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Abstract: Purpose of review: To review the data on the immunogenicity of COVID-19 vaccines,
administered by different strategies, in solid organ transplant recipients (SOTRs). Recent findings:
COVID-19 booster vaccines were given to SOTRs as a widespread practice in many transplant
centers, mostly as the third and/or fourth dose in an extended vaccine series, with a significantly
improved humoral response compared with the initial two-dose scheme. However, one-third of
SOTRs remained unresponsive, despite these boosters. Next steps: Vaccination with standard
dosing remains the most feasible strategy for attaining protection against COVID-19. Additional
booster doses and temporarily holding or reducing mycophenolate mofetil/mycophenolic acid
may provide immunogenicity to vaccines, according to recent studies demonstrating some efficacy
with these measures. Preexposure prophylaxis with monoclonal antibodies showed benefit in
immunocompromised patients but is no longer recommended by the National Institutes of Health
(NIH) due to diminished efficacy against Omicron and recent variants. Screening for the presence
and titers of SARS-CoV-2-specific antibodies in SOTRs is not recommended in most clinical settings.
T cell-based techniques are needed to evaluate vaccine efficacy and risk of infection. As SARS-CoV-
2 continues to evolve, new vaccines based on conservative protein component/complexes of the
COVID virus, in addition to its spike protein, are warranted to offer prolonged protection.

Keywords: COVID-19; SARS-CoV-2; vaccine; immunogenicity; organ transplant; kidney transplant

1. Introduction

COVID-19-related morbidity and mortality have declined dramatically since the onset
of the pandemic in 2019–2020 and the later Delta variant waves [1]. Many factors have
contributed to this, including increased population immunity from widespread vaccination
and infection by COVID, the invention of new medical treatments, and the dominance of
the Omicron variant and other recent variants, compared to early strains that caused more
severe disease [2–5]. While solid organ transplant recipients (SOTRs) have benefited from
these factors, they are at uniquely high risk for COVID-19-related morbidity and mortality,
due to immunosuppressive medications and comorbidities [2,6–9]. The immune responses
of SOTRs to commercially available vaccines are often suboptimal because of immunosup-
pressive therapy, leading to breakthrough infections and subsequent severe illness [10,11].
Most studies thus far have investigated the humoral response as the surrogate marker
of vaccine immunogenicity. Patients who received lung transplants due to cystic fibrosis
have been reported to have the lowest response, with one study showing that only 23.5%
or 52.9%, respectively, developed an IgG (Immunoglobulin G) or IgA (Immunoglobulin
A) response after the two mRNA BNT162b2 vaccine doses—the minimum requirement
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for current mRNA vaccines—compared to a greater than 80% response rate to either dose
in patients with cystic fibrosis without lung transplant [12]. In another study of SOTRs,
including heart, kidney, liver, and pancreas transplants, slightly more than 30% developed
a response after two mRNA vaccines [13]. More recently, one meta-analysis synthesized
44 studies with a total of 6158 SOTRs, the majority of whom received mRNA vaccines, and
found that the humoral response rate was 34.2% after the second dose, and up to 65.6%
after the third dose, suggesting one-third of SOTRs still had not developed a humoral
response with a three-dose vaccination scheme [14].

The cellular immune response (CIR), which rests on the presence of COVID-reactive
T cells, may be important for protection against severe disease, given its role in reducing
viral load by targeting infected host cells rather than directly recognizing and neutralizing
the virus [15,16]. The CIR can also exert protection in the absence of a detectable humoral
response [17]. Similar to the humoral response, most studies showed improved cellular
response with vaccine boosters, but it is noteworthy that significant heterogeneity exists in
the test results and at time points post-vaccination [18].

Despite the less robust response in SOTRs than the general population, evidence
has shown that vaccination still provides significant protection for SOTRs and reduced
mortality, in the context of evolving COVID variants [19–21]. Antibodies produced by
COVID-19 vaccination have demonstrated associations with the pneumonia severity and
mortality in renal transplant recipients during the Omicron wave; even with lower titers
than in the non-immunocompromised patient population, outcomes are better than in the
unvaccinated population and are the best in those who achieved an antibody concentration
of >100 AU/mL [22,23].

To deliver optimal care to SOTRs amid the constantly changing landscape of
COVID-19 variants, it is crucial to utilize strategies for enhancing vaccine immunogenicity
within this group. This review summarizes previous research, aiming to help clinicians
better utilize current vaccines and other approaches.

2. Immunosuppression and Vaccine Response in Solid Organ Transplant Recipients

In addition to vaccines per se, it is important to optimize the factors that are associated
with suboptimal immune responses in SOTRs. Physicians may be tempted to modify
the immunosuppression regimen or the dosing of immunosuppressants for the enhanced
immunogenicity of COVID-19 vaccines. Antimetabolites, calcineurin inhibitors (CNIs), and
corticosteroids are the mainstay of immunosuppression for most SOTRs. These medications
may have negative influences on the COVID-19 vaccine response, as illustrated in Figure 1.
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Figure 1. COVID-19(SARS-CoV-2) vaccine, generation of immunogenicity, and effects of immuno-
suppression on vaccine response. APC: antigen presenting cells, MHC: major histocompatibility 
complex, CNIs: calcineurin inhibitors, MMF: mycophenolate, MPA: mycophenolic acid, mTORs: 
mammalian target of rapamycin, TCR: T cell receptor. 

