell vaccines were associated with improved
and disease-free survival with greater expectancy [60].

2.4. Allogenic Tumor Cell Vaccine

Allogenic tumor vaccines are quite similar to autologous vaccines except that they use
material from a different individual of the same species. Tumor-associated antigen (TAA)
cell lines, which have been generated in the lab and are specific to a given tumor type, are a
common source of allogenic material [15]. Vaccines made using these methods produce
effective and safe immunogenic agents, with no risk of proliferation of the injected tumor
cells [61]. The machinery behind the allogenic tumor cell vaccine is also very similar to that
of autologous cell therapy. Engineered TAA cells produce IL-2 and promote Th1 immunity,
and lead to IFN-γ production and NK and cytotoxic cell growth. To further facilitate the
induction of an anti-tumor-specific immune response, irradiated cells naturally express and
present a large number of TAAs, eliminating the need to identify and isolate TAAs [62,63].
Due to the fact that many allogenic cell-based vaccines are derived from cancer cell lines of
the same species and type, they may not be able to detect tumor antigens that are unique to
the individual patient [64]. Despite this drawback, many studies have shown increased
immunogenicity in prostate cancer and aggressive melanomas [65,66].

2.5. Dendritic-Cell-Based Vaccine

DCs are specialized antigen-presenting cells that can activate both naive CD4 and
CD8 T cells [67,68]; they play an important role in the initiation and regulation of innate
and adaptive immune responses [69]. Multiple DC-targeted antigen clinical trials have
demonstrated the safety and variable immune response of DC-targeted vaccinations ad-
ministered in vivo [70,71]. Using poly-ICLC and/or resiquimond as an adjuvant, a trial
found that a human anti-DEC-205 monoclonal antibody fused with the tumor antigen NY-
ESO-1 produced a humoral and NY-ESO-1-specific CD4 and CD8 cells response, leading
to partial clinical responses without toxicity [72]. Data from combinatorial therapy with
DC vaccines are promising, such as blocking of the immune checkpoint (e.g., anti-CTLA4);
additionally, the antigen delivery method also impacted vaccine outcomes. Improvements
in nanoparticle or viral vector-based antigen targeting or delivery for DCs are a key factor
in the expansion of DC-based vaccinations into clinical practice [73,74].

2.6. Antigen-Based/Protein/Peptide-Based Vaccine

Cancer vaccines in this category are developed by focusing on epitopes on peptides
that can stimulate humoral and cellular immune responses against TAAs or TSAs. Peptide-
based cancer vaccines have the capability of enhancing the effector adaptive immune
response and provide persistent acquired immunity against a tumor antigen that is viewed
as “foreign”. The ability to differentiate cancer cells from normal cells is facilitated by the
upregulation or overexpression of endogenous proteins, as well as modifications in these
proteins. Therefore, mutated or differentially expressed proteins in cancer cells could be
used as therapeutic vaccine targets. Included in this group of antigens are cancer/germline
antigens [75] and cell lineage differentiation antigens [76,77], both of which are uncommon
in mature tissues. TAA expression in normal cells raises the probability that these cells will
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go through an immunological tolerance process, reducing their immunogenicity. However,
TSAs, which are antigens caused by nonsynonymous mutations or other genetic alterations
in cancer cells, stand out by not being expressed on the surface of normal cells. In addition,
various studies have shown that TSAs vary widely depending on the kind of tumor [78,79].
APCs regularly present tumor antigens to adoptively transferred B and T lymphocytes.
MHC-I molecules on APCs present peptides to CD8+ T cells, while MHC-II molecules on
APCs present peptides to CD4+ T cells [80]. Activated CD8+ T lymphocytes are thus capable
of recognizing cancer antigens expressed on the surface of tumor cells. Apoptotic molecules
such as Perforin, Fas Ligand, and Granzymes are secreted in response to this identification,
resulting in cell-mediated cytotoxicity [81]. Therapeutic vaccination against tumors relies
on eliciting strong and long-lasting responses from CD4+ and CD8+ T cells, which can only
be accomplished by delivering large quantities of highly immunogenic antigens to APCs.
Additionally, it is vital to allow the infiltration of the tumor microenvironment (TME) by
these T cells, while also assuring the durability and maintenance of the immune response.
Several laboratories are currently investigating methods to optimize antigen presentation
by activating and maturing APCs to stimulate T cells to respond in the best possible way.
Focusing on new adjuvants that can stimulate and augment the strength and durability of
the immune response mediated by antigen-specific T and B cells is the major goal of these
approaches [82]. Different therapeutic peptide-based vaccination formulations have been
tested in a range of tumor types during the past few decades. However, prior research has
only found small effects, leading to a substantial clinical benefit [29,83].

