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Abstract: Inducing humoral and cytotoxic mucosal immunity at the sites of pathogen entry has the
potential to prevent the infection from getting established. This is different from systemic vaccination,
which protects against the development of systemic symptoms. The field of mucosal vaccination
has seen fewer technological advances compared to nucleic acid and subunit vaccine advances for
injectable vaccine platforms. The advent of the next-generation adenoviral vectors has given a boost
to mucosal vaccine research. Basic research into the mechanisms regulating innate and adaptive
mucosal immunity and the discovery of effective and safe mucosal vaccine adjuvants will continue
to improve mucosal vaccine design. The results from clinical trials of inhaled COVID-19 vaccines
demonstrate their ability to induce the proliferation of cytotoxic T cells and the production of secreted
IgA and IgG antibodies locally, unlike intramuscular vaccinations. However, these mucosal vaccines
induce systemic immune responses at par with systemic vaccinations. This review summarizes the
function of the respiratory mucosa-associated lymphoid tissue and the advantages that the adenoviral
vectors provide as inhaled vaccine platforms.

Keywords: mucosal immunity; inhaled vaccines; respiratory infections; COVID-19; influenza; SARS-
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1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a
reminder that the emergence of novel mucosal pathogens, with no or suboptimal vac-
cines against them, can cause an unacceptably high strain on global health status and
infrastructure. In the past decade, the global scientific community and the pharmaceutical
industry have focused on vaccine development for respiratory pathogens [1]. However,
most of the recent advances have been in injected vaccines, whereas implementation of
mucosal vaccines has lagged. There are only nine FDA-approved mucosal vaccines for
human use, eight of which are given orally, and only one is administered intranasally
(Flumist—MedImmune/Sanofi Pasteur) [2]. Although these mucosal vaccines are effec-
tive, they rely on the use of attenuated or inactivated pathogens and have not yet seen the
practical benefits from new vaccine technologies such as mRNA, subunits, or nanoparticles
like injectable vaccines have. Convidecia-Air (Ad5-nCoV), an orally inhaled vaccine, and
iNCOVACC (BBV154), given by intranasal drops, have both incorporated the benefit of ade-
noviral vector technology and are currently approved in China and India, respectively [3,4].

The interest in mucosal immunization is revitalized due to its numerous advantages
over injectable vaccines [5], which include (1) secretory antibody (IgA) production and
(2) the presence of tissue-resident effector and memory T cells at the mucosa [6,7]. (3) Since
the mucosa is the entry point for >90% of pathogens—from respiratory viruses to sexually
transmitted and enteric diseases—mucosal immunity is the first line of defense against
the establishment of initial infection [8]. (4) Since the mucosa also sheds these pathogens,
a strong mucosal immunity would prevent transmission in case the infection gets estab-
lished. Infected individuals vaccinated with injectable vaccines have shown continued
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transmission of SARS-CoV-2 [9,10]. (5) Induction of mucosal immunity at one site protects
other mucosal sites and produces a robust systemic immunity. (6) Oral drop, intranasal
drop/inhaled, or orally inhaled mucosal vaccines also provide practical benefits such as
needle-free easy administration and better accessibility for underdeveloped regions that
suffer from poor logistics and lack of ultra-low cold chain. These advantages of mucosal
vaccines have been highlighted by recent preclinical and clinical studies on SARS-CoV-2
mucosal vaccines [11–15].

Lower respiratory tract infections (LRI) are a major cause of global mortality. (WHO 2020)
A 2019 global burden of disease study revealed that LRIs were responsible for approxi-
mately 489 million infections and 2.5 million deaths per annum across 204 countries [16].
While Streptococcus pneumoniae, respiratory syncytial virus (RSV), Hemophilus influenzae B,
and influenza virus are still among the top causes of LRI particularly in the young (<5 years
old) and older people, the COVID-19 pandemic is responsible for a cumulative 766 million
cases and 6.9 million deaths worldwide. (WHO COVID Dashboard)