2.1. Antimetabolites 
Antimetabolites, especially mycophenolate mofetil (MMF) and mycophenolic acid 

(MPA), were consistently shown to negatively impact the response to the COVID-19 vac-
cines in SOTRs in early studies. One meta-analysis showed that antimetabolite use at the 
time of vaccination, mostly MMF, was associated with a lower response rate, with a 
pooled odds ratio (OR) of 0.21 [24]. MMF’s negative effect on vaccine response is not lim-
ited to SOTRs, as one study showed mycophenolate mofetil was the only independent risk 
factor associated with seroconversion failure among patients who were taking it for rheu-
matological diseases [25]. 

Considering the substantial evidence indicating that MMF can have a negative effect 
on vaccine responses and indicating the safety of withholding MMF during sepsis, there 
is a strong inclination to consider suspending the use of MMF in order to enhance vaccine 
effectiveness. Nonetheless, in a recent randomized study involving kidney transplant re-
cipients (KTRs) who had not seroconverted to their previous two or three mRNA vaccines, 
discontinuing MMF/MPA (MMF/MPA-) did not result in a higher response rate to mRNA 
booster vaccinations (third or fourth doses) when compared to those who continued to 
take MMF/MPA (MMF/MPA+), though MMF/MPA- group showed a subtle tendency to-
ward an increased seroconversion rate by 13% (80% in MMF/MPA- versus 67% in 
MMF/MPA+, p = 0.15) [26]. Additionally, the MMF/MPA- group showed a minor, though 
statistically insignificant, elevation in antibody titers compared to the MMF/MPA+ group. 
It is important to highlight that, in this study, the cessation of MMF or MPA occurred one 
week before and one week after the administration of the booster, and the number of KTRs 
included in this analysis was lower than the predefined size. No KTRs in the MMF/MPA- 
group developed acute rejection. 

On the other hand, non-randomized studies have shown that reducing or discontin-
uing antimetabolites in a tacrolimus-based regimen may enhance the effectiveness of 
COVID vaccines and is considered a safe approach. This is supported by minimal or neg-
ligible risks of rejection or the absence of potential markers for rejection (de novo produc-
tion of HLA antibodies or increased titers of pre-existing donor-specific HLA antibodies, 
or donor-derived cell-free DNA (dd-cfDNA)) [27, 28]. Notably, these studies did not have 
a control group, so the association between antimetabolite cessation and immunogenicity 
is hard to establish. Interestingly, a study added detailed insight into the impact of MPA 
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target of rapamycin, TCR: T cell receptor.
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2.1. Antimetabolites

Antimetabolites, especially mycophenolate mofetil (MMF) and mycophenolic acid
(MPA), were consistently shown to negatively impact the response to the COVID-19 vac-
cines in SOTRs in early studies. One meta-analysis showed that antimetabolite use at
the time of vaccination, mostly MMF, was associated with a lower response rate, with
a pooled odds ratio (OR) of 0.21 [24]. MMF’s negative effect on vaccine response is not
limited to SOTRs, as one study showed mycophenolate mofetil was the only independent
risk factor associated with seroconversion failure among patients who were taking it for
rheumatological diseases [25].

Considering the substantial evidence indicating that MMF can have a negative effect
on vaccine responses and indicating the safety of withholding MMF during sepsis, there is
a strong inclination to consider suspending the use of MMF in order to enhance vaccine
effectiveness. Nonetheless, in a recent randomized study involving kidney transplant
recipients (KTRs) who had not seroconverted to their previous two or three mRNA vaccines,
discontinuing MMF/MPA (MMF/MPA-) did not result in a higher response rate to mRNA
booster vaccinations (third or fourth doses) when compared to those who continued to
take MMF/MPA (MMF/MPA+), though MMF/MPA- group showed a subtle tendency
toward an increased seroconversion rate by 13% (80% in MMF/MPA- versus 67% in
MMF/MPA+, p = 0.15) [26]. Additionally, the MMF/MPA- group showed a minor, though
statistically insignificant, elevation in antibody titers compared to the MMF/MPA+ group.
It is important to highlight that, in this study, the cessation of MMF or MPA occurred one
week before and one week after the administration of the booster, and the number of KTRs
included in this analysis was lower than the predefined size. No KTRs in the MMF/MPA-
group developed acute rejection.

On the other hand, non-randomized studies have shown that reducing or discontinu-
ing antimetabolites in a tacrolimus-based regimen may enhance the effectiveness of COVID
vaccines and is considered a safe approach. This is supported by minimal or negligible risks
of rejection or the absence of potential markers for rejection (de novo production of HLA an-
tibodies or increased titers of pre-existing donor-specific HLA antibodies, or donor-derived
cell-free DNA (dd-cfDNA)) [27,28]. Notably, these studies did not have a control group, so
the association between antimetabolite cessation and immunogenicity is hard to establish.
Interestingly, a study added detailed insight into the impact of MPA on vaccine response.
It revealed a negative linear correlation between the MPA area under the curve (AUC) and
the likelihood of seroconversion after receiving two mRNA vaccines. Specifically, for KTRs
who were on dual therapy (MPA and prednisone), every 10 mg/h/L increase in the MPA
AUC was associated with an adjusted OR for seroconversion of 0.87. For KTRs on triple
therapy (CNI + MPA + prednisone) regimens, the adjusted OR for seroconversion was
0.89 [29]. It is worth mentioning that, as of the time of writing this manuscript, there is a US
trial still recruiting participants (NCT05060991, Impact of Immunosuppression Adjustment
on COVID-19 Vaccination Response in Kidney Transplant Recipients (ADIVKT)). This
trial is designed as a prospective, randomized, open-label study, aimed at assessing the
impact of reducing or discontinuing MMF/azathioprine on the efficacy of COVID vaccines
in KTRs.