Furthermore, vaccination against primary or recurrent noninvasive papillary car-
cinoma and/or invasive subepithelial connective tissue papillary tumors used a whole
bacterial vaccine. TheraCysTM contains Bacillus Calmette-Guérin (BCG), which is a live
attenuated strain of Mycobacterium bovis and serves as its active component [84]. Bacteria
are introduced into the bladder intravenously, stimulating the immune system in response
to the bacterial infection [85,86]. Mice were vaccinated with a recombinant DNA vaccine
called pDERMATT (plasmid DNA Encoding Recombinant MART-1 and Tetanus toxin
fragment-c) that contained an immunostimulatory tetanus toxin fragment-c and a DNA
plasmid encoding the melanoma-associated antigen “melanoma antigen recognized by
T-cells” (MART-1) [26]. Carbohydrate-based vaccinations are another method used; these
vaccines involve a protein carrier fused to tumor-associated carbohydrate antigens. The
goal of this approach is to use a foreign protein carrier to expose the self-antigen nature of
the carbohydrate antigens associated with tumors to the immune system [87]. Relapsed
prostate cancer patients were included in a phase I clinical trial to assess the safety of a
tumor-associated carbohydrate Ag-KHL (antigen-Keyhole limpet hemocyanin) vaccination
administered with a saponin immunologic adjuvant [42,88,89]. The study demonstrated
that prostate-specific antigen (PSA) levels went down, as well as anti-tumor antibody
titers [89]. Carbohydrates on tumor cells are the focus of current vaccination research [90].
The majority of therapeutic antigen-based cancer vaccines work by stimulating CD8+ lym-
phocytes (CTLs) to mount an anti-tumor cellular immune response [91]. It is common for
vaccine-induced cellular immune responses to fall short because of insufficient amounts of
high avidity immune cells in circulation. These cells need to not only reach the tumor, but
also be activated properly before they can do any real damage to the tumor [92].

3. Clinical Landscape of Cancer Vaccines

Since 1890, when Coley found that streptococcal bacterial culture served as the ma-
jor antagonist in some sarcoma instances, immunotherapy has undergone a dramatic
transformation [93,94]. Based on the tumor regression mechanisms, the forms of cancer
immunotherapy have been categorized. Simply put, these therapies could have either an
active or a passive mode of action in a subject’s immunity [95]. In this regard, therapeutic
cancer vaccines have endured a renaissance over the passing decades. An insight into
tumor-corresponding antigens, an innate and adaptive immune response, and expansion of
state-of-the-art technologies for antigen release have accelerated the development of better-
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quality vaccine design [96]. The ultimate objective of these vaccines is to encourage tumor
regression, ascertain durable antineoplastic memory, eliminate minimal residual disease,
and avoid unfavorable outcomes. Centered on these intents, numerous therapeutic cancer
vaccines have been assessed in clinical trials. In the present review, a panorama of clinical
studies with respect to cancer vaccines is presented to provide a better understanding of
progressions in cancer treatment.

One of the first clinical studies for vaccine development was established from patient’s
tumor cells. These vaccines were effective in various phases of cancer clinical studies due to
an extensive antigen-specific reaction against tumor cells [55,96]. Bastin et al. presented a
meta-analysis of clinical trials containing ~700 patients with a minimum one dose of vaccine
with an overall safe tolerance level, with the exception of only five grade III events [60].
Haas et al. reported an escalation in immunogenicity of vaccines caused by a virus infection
of non-virulent strain NDV Ulster and addition of bispecific antibodies [97].