In liver transplant recipients, one study found that holding MMF and/or everolimus
for two weeks during both the first and second dose of the mRNA-1273 vaccine safely
improved the humoral response rate to about 90%, compared to 60.9% in patients on triple
therapy with tacrolimus, everolimus, and MMF.

Data for the peri-vaccination suspension or reduction in MMF/MPA in heart and lung
transplant recipients are limited. In one preliminary report, heart transplant recipients
taking MMF amounts greater than 1000 mg per day had a lower response than those who
took less than 1000 mg per day or held MMF [30]. In a preliminary study of stable lung
transplant recipients who were over one year post-transplant, the held antimetabolites
(mostly MMF, 86% patients) group had a significantly higher anti-spike antibody titer than
those who continued with antimetabolites (mostly MMF, 67%) [31].
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2.2. Calcineurin Inhibitors

CNIs remain the mainstay of immunosuppression regimens for SOTRs. Mixed data
exist regarding the effect of tacrolimus on humoral response in SOTRs. In an early study,
non-responding liver transplant recipients had higher tacrolimus troughs than responders
(6.6 versus 5.4 ng/mL) [32]. Another liver transplant study showed that a high tacrolimus
trough (>6.8) was associated with lower antibody titers (42 vs. 309.7 U/L) after mRNA vac-
cines [33]. A recent study also showed tacrolimus is associated with a poor response in KTRs
(OR 0.23, for response in those taking tacrolimus) [34]. However, several meta-analyses
showed CNI-based regimens were either not associated or only marginally associated with
a low humoral response in SOTRs, compared with non CNI-based regimens [24,35–37]. A
prospective observational study in Japan also did not show that tacrolimus increased the
risk of humoral vaccination failure to the third dose of an mRNA vaccine in KTRs (OR 0.84,
CI 0.2–3.52) [38].

A few published studies examined the effect of CNIs on cellular response in SOTRs.
A study of liver and heart transplant recipients found no evidence indicating that CNIs
or other immunosuppressive medications were associated with a diminished cellular
response [39]. A study with a small number of KTRs similarly showed no association
between CNI and diminished cellular response [40]. However, a recent meta-analysis
showed tacrolimus (vs. a non-tacrolimus regimen) was associated with lower odds of
positive cellular immune response (pooled OR 0.5) in KTRs [18].

2.3. Mammalian Target of Rapamycin (mTOR) Inhibitors

Mammalian target of rapamycin (mTOR) inhibitors—such as sirolimus and everolimus—
were presumed to have less suppression of the vaccine response than CNIs and MPA. One
recent prospective study found that mTOR inhibitors (regimens being mTOR + CNI and
mTOR + MPA combined) may improve the humoral response in KTRs, with an OR of 7.78 of
achieving seroconversion shortly after the second vaccine dose and 7.95 after the third dose
(6.40 by multivariate analysis), compared with KTRs on a regimen not including an mTOR
inhibitor (CNI + MPA) [41]. However, the evidence level to support the positive effect of
mTORs on vaccine response in SOTRs was very weak, and the pooled OR for mTOR to favor
a positive humoral response was 1.46 in a meta-analysis [24].

2.4. Rituximab, Antithymocyte Globulin, and Belatacept

In this same meta-analysis, rituximab administration within 1 year of COVID vacci-
nation was associated with a negative humoral response (pooled OR 0.21), but it is worth
noting that the numbers of KTRs who received rituximab were small, usually less than
ten [24]. In a single study involving 43 patients who received rituximab for the purpose
of an ABO-incompatible kidney transplant, the OR for a positive humoral response was
0.33 [42]. However, in the revised report, encompassing 131 KTRs, the same Japanese
research group found no difference in the rate of humoral response following the second
and third doses of an mRNA vaccine, irrespective of whether the patients were on ritux-
imab [43]. Notably, the mean transplant vintage in this study was 5.8 years, and studies
with a low response mostly included KTRs who received rituximab within one year prior
to vaccines.

Similar detrimental effects on vaccine response were observed in patients who received
antithymocyte globulins within one year of vaccination, with a pooled OR of 0.32 [24].

Belatacept was shown to be associated with poor vaccine response in KTRs, compared
with other maintenance immunosuppression [44]. In a study of KTRs with belatacept,
five percent developed breakthrough infections after three mRNA vaccine doses, and the
third dose did not improve the humoral response [45]. Notably, in this study, belatacept
infusions were given on the same day as the administration of the vaccine; additionally, all
belatacept-treated patients took steroids, and 71% were on MPA as well.

A recent study of kidney transplant recipients receiving belatacept also confirmed the
strong negative effect of this medication on the response to the third dose, with an OR of
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0.01 for response for those on belatacept compared to those not on belatacept [34]. Another
French study showed that regimens including belatacept were associated with a lower rate
of humoral response to the third dose (9% with belatacept vs. 40% without belatacept), but
that there was no difference after the fourth dose (38% with belatacept vs. 35% without
belatacept) [46]. However, more recent studies showed belatacept demonstrated an OR
of 0.15 for a positive response after the third dose and of 0.03 after the fourth dose in
KTRs [47].