One type of extracellular vesicles is the exosome. The research works of Pan et al.
and Harding et al. provide the earliest evidence regarding exosomes’ crucial roles in cell
signaling and their capabilities in revealing the characteristics of the cells that produce
or discharge them during the crosstalk among various sites of the cells [98–101]. In 1986,
Schirrmacher et al. characterized the role of tumor-derived exosomes (TDEs) in exhibiting
the presence of antigens that were specific to their corresponding metastatic lymphoma
and its variants [102]. These discoveries disclose the potential of exosomes as biomarkers
for vaccine development [103,104]. In 2022, Huang et al. demonstrated the construction of
an in situ DC vaccine (HELA-Exos) by packing the immunogenic cell death (ICD) inducers
into breast-cancer-derived exosomes [105]. These in situ vaccines exhibited compelling
anti-tumor effects in a mouse xenograft model of triple negative breast cancer (TNBC),
as well as in patient-derived organoids by stimulation of cDC1s and CD8+ T cell activity
against tumor cells [105]. Meng et al. reported utilization of murine ESC engineered
exosomes to construct the granulocyte-macrophage colony stimulating factor vaccine for
inhibiting murine lung cancer [106].

The central factors of antigen vaccine attainment are dependent on the nature of
antigens, e.g., MHC-I or MHC-II restricted, the dosage of immunogen, the kind of adjuvant
used, and the method of administration [96]. As shown in Table 2, DNA vaccines carry
intrinsic adjuvants and are enriched with tumor-associated antigens. However, compared
to their counterparts, DNA vaccines need additional stages of transcription and translation
before the antigen cross-presentation for initiation of CD4+ and CD8+ responses [107,108].
A case study showed a DNA-based immunotherapy wherein pTOP plasmids encoded
viral glycoprotein and harbored diverse extraneous T cell tumor epitopes, to generate
immune detection by suitable dispensation of both MHC-I and MHC-II epitopes for anti-
tumor activity in various tumor models [109]. A review article by Lopes et al. provides a
comprehensive perspective regarding the current states of cancer DNA vaccines [110]. A
phase II trial study is now being undertaken to elucidate the efficiency of the pTVG-HP
DNA vaccine and its synergistic effects with pembrolizumab in curing castration-resistant
prostate cancer [111].

Additionally, the time needed to produce each type of vaccine and the effectiveness
of each type of approach is directly proportional to (a) the prompt scientific/technical
progressions, (b) the documentation of well-defined populations that might profit from CV
courses, (c) determinations to allow for comparison of diverse clinical examinations, and (d)
the formation of a worldwide workforce that can maintain the potential requirements and
supply chain [30]. Overall, there is growing enthusiasm for widespread vaccination opera-
tions, increased production developments, and, essentially, clinical outcomes from phase
II/III experiments, which will illuminate the definitive role of CVs in cancer management
in the subsequent years.
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Table 2. Clinical trials of DNA vaccines in cancer care (https://clinicaltrials.gov).

ClinicalTrials.gov
ID Title Phase Condition Treatment (s)

NCT02139267

A Randomized, Open-label, Multi-center, Phase 2
Clinical Trial to Determine the Optimal Dose and

Evaluate the Safety of GX-188E, a DNA-based
Therapeutic Vaccine, Administered Intramuscularly by
Electroporation (EP) in HPV Type 16 and/or 18 Positive
Patients with Cervical Intraepithelial Neoplasia 3 (CIN 3)

Phase 2 Cervical Intraepithelial Neoplasia Biological: GX-188E

NCT04049864 Pilot Clinical Study of DNA Vaccination
Against Neuroblastoma

Early
Phase 1 Relapsed Neuroblastoma

Biological: DNA vaccine
Biological: Salmonella oral vaccine

Drug: Lenalidomide

NCT02529930

An Exploratory Safety and Immunogenicity Study of
Human Papillomavirus (HPV16+) Immunotherapy

VB10.16 in Women with High Grade Cervical
Intraepithelial Neoplasia (HSIL; CIN 2/3)

Phase 1
Phase 2 High Grade Cervical Intraepithelial Neoplasia Biological: VB10.16 Immunotherapy

(DNA vaccine)

NCT03439085

A Phase 2, Open-Label Study to Evaluate Efficacy of
Combination Treatment with MEDI0457 (INO-3112) and

Durvalumab (MEDI4736) in Patients with
Recurrent/Metastatic Human Papilloma Virus