2.5. Time from Transplantation and Age at Transplantation

Recently transplanted SOTRs usually require high-intensity immunosuppression, a
known risk factor associated with weak responses to vaccinations, including the COVID-19
vaccine [48–50]. A German study of KTRs who were transplanted recently (with transplant
vintage median of 2 years) and on more intense immunosuppression (77.8% of patients
were on a triple therapy of tacrolimus, MMF, and prednisone) had a low seroconversion
rate of 34.48% (10/29) after the third mRNA vaccine [51]. Similarly, a cross-sectional study
showed that KTRs with a higher transplant vintage had better responses to vaccination
than those recently transplanted [52]. Furthermore, a French cohort of heart transplant
recipients showed superior responses when vaccinating patients with a long time since their
transplant (the average heart transplant age was 17.1 years), on less immunosuppression
(with only 46% patients on MMF), and with low CNI trough levels (the mean tacrolimus
trough was 5.8 ng/mL) [53].

In a study of pediatric and adolescent KTRs, the third dose of an mRNA vaccine
increased seroconversion from 56% after the second dose to 85%; in 16 patients who did
not seroconvert with the second dose, 12 (75%) successfully developed antibodies with
the third dose [54]. These data were impressive, in contrast to studies in adult KTRs [55].
However, there was no head-to-head comparison between pediatric and adult KTRs, so
whether younger SOTRs have better responses to the COVID vaccine than adults is yet to
be clarified.

3. Vaccine Boosters
3.1. Humoral Response to Vaccine Boosters in Solid Organ Transplant Recipients

While most studies published data on mRNA vaccines in SOTRs and evaluated
spike S1-specific antibody titers to evaluate vaccine responses, some studies used the
specific anti-receptor-binding domain (RBD) antibodies. In these studies, some additionally
integrated neutralization assays, to measure the ability of antibodies to counteract various
COVID-19 variants [14]. Though not as clinically translatable as outcomes such as infection,
hospital admissions, or death due to COVID-19, humoral responses have proven to be
good surrogate markers for the immunogenicity or efficacy of vaccines in studies published
so far [56].

Early studies of vaccine responsiveness in SOTRs demonstrated limited humoral
response to the first one or two doses of the COVID-19 vaccine in kidney, heart, and
lung transplant recipients [13,48,57,58]. Vaccine boosters, such as the third or fourth
mRNA vaccine doses, can significantly enhance the positivity and titers of COVID-specific
antibodies in both the non-immunocompromised population and SOTRs [14,26,59–62].
Now the CDC recommends the third or fourth mRNA vaccine dose for moderately and
severely immunocompromised patients, including SOTRs [63].

Data from KTRs are most abundant among all SOTRs. One study of KTRs showed
that a third dose of the BNT162b2 COVID-19 vaccine (tozinameran, Pfizer–BioNTech, New
York, NY, USA) increased the overall seropositivity response rate from 37% after the second
vaccine dose to 70%, and about half of those who failed to respond to the second dose
successfully developed antibodies after the third dose. However, only 27% achieved high
titers (defined in this study as 4160 AU/mL), compared to 93% in healthy controls [64].
Another study investigated the third or fourth dose of the mRNA vaccine mRNA-1273
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(Moderna, CA, USA) in 36 KTRs, showing a poor seroconversion rate of only 34%, with no
KTRs developing neutralizing antibodies to the Omicron variant BA.1 [51].

In a randomized clinical trial, investigators assessed the effectiveness of three distinct
booster vaccine strategies in KTRs who did not respond to their initial two mRNA vaccine
doses (mRNA-1273 Moderna, or Pfizer, or a combination of both): either a single dose of
mRNA-1273, two doses of mRNA-1273, or a single dose of Ad26.COV2.S (Janssen Biotech
Inc, Leiden, The Netherlands). This study demonstrated that all three strategies yielded
an anti-spike antibody response rate of approximately 68%, with no significant difference
observed among these strategies [26]. Also, the concentrations of anti-spike antibodies
were comparable across all three approaches and exhibited a significant increase from
their baseline levels. In the exploratory analysis, this study found a positive correlation of
concentrations of antibodies with neutralizing activity against ancestral, Delta, or Omicron
variants, but Omicron variants required higher levels of antibodies for neutralization than
the original and Delta strain. On the contrary, an early non-randomized study showed
that a heterologous vaccine as the third dose may improve the response rate in KTRs
who were previously vaccinated with two mRNA vaccines (42% with the Ad26.COV2.S
vaccine, Janssen, Leiden, The Netherlands vs. 35% with an mRNA vaccine, Pfizer-BioNTech,
New York, NY, USA) [65].

One study of liver transplant recipients showed that the fourth dose of the BNT162b2mRNA
vaccine improved the immune response to the Omicron variant compared to the third dose, as
demonstrated by increased RBD IgG and Omicron BA.1 and BA.2 neutralizing antibody levels
after the fourth dose. Breakthrough infections occurred in 30.4% of patients following the third
dose, in contrast to 18% in those who received the fourth dose, though the difference was not
statistically significant [66].

Heart transplant (HTRs) and lung transplant (LTRs) recipients comprise less than
10% of all SOTRs, but their risk of morbidity and mortality from COVID-19 is higher than
among KTRs [67]. One study showed antibody positivity increased from 68% to 90% in
HTRs, and 43% to 63% in LTRs, one month after the third dose of an mRNA vaccine, but
only 59% of HTRs and 25% of LTRs had developed enough antibodies to neutralize the
omicron variant [67]. More recent studies with HTRs showed a seroconversion rate increase
from 30% to 34% after two doses of a vaccine (BNT162b2, mRNA1273, or AZD 1222), from
57% to 63% after the third vaccine dose [68–70], and up to 80.7% with the fourth dose [71].

Lastly, the new bivalent mRNA-1273.214 vaccine (Moderna) has shown superior
neutralizing antibody responses against Omicron variants, compared to the widely used
prototype mRNA-1273 in phase II and III studies [72]. This updated vaccine may become
more and more prevalent and SOTRs are likely to receive it as a booster, but data are limited
at this point for SOTRs. A study using the bivalent Omicron BA.4/BA.5 vaccine as the
fifth dose in HTRs significantly increased the vaccine’s neutralization ability against the
wild type (neutralization titer log2: 86 pre-fifth vaccine vs. 466 post-fifth vaccine), and
Omicron BA.1 (14 pre-fifth vaccine vs. 109 post-fifth vaccine), BA.2 (66 pre-fifth vaccine
vs. 437 post-fifth vaccine), BA.4 (62 pre-fifth vaccine vs. 319 post-fifth vaccine), and BA.5
(23 pre-fifth vaccine vs. 160 post-fifth vaccine) variants [73]. Despite these data supporting
the use of further boosters in non-responders, the yield after the fourth dose needs to
be carefully examined. One study reported the response rate longitudinally in KTRs,
showing that cumulative humoral response rates in KTRs increased to 19.1% after the
second vaccination, 42.0% after the third dose, 74.2% after the fourth, and 88.7% after the
fifth dose [47]. Another study showed that the fourth dose only reduced the non-response
rate from 24.1% to 18.8%, after the third dose [74].

3.2. Cellular Response to the COVID Vaccine in Solid Organ Transplant Recipients

The majority of studies on SOTRs have evaluated the humoral response to COVID vac-
cine, but only a small proportion evaluated the CIR. In addition, significant inconsistencies
exist in testing timepoints after vaccination and in testing methods [39,75,76]. Interferon-
gamma releasing assays (IGRAs) or interferon-gamma ELISPOT assays have been used
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most commonly, though some studies have used intracellular cytokine and/or surface
marker staining and detection by flow cytometry [26,77]. Understandably, assessing the
CIR poses a greater challenge due to the increased complexity and higher testing expenses
compared to antibody tests.

Remarkably, some studies showed that SOTRs have developed cellular immunity and
clinical protection even in the absence of humoral responses [78]. This observation suggests
that cellular immunity might significantly contribute to protection against severe disease by
exerting a cytotoxic effect, thereby reducing the viral load in the host [15,79–81]. Another
benefit of cellular immunity lies in its ability to potentially counteract mutated viruses
through cross-reactivity, giving host prolonged protection against future viral variants.
Studies already prove that CIRs, induced by mRNA and adenoviral vaccines, can recognize
variants of concern [82]. In contrast, COVID-19 variants often have the ability to evade the
humoral immunity generated by vaccines designed for the original strain [83].

Vaccine boosters may improve the CIR in SOTRs as well. In the earlier mentioned
randomized trial involving KTRs, after excluding KTRs with a positive ELISPOT result at
baseline (after two mRNA vaccines), 42% exhibited de novo positive ELISPOT assay results
28 days after one dose of mRNA-1273, 50% with two doses of mRNA-1273, and 0% with
the Ad26.COV2-S vaccine [26]. An observational study of KTRs showed an increased T
cell response at 15 weeks after the last vaccine dose (second or third) with a heterologous
vector-based vaccine regimen [73]. One recent meta-analysis combining 18 studies showed
that the pooled cellular response rate after the second dose of an mRNA vaccine in SOTRs
was 48.3%, and 57.6% after the third dose [84]. However, a recent large cohort study showed
that a CIR only occurred in 20.4% of infection-naïve KTRs after the fourth dose [74].

In two studies including liver transplant recipients and one of HTRs, the rates of cellu-
lar response were increased by repeated vaccines [39,68,75]. However, a liver transplant
study showed that only 37% of liver transplant recipients had positive IGRA results 29
days after the second vaccine with mRNA vaccine or AZD1222 [76].

3.3. Safety of COVID Vaccine Booster

Most clinical studies of the booster vaccine in SOTRs showed a good safety profile,
with most reported side effects being injection site pain, irritation, or other minor side
effects. The risk of rejection associated with vaccination is always a concern in SOTRs. Most
reports on rejection after the COVID vaccine or COVID infection were case studies, so the
actual prevalence of rejection was impossible to evaluate. One meta-analysis evaluated
the rejections in SOTRs after the COVID-19 vaccine or COVID-19 infection, showing that
56 organs were rejected post COVID-19 vaccination, and 40 solid organs were rejected
after COVID-19 infection. Among the rejections that occurred after vaccination, there were
eleven liver cases, six kidney cases, one heart case, and one pancreas case [85]. The risk
of rejection associated with COVID-19 vaccination is likely low in relation to the total
number of vaccination doses administered and should not discourage physicians from
vaccinating SOTRs.

The COVID-19 vaccine may induce de novo DSAs (donor specific antibodies), but
this has been limited to case reports and not widely demonstrated. In one cohort of HTRs,
with a relatively high seroconversion rate of 94% with three or four doses of BNT162b2
(Pfizer/BioNTech), zero patients developed de novo DSAs after vaccinations [53,86]. In
only a few case reports, the COVID-19 vaccine may have induced de novo donor-specific
HLA antibodies with the first dose [87].