Associated Cancers

Phase 2

Human Papillomavirus-16 Positive
Human Papillomavirus-18 Positive

Metastatic Malignant Neoplasm
Recurrent Anal Canal Carcinoma

Recurrent Cervical Carcinoma
Recurrent Malignant Neoplasm

Recurrent Penile Carcinoma
Recurrent Vaginal Carcinoma
Recurrent Vulvar Carcinoma

Refractory Malignant Neoplasm
Stage IV Anal Cancer AJCC v8

Stage IV Cervical Cancer AJCC v8
Stage IV Penile Cancer AJCC v8

Stage IV Vaginal Cancer AJCC v8
Stage IV Vulvar Cancer AJCC v8

Stage IVA Cervical Cancer AJCC v8
Stage IVA Vaginal Cancer AJCC v8
Stage IVA Vulvar Cancer AJCC v8

Stage IVB Cervical Cancer AJCC v8
Stage IVB Vaginal Cancer AJCC v8
Stage IVB Vulvar Cancer AJCC v8

Biological: DNA Plasmid-encoding
Interleukin-12/HPV DNA Plasmids

Therapeutic Vaccine MEDI0457
Biological: Durvalumab

https://clinicaltrials.gov
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Table 2. Cont.

ClinicalTrials.gov
ID Title Phase Condition Treatment (s)

NCT00104845
Injection of AJCC Stage IIB, IIC, III, and IV Melanoma

Patients with Human and Mouse gp100 DNA: A Phase I
Trial to Assess Safety and Immune Response

Phase 1 Melanoma (Skin)

Biological: human gp100 plasmid
DNA vaccine

Biological: mouse gp100 plasmid
DNA vaccine

NCT02348320

A Phase 1 Clinical Trial to Evaluate the Safety and
Immunogenicity of a Personalized Polyepitope DNA

Vaccine Strategy in Breast Cancer Patients with
Persistent Triple-Negative Disease Following

Neoadjuvant Chemotherapy

Phase 1 Triple Negative Breast Cancer Biological: Personalized polyepitope
DNA vaccine

NCT00199849

Safety and Immunological Evaluation of NY-ESO-1
Plasmid DNA (pPJV7611) Cancer Vaccine Given by
Particle-mediated Epidermal Delivery (PMED) in

Patients with Tumor Type Known to Express NY-ESO-1
or LAGE-1 Antigen.

Phase 1

Prostate Cancer
Bladder Cancer

Non-small Cell Lung Cancer
Esophageal Cancer

Sarcoma

Biological: NY-ESO-1 Plasmid DNA
Cancer Vaccine



Vaccines 2023, 11, 1783 11 of 21

RNA vaccines are distinct from DNA ones with respect to their proximity towards pro-
tein antigen expression and APCs [96]. Their ability to be translated in the cytoplasm of the
host system averts the possibility of oncogene activation because of its inability to amalga-
mate inside the host genome [112]. In 1996, the first mRNA cancer vaccine report described
the potential APC properties of DC when pulsed with RNA, both in vitro and in vivo [113].
Subsequently, advancements in technologies have led to stable mRNA structural properties
and better-quality delivery methods. Multiple clinical trials are now enrolling patients
with cancer for mRNA-based vaccine treatments (Table 3). In 2017, Sahin et al. introduced
the perception of mutanome vaccines, which can be directed against individual mutations
by executing the RNA-involving poly-neo-epitope method [114]. In 2023, leading biotech
companies such as Moderna and Merck declared FDA’s title of breakthrough therapy
for MRNA-4157/V940, an RNA-based vaccine, synergized with KEYTRUDA(R), for the
adjuvant care of subjects with high-risk melanoma. These companies are commencing a
phase 3 clinical trial in 2023 with other tumor types (https://investors.modernatx.com).
Although mRNA therapeutics has been advancing in vaccine development, more techno-
logical progression is required in the delivery of mRNAs that code for lethal intracellular
proteins that carefully cause cell death in unsought and diseased cells [115,116]. In this
light, several scientific reports demonstrate the efficiency of recruited cellular microRNAs
(miRNAs) in targeting highly selective cell forms and regulating explicit disease expression
profiles. This capability of miRNAs helps to inhibit protein expression from the mRNA
in inadvertent recipient cells by manipulating endogenous pools of miRNA; apoptosis of
tumor cells can thus be directed while preventing damage to the other cells [117]. How-
ever, a comprehensive functional classification of miRNAs of interest is essential for their
successful therapeutic application. A thorough examination and confirmation of the au-
thenticity of an miRNA is crucial to develop miRNA target-prediction algorithms that
could enable accomplishment of experimental approaches to validate a higher quantity
of targets [118–121].