3.4. Role of Vaccine Types

mRNA vaccines have been the most-studied vaccine type in the SOTR population.
However, most studies have not compared the efficacy of mRNA vaccines in SOTRs. In one
head-to-head study of mRNA COVID-19 vaccines, BNT162b2 seemed to be less effective
than mRNA1273 (36% versus 47% response rate, respectively) in SOTRs after the second
vaccination [88].
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Compared with mRNA vaccines, data regarding other types of COVID-19 vaccines
are limited and inconsistent, and there are no direct comparisons published between
mRNA vaccines and other vaccine types in SOTRs. One study found that ChAdOx1
(AZD1222, Oxford-AstraZeneca, Oxford, UK), an adenovirus vector vaccine, induced anti-
RBD antibodies in only 2.8% and 5.7% of patients after one and two doses, respectively [89].
A study in Thailand showed that KTRs who received two doses of this vaccine had a
response rate of 33.33% [90]. A Mexican study of liver transplant recipients showed an
antibody positivity of 89.2% with BNT162b2 (Pfizer-BioNTech), 60% with ChAdOx1 nCOV-
19 (Oxford-AstraZeneca), 76.9% with CoronaVac (Sinovac, Life Sciences, Beijing, China),
55.6% Ad5-nCov (Cansino, Biologics, Tianjin, China), and 68.2% Gam-COVID-Vac (Sputnik
V, Gamaleya National Centre of Epidemiology and Microbiology, Russia), but did not
specify the dosing of each vaccine [91]. Another study of HTRs showed an antibody
response in 37.5% of patients after two doses of ChAdOx1 and 56% after the third dose
with BNT162b2 (Pfizer-BNT) [92].

One study, using the same inactivated whole virion vaccine (BIBP Sinopharm, Beijing,
China or CoronaVac, Sinovac, Beijing, China) as the third dose, showed an improved
response rate from 5% post-second dose to 43.6% in KTRs. Additionally, 25.6% and
10.3% of patients had developed anti-RBD IgG against the delta and omicron variants,
respectively [93]. In a study of KTRs who already had a high seroconversion rate of 92% due
to COVID-19 infection prior to vaccination, the inactivated whole virion vaccine CoronaVac
(Sinovac, Beijing, China) induced an increase in antibody titers after the first dose, but no
further increase with the second dose [94]. One retrospective study examined the efficacy of
the inactivated whole virion BIBP vaccine in kidney and liver transplantation and reported
a mortality of 0.7%, due to infection caused by delta variant, but this was not a controlled
study, so the benefits of the vaccine cannot be evaluated [95].

4. Comorbidities Associated with Unfavorable Humoral Response

Besides vaccine and immunosuppression, other patient factors and/or comorbidities
have been shown to be associated with a reduced response to the COVID vaccine. For
example, in liver transplant recipients, a deceased donor liver transplant, leukopenia,
lymphopenia, older age, and chronic kidney disease are associated with vaccine non-
responsiveness [33,36,50].

Iron deficiency can cause impaired B cell proliferation and was shown to correlate
with low antibody production following the measles vaccine in the general population,
leading to the speculation that iron repletion in iron deficient patients may improve the
vaccine response [96]. However, one study showed that intravenous iron repletion did
not improve the humoral or cellular response to the third COVID vaccine in KTRs, even
though it improved iron stores [97]. Diabetes was shown to be an independent risk factor
for a suboptimal humoral response to the influenza vaccine, as well as to the COVID-19
vaccine in liver transplant recipients [98–100].

5. Screening of Vulnerable Patients

A significant amount of SOTRs remain non-responsive to COVID-19 vaccines with
boosters [11,26]. Even among responders, antibody titers tend to be low and may be subject
to immunity wane and a loss of protection [11,101]. Most transplant centers in the US
have access to serological testing for anti-spike protein antibody or anti-RBD antibodies,
and Emergency Use Authorization (EUA) guidelines do not explicitly prohibit the use of
antibody tests in vaccinated individuals. In certain scenarios, it is appealing to monitor
SOTRs for no or low response based on antibody response and titers. Indeed, a study
of health care workers in 2021 showed that a total antibody concentration, expressed by
binding antibody units (BAU), higher than 1700 BAU/mL provided full protection, whereas
a total between 141 and 1700 BAU/mL offered 89.3% protection [102]. In a study of KTRs
in the Omicron era, however, an antibody titer higher than 1689 BAU/mL did not lower
the risk of hospitalization due to COVID infection, though it did lower the risk for infection
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(HR 0.41) [103]. The previously mentioned randomized trial showed that the neutralization
of the Omicron variant required much higher S1-specific titers [26]. Given that more studies
are needed to investigate the correlation of COVID antibodies with protection against
infection and severe disease, administrations and societies such as the Infectious Diseases
Society of America (IDSA), the US Center for Disease Control and Prevention, and the US
Food and Drug Administration actively advise against utilizing COVID-specific antibody
tests for screening immunity or making decisions regarding vaccination [104–106].

One study recommended monitoring for CIRs in immunosuppressed patients [107].
However, several technical difficulties are expected before CIR monitoring can be applied
to determine protective immunity. First and foremost, the CIR exerts its effects via cytotoxic
T lymphocyte recognition and the attack of virus-infected cells and facilitation of humoral
immunity. Consequently, the contribution and correlation of the CIR to clinical protection
are hard to establish [82]. Second, CIRs are highly heterogeneous in specificity and quantity
among vaccine recipients, and the effects of immunosuppression can further complicate the
SOTRs’ CIR to vaccines. Lastly, the complexity and cost of the measurement of the T cell
response precludes a routine clinical implementation. As of now, there are no high-quality
trials accessible to ascertain the relationship between CIR and clinical protection.