Cancer vaccines categorized based on peptides contain a sequence of amino acids de-
rived from TSAs or TAAs (Table 4) [122]. Their efficiency can be confirmed by the presence
of CD8+ epitopes that would eventually trigger CTL anti-tumor immunity consequences,
alongside CD4+ epitopes aimed at T-helper cell stimulation [123]. Hence, a robust im-
munogenic reaction depends on the sequence length of peptide vaccines. A longer peptide
sequence grants a wider population exposure of HLA-types [124,125]. A ground-breaking
work of Wu et al. confirmed the safe and beneficial usage of synthetic long peptide-
based vaccines in clinical trials [126]. Their phase I clinical study reported no relapse of
melanoma post-treatment of the 20 bp long slp-based vaccine, NeoVax, in four out of six
melanoma subjects [127].

https://investors.modernatx.com
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Table 3. Clinical trials of RNA vaccines in cancer care (https://clinicaltrials.gov).

ClinicalTrials.gov
ID Title Phase Condition Treatment(s)

NCT00626483

REGULATory T-Cell Inhibition with Basiliximab
(Simulect®) During Recovery from Therapeutic
Temozolomide-induced Lymphopenia During
Antitumor Immunotherapy Targeted Against

Cytomegalovirus in Patients with Newly Diagnosed
Glioblastoma Multiforme

Phase 1 Malignant Neoplasms Brain
Biological: RNA-loaded dendritic

cell vaccine
Drug: Basiliximab

NCT05660408 Study of RNA-lipid Particle (RNA-LP) Vaccines for
Recurrent Pulmonary Osteosarcoma (OSA)

Phase 1
Phase 2 Pulmonary Osteosarcoma Biological: RNA-LP vaccine

NCT00108264 Tumor RNA Transfected Dendritic Cell Vaccines Phase 1 Prostate Cancer Biological: Tumor RNA transfected
dendritic cells

NCT0348015

A Phase I/II Trial to Evaluate the Safety and
Immunogenicity of a Messenger RNA (mRNA)-Based,

Personalized Cancer Vaccine Against Neoantigens
Expressed by the Autologous Cancer

Phase 1
Phase 2

Melanoma
Colon Cancer

Gastrointestinal Cancer
Genitourinary Cancer
Hepatocellular Cancer

Biological: National Cancer Institute
(NCI)-4650, a messenger ribonucleic acid

(mRNA)-based, Personalized
Cancer Vaccine

NCT03418480 Therapeutic HPV Vaccine (BNT113) Trial in HPV16
Driven Carcinoma

Phase 1
Phase 2

Human Papilloma Virus Related Carcinoma
Head and Neck Neoplasm

Cervical Neoplasm
Penile Neoplasms Malignant
Unknown Primary Tumors

Drug: BNT113

NCT00004211

A Safety and Feasibility Study of Active
Immunotherapy in Patients with Metastatic Prostate
Carcinoma Using Autologous Dendritic Cells Pulsed
with RNA Encoding Prostate Specific Antigen, PSA

Phase 1
Phase 2 Prostate Cancer Biological: PSA RNA-pulsed dendritic

cell vaccine

https://clinicaltrials.gov
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Table 4. Clinical trials of peptide vaccines in cancer care (https://clinicaltrials.gov).

ClinicalTrials.gov
ID Title Phase Condition Treatment(s)

NCT04509167 Pilot Study of Personalized Neoantigen Peptide
Vaccines for the Treatment of Neoplasms Early Phase 1 Neoplasms Biological: Neoantigen Peptides

NCT05475106 Pilot Study of Personalized Neoantigen Peptide
Vaccines and Leukine for the Treatment of Neoplasms Early Phase 1 Neoplasms Biological: Neoantigen Peptides

NCT00433745 Wilm’s Tumor 1 (WT1) Peptide Vaccination for
Patients with High-Risk Hematological Malignancies Phase 2

Myelodysplastic Syndrome
Acute Myeloid Leukemia (AML)

Chronic Myeloid Leukemia (CML)
Drug: WT1 Peptide Vaccine

NCT05013216 Mutant KRAS -Targeted Long Peptide Vaccine for
Patients at High Risk of Developing Pancreatic Cancer Phase 1 High Risk Cancer

Pancreatic Cancer Drug: KRAS peptide vaccine

NCT05741242 Basket Trial of Neoantigen Synthetic Long Peptide
Vaccines in Patients with Advanced Malignancy

Phase 1 and
Phase 2

Cancer
Solid Tumor

Biological: Personalized Synthetic Long
Peptide Vaccine

NCT00938223

This is an Open-label, Phase II Study of a Vaccine
Comprising Melanoma Peptides, and a Tetanus Helper

Peptide, Administered in GM-CSF-in-adjuvant.
Patients Will be Randomized to Receive One of Two

Different Vaccine Regimens. Patients Will be Stratified
by Stage of Disease (IIB vs. III vs. IV).

Phase 2 Melanoma Biological: 4-peptide and 12-peptide
melanoma vaccines

https://clinicaltrials.gov
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4. Cancer Vaccines in Combination Therapy

Therapeutic cancer vaccines are a special type of therapy because they start a dynamic
process of triggering the host immune system, which can then be used by further therapies
that are given concurrently or afterwards. Both in the clinical context and in preclinical
models, the addition of immunotherapy to conventional cancer treatments has demon-
strated effectiveness [128]. The immunosuppressive tumor microenvironment had a role in
the cancer vaccines’ inability to mediate sustained regression of tumors in several of the
clinical investigations. According to preclinical and early clinical studies, monotherapy
is less effective than combining chemotherapy or checkpoint blockade with therapeutic
cancer vaccines [129–131]. Therapeutic cancer vaccines promote immune cells’ infiltration
into the tumor microenvironment (TME) and cytotoxic immune cell activation, whereas im-
mune checkpoint inhibitors (ICIs) stop and/or reverse the immune cells’ dysfunction [132].
Chemoradiation therapy (CRT) has been used often to treat patients with unresectable
esophageal squamous cell carcinoma (ESCC). Nevertheless, not all patients are chemora-
diotherapy responsive, and many experience relapses. As of now, cancer vaccines have
demonstrated excellent therapeutic outcomes and a tolerable safety profile for esophageal
cancer (EC). As a result, treating EC with chemoradiotherapy and cancer vaccines may be
successful [133] (Table 5).

Table 5. Preclinical and clinical outcomes of combination therapy.

Combination Therapy Outcomes References

Dendritic cells and radiotherapy loaded
with apoptotic heat-shock EC
cell antigens.

This study had 40 participants. Upregulation in the
expression of serum IFN-γ, IL-12, and IL-2, and the
percentage of IFN-γ+ CD8+ T cells.

[134]

CRT coupled with multiple-epitope
peptide vaccines.

Eleven patients with unresectable chemo-naïve ESCC
showed peptide-specific cytotoxic lymphocyte responses to
at least one of the five peptide antigens during vaccinations.
Eight peptide vaccines plus CRT resulted in 54.5% of
patients achieving CR and 45.5% experiencing programmed
death (PD).

[135]

Systemic chemotherapy combined with
DC for EC.

Five patients participated in this study. In primary tumors
injected with labeled DC, this study showed that the DC
accumulated but did not migrate to the lymph nodes.

[136]

Blockade of both the PD-1 and CTLA-4
checkpoints in addition to GVAX

In the CT26 murine model of colorectal cancer, resulted in
100% tumor rejection. [129]

GVAX vaccine with PD-1/CTLA-4 IFN-γ+ TNF-α+ CD8+ tumor-infiltrating lymphocytes and
CD8+/Treg ratios both significantly increased. [137]

Peptide inhibitors of Foxp3 with murine
tumor vaccine.

Foxp3 peptide inhibitors improved the anti-tumor
effectiveness of a mouse tumor vaccination in two
preclinical experiments.