6. Pre-Exposure Prophylaxis

Monoclonal antibodies have been developed for pre- and post-exposure prophylaxis,
as well as for the treatment of COVID. Most published studies utilized tixagevimab–
cilgavimab, an extended half-life monoclonal antibody combination derived from cells
obtained from a patient infected with a COVID strain [108]. Tixagevimab–cilgavimab can at-
tach to numerous epitopes within the receptor-binding domain of the COVID spike protein,
effectively neutralizing the virus [109]. The FDA approved its use in high-risk populations
via EUA [110]. As a prophylactic measure, data supporting the use of pre-exposure pro-
phylaxis (PrEP) are less robust than for vaccines, with only one randomized controlled trial
available thus far [111]. This study, PROVENT, recruited a total of 5973 participants, with
the last injection administered on 29 March 2021, and showed a relative risk (RR) reduction
of 76.7% for the first symptomatic COVID infection, compared with the administration
of a placebo after a median of 83 days from tixagevimab–cilgavimab (150 mg/150 mg)
administration. No COVID-related deaths occurred in the treatment group, but the placebo
group experienced two deaths due to COVID [111]. This dosage recommendation was
originally established when tixagevimab–cilgavimab received its initial approval, primarily
targeting the ancestral strain of COVID. Notably, on February 24, 2022, the FDA updated
its suggestion to increase the dose from 150 mg of tixagevimab and 150 mg of cilgavimab to
300 mg of each. These adjustments were made due to the reduced neutralizing effectiveness
of the medication against the emerging Omicron variants (BA.1–BA.5) [112].

Data regarding the safety and efficacy of tixagevimab and cilgavimab in SOTRs are
scarce. One study demonstrated that tixagevimab–cilgavimab PrEP was associated with a
lower breakthrough infection rate in SOTRs who received at least one dose of a COVID
vaccine in the early Omicron wave than in the control group (5% in treatment vs. 14%
in control group) [113]. Another study used self-reported outcomes by SOTRs who re-
ceived three or more COVID vaccines and showed that tixagevimab–cilgavimab PrEP had
good tolerability and a good safety profile, with a breakthrough rate of 8.9% in 3 months
of follow-up, mostly within the time period of BA.2 and BA.4/5 sublineage predomi-
nance [112]. This study did not have a control group, but patients who received a lower dose
(150 mg/150 mg) appeared to have more breakthrough infections than those who received
a higher dose (300 mg/300 mg) (20/189 vs. 16/203, respectively) [112]. A real-life study of
KTRs during the Omicron wave with BA.1 and BA.2 dominance showed that 12.3% of KTRs
who received 150 mg/150 mg tixagevimab–cilgavimab developed symptomatic COVID.
This is in comparison to 43.3% of KTRs who did not receive tixagevimab–cilgavimab,
indicating that a higher dosage may be necessary [114]. Another KTR study found that
tixagevimab–cilgavimab, at a 300 mg/300 mg dose, in individuals with low antibody
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levels (less than 264 BAU/mL after receiving three mRNA vaccines), offered comparable
protection against symptomatic Omicron infection, hospitalization, or ICU admission, as
well as mortality, when compared to the level of protection achieved in individuals with
“protective antibody levels” (greater than 264 BAU/mL) induced by three mRNA vaccine
doses [115]. In a study involving various immunocompromised patients, it was found that
individuals receiving tixagevimab–cilgavimab at a 300 mg/300 mg dose had a 92% reduced
risk of hospitalization or mortality, compared to those not on PrEP. However, the study
did not provide information regarding the number of transplant patients included in the
analysis [116].

Conversely, two recent studies with LTRs during the Omicron wave demonstrated
that tixagevimab–cilgavimab (with most patients receiving a 300 mg/300 mg dose) did not
significantly alter the rates of hospitalization, severe disease, or mortality (ranging from 1%
to 11.8%) when compared to a placebo, even though tixagevimab–cilgavimab did reduce
the incidence of symptomatic COVID infection in both studies [117,118]. Of note, 70–89%
of these LTRs were fully vaccinated with at least two doses in these studies.

Monoclonal antibodies as a measure for COVID PrEP face many challenges. First,
the prohibitive cost, limited availability of the medication, and infusion facilities restrict
their widespread and prompt administration. Second, the safety profile of monoclonal
antibodies is not established as well as vaccines or small molecule antivirals such as nir-
matrelvir. However, the most difficult challenge may be the decreasing efficacy of PrEP
to combat ever-evolving variants. In vitro studies have shown the reduced neutralization
ability of tixagevimab–cilgavimab to Omicron BA.1 and BA.2, and even more reduced
neutralization to recent variants such as BQ 1.1 and XBB 1.5 [119]. Another in vitro study
showed that, while tixagevimab–cilgavimab continued to inhibit BA.2.12.1, BA.4, and BA.5,
the titers needed to achieve an equivalent level of inhibition (50% neutralization) for BA.5
were approximately 30.7 times higher than those required for the ancestral strain [120].
Nevertheless, the previously mentioned clinical data continued to demonstrate the effec-
tiveness of tixagevimab–cilgavimab during the Omicron wave [112–115]. Efficient and
accurate tests that can predict the in vivo efficacy of PrEP are urgently needed in the
setting of ever-evolving variants. The most recent revisions in the FDA Fact Sheet for
tixagevimab–cilgavimab indicate that variants bearing spike substitutions like R346T or
K444T, in conjunction with F486S or F586V, exhibit resistance to neutralization. These
substitutions are found in variants such as BA.5.26, BF.7, BF.11, BJ.1, BN.1, and XBB [121].

The current literature review has shown conflicting data regarding the efficacy of
PrEP in SOTRs. Given the diminishing efficacy of available PrEP in the context of emerg-
ing variants, mostly subvariants of Omicron, the NIH recommended against the use of
tixagevimab–cilgavimab as PrEP for COVID, and the FDA no longer authorizes its use for
this purpose [122].

Modified monoclonal antibody medications are currently being assessed in the SU-
PERNOVA trial (NCT0564810), with active patient enrollment at the time of writing this
review. Pharmaceutical companies are also working on production platforms that can
promptly modify the target antigen, allowing the medication to keep up with the evolution
of variants.

7. Immunization of Close Contacts and Patients on Transplant Wait Lists

Patients with chronic liver disease or end-stage kidney disease on hemodialysis or
peritoneal dialysis showed impaired immune responses compared to healthy controls [123],
but invariably had better response rates than SOTRs, leading many transplant centers to
mandate vaccination for their patients on the waiting list [124–128]. Whereas vaccination
prior to being exposed to intense immunosuppression can theoretically maximize the pro-
tection offered by vaccines, a mandate to vaccinate while on the wait list entails complicated
ethical considerations and is, thus, a subject of in-depth discussion far beyond the scope of
this review [129,130].
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COVID transmission in the household setting is an important issue for SOTRs given the
large number of household cases and the higher secondary attack risk by the Omicron variant
compared to the Delta variant [131]. Consequently, COVID-19 vaccination of patients’ house-
hold members and health care staff involved in patient care, namely ring vaccination, might
be desirable, as healthy people around transplant recipients usually have good vaccination
responses and may help to build up barriers to prevent transmission [132,133].

8. Limitations of this Review and Next Steps

In general, the evidence level of the literature on vaccination in SOTRs in this review
is low, due to the non-randomized and observational designs. This is due to the technical
challenge that arises from the much lower number of SOTRs compared with the healthy
population. While only a limited number of studies were randomized, it is important to
note that the sample size of study subjects might be too underpowered to detect differences
in vaccine immunogenicity caused by various interventions, such as additional booster
doses or adjustments in immunosuppression.

As we enter the fourth year since the COVID-19 outbreak in late 2019, the virus has
undergone substantial mutations. These mutations have led to variants that are either
not susceptible or only minimally susceptible to antibodies produced by the vaccine de-
signed for the original strain, and monoclonal antibody PrEP. This may compromise the
validity of data previously reported. Innovative vaccine technologies, particularly those
utilizing peptides or epitopes designed to stimulate T cell responses, have the potential
to protect patients from new variants. This is due to the T cell response’s longevity and
its broader reactivity to the relatively conservative epitopes/protein complexes of various
variants [134].

Most studies assessing COVID vaccine responses in SOTRs have disparate protocols,
so heterogeneity is obvious in patient demographics and the evaluation process. Delayed
positivity may partly explain the variation in vaccine responses in SOTRs due to different
testing times post-vaccination, as data had shown that seroconversion in SOTRs occurred
as late as six months after the administration of the COVID-19 vaccine [135,136]. It would
be desirable for future studies to use uniform time points to test SOTRs for responses.
Moreover, in future trials, real-world endpoints, like the incidence of severe disease and
hospitalizations, may prove to be more practical measures than antibody titers for assessing
vaccine immunogenicity.

It is reasonable to contemplate temporarily halting the use of antimetabolites as
a measure to boost the vaccine response. Nevertheless, the antimetabolite suspension
protocol still requires optimization, as a brief suspension may not be adequate for achieving
the desired immune response. Conversely, an extended suspension may elevate the risk
of rejection and potentially harm long-term graft function and outcomes. Thus, peri-
vaccination suspension of MMF/MPA should not be practiced as a routine measure until
more data are available.

The anti-spike antibody test should not be used routinely in clinical settings to confirm
protection. Nevertheless, it could be a practical approach for identifying vaccine non-
responders among SOTRs and implementing a multi-modal preventive strategy, which
may include updated PrEP or enhanced patient protection measures.

Monitoring individuals at elevated risk, such as those who have recently undergone
transplants, to detect refractory non-responsiveness to vaccines could enable the implemen-
tation of preventive measures, adjustments to the vaccine scheme, and modifications to
immunosuppressive regimens. CIR monitoring may hold more clinical relevance due to
its broader reactivity than humoral response and longevity of memory T cells, making it a
more promising correlate of protection against future variants. However, the methodology
to monitor CIR still needs standardization and improvement before it can be widely used
in clinical practice.
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9. Conclusions

Strategies to improve immunogenicity are highly warranted in SOTRs. Holding or
reducing MMF or MPA for a short period of time peri-vaccination did not improve mRNA
COVID vaccine responsiveness in KTRs in a randomized controlled trial, though less
robust data showed safety and efficacy in all types of SOTRs. The American Society of
Transplantation, American Society of Transplant Surgeons, and International Society of
Heart and Lung Transplant issued a joint statement in August 2021 that indicated there
is no reliable guide to modify a immunosuppression regimen to prepare for a vaccine
response [136].

There is a need for novel vaccine technology that can offer extensive protection re-
sistant to frequent viral mutations. The NIH and FDA currently recommend against the
use of tixagevimab–cilgavimab as COVID PrEP, given its diminished efficacy against new
variants. Currently, the most efficient method for protecting SOTRs against COVID-19 is
to enhance the immunogenicity of existing vaccines with standard booster doses (three or
four doses). We anticipate that the ongoing randomized trial will provide additional data
to enhance our understanding of the safety and efficacy of modifying immunosuppression
to improve vaccine response.
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