[138]

Curcuminoids in combination
with chemotherapy

In patients with solid tumors, such as gastric, colorectal, and
breast cancer, this combination has shown greater efficacy. [139]

5. Challenges and Promises in Cancer Vaccine Development

The poor immunogenicity of tumor antigens and tumor immune evasion mechanisms
make the development of cancer vaccines challenging [140]. One of the major obstacles
to the development of a successful cancer vaccine is the targeting of tumor antigens that
may have low immunogenicity in the tumor environment or that could mutate to avoid the
immune response [141]. The use of messenger RNA (mRNA) in cancer immunotherapy is
growing in popularity because it can act as an effective vector for delivering therapeutic
antibodies on immunological targets. Compared to conventional vaccines, mRNA vaccines
have many benefits, including high efficacy, reduced toxicity, quick manufacture, and safe
administration. The broad implementation of this method has been shadowed by the
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inefficient and instable delivery of mRNA. The first technique used to increase stability of
mRNA is the modification of the 5′ cap. Second, immunological recognition of mRNA can
be hindered by post-translational modifications of the mRNA [142].

The development of peptide-based vaccines faces several difficulties, though. The
fact that the spatial configuration of the epitopes changes as the antigen attaches to cell
surface receptors limits the accuracy and sensitivity of the T cell epitope prediction algo-
rithms despite their widespread use [143,144]. False-positive and false-negative results
may happen as a result [145]. The failure to elicit the necessary immunogenicity is a
potential downside of DNA vaccines, and the primary causes here are insufficient DNA
transfection and immunostimulation. Due to the complexity of the individual’s cellular
and nuclear membranes, the DNA transfection capacity of these vaccinations produces
non-uniform effects. Through endocytosis or pinocytosis, the plasmids must pass through
the phospholipid-rich cell membrane. Furthermore, to avoid being degraded by nucle-
ases, endosomes, and lysosomes, plasmids are necessary. By optimizing plasmid delivery
through physical and chemical methods, these difficulties could be overcome [146]. Tumor
targeting bacteria are a perfect vehicle for delivering therapeutic cargo that is selectively
targeted at cancers of different origins because of their peculiar distinguishing traits, which
include tumor selectivity, targeting the hypoxic environment of tumors, and unique gene
packaging. However, despite the fact that modified bacteria have a great therapeutic poten-
tial to target tumors, a single anti-cancer agent might not be capable of treating a patient
on its own due to the significant molecular and histologic heterogeneity of cancers. The
small half-life of the bacterial protein peptide and the unsteady DNA present still another
significant hurdle in this field [147]. One of the main restrictions of bacterial-based cancer
therapy (BBCT) is that some kinds of chemotherapy might cause the immune system to
become so suppressed that it is unable to adequately respond to colonization of bacteria.
Additionally, live bacterial products can colonize in foreign bodies such as artificial heart
valves, joint replacements, and implanted medical devices, which could act as infection
reservoirs. Additionally, before cancer cells are penetrated, mutations in recombinant
plasmids carried by bacteria can change the fate of anti-tumor action. There are a number
of dangers that can result from this, such as therapy failure, infection, or death [148].

Combination adjuvant techniques are being developed and will be refined as a poten-
tial solution to overcome self-tolerance and tumor evasion mechanisms in order to trigger
a strong anti-tumor response in opposition to these difficulties [141].

6. Conclusions

Most of the vaccines for the different types of cancer are either under clinical trial or
still in the pre-clinical stage. In this review, we discussed the different types of vaccines
and the current status of different vaccines that are under clinical trials for various types
of malignancies. Different combination therapy approaches, along with potential cancer
vaccines and the importance of chemotherapy and radiation therapy in vaccine responsive-
ness, were also discussed in detail. We concisely explored different state-of-the-art types of
cancer vaccines, ranging from cell-based to mRNA-based cancer vaccines, in this review.
Additionally, we also discussed the roadblocks and different types of challenges in the area
of cancer vaccine development. Although significant progress has been made in the area of
cancer vaccines, identification of novel antigens and simultaneous targeting of multiple
tumor antigens may be the better strategy for vaccine development. With advancement
of immunoinformatic approaches and better understanding of tumors as well as the host
immune system, we can overcome key hurdles in cancer vaccine development.
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