Arexvy from Glaxo Smith Kline is currently the only approved vaccine against RSV
for elder patients (≥60 years old), (Arexvy-FDA approval) with Abrysvo from Pfizer re-
ceiving the approval for the protection of babies through maternal vaccination in the third
trimester (Abrysvo—approval). There are licensed injectable vaccines targeting respiratory
pathogens like S. pneumoniae, Mycobacterium tuberculosis (MTB), Bordetella pertussis, and
influenza. However, current trends in vaccine development offer promise in enhancing sub-
optimal protection at the site of infection using mucosal vaccines. Flumist is an intranasal
influenza vaccine approved by the FDA in persons 2–49 years of age [17], intranasal admin-
istration of Bacillus Calmette–Guérin (BCG) shows promising results in the prevention of
MTB infection [18], and BPZE1, an intranasal live attenuated pertussis vaccine, consistently
induced a broad pertussis-specific mucosal secretory IgA responses, whereas the conven-
tional injectable Tdap did not [19,20]. The XBB variants of SARS-CoV-2 have considerably
reduced the efficacy of the array of the currently implemented COVID-19 vaccines, includ-
ing bivalent Wuhan1/BA4-5 vaccines [21]. Mucosal delivery could avoid these vaccination
issues and enhance convenience and patient compliance [5]. However, so far only China
(CanSino—Convidecia Air) and India (Bharat Biotech—iNCOVACC) have approved mu-
cosal vaccines against SARS-CoV-2. The development of combination mucosal vaccines
targeting conserved antigens from multiple pathogens like SARS-CoV-2, seasonal influenza
viruses, and RSV, although challenging, may be a viable annual/semiannual option for the
prevention of future pandemics [22].

2. The Mucosa-Associated Lymphoid Tissue

Mucosal immunity arises from the highly organized secondary lymphoid tissues called
mucosa-associated lymphoid tissues (MALTs), where antigen-specific immune responses
are initiated. In certain mucosal tissues, the immune components lack specific structures
and exist as a diffused network of lymphoid and mucous membrane-associated cells along
with cytokines, chemokines, and their receptors under the lamina propria, which are
induced by infection and produce secretory IgA antibodies (Figure 1). These are called
tertiary or ectopic lymphoid tissues. MALTs are further divided according to the mucosal
tissues they are situated in, such as the gut-associated lymphoid tissues (GALT), the
nasopharynx-associated lymphoid tissue (NALT), the bronchus-associated lymphoid tissue
(BALT), the conjunctiva-associated lymphoid tissue (CALT), and the vaginal-associated
lymphoid tissue (VALT) (Figure 1). Each MALT is organized like a lymph node with
B-cell-rich follicles and T-cell-rich interfollicular areas with antigen-presenting dendritic
cells (DC) and antigen-sampling microfold (M) cells in the covering epithelium. High
endothelial venules (HEVs) provide entry and egress to lymphocytes that recirculate in
the MALT or migrate to other lymphoid tissues, enhancing systemic immunity [23]. In
addition, these cells function in synergy with innate immune cells like NK cells, innate
lymphoid cells (ILCs), mucosal-associated invariant T (MAIT) cells, and γδ-T cells and anti-
microbial molecules like defensins, cathelicidin, lysozyme, mucin, and surfactants. Even
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within mammals, interspecies differences exist in the structure and regulation of MALT. For
instance, unlike rats, both humans and mice do not have an anatomically distinct NALT
and BALT. They instead have oropharyngeal and bronchoalveolar lymphoid tissues that
are induced by pulmonary infections (Figure 1) [24].
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Figure 1. Mucosa-associated lymphoid tissues. The immune system associated with various mu-
cosal surfaces constantly surveils these points of entry for pathogens. Humans do not have a defined
bronchi-associated lymphoid tissue (BALT), but rather the BALT is induced upon infection. The
upper and lower respiratory tract mucosa includes undifferentiated basal cells, ciliated epithelial,
pulmonary neuroendocrine (PNEC), and secretory goblet cells. The mucus secreted by the goblet
cells provides a barrier to debris, allergens, and potential pathogens but also to mucosal vaccines.
Created with BioRender.com.

3. Immune Surveillance at Mucosal Surfaces

The epithelium over BALT is permeable to the immune crosstalk between the lumen
and the lymphoid tissue. The mucosal cells express diverse pattern recognition receptors
and allow the use of multiple antigen sampling strategies to detect the infection [25]. These
epithelial cells also express antimicrobial effector molecules and help in the transcytosis
of secretory IgA antibodies against the infective agent. In tissues such as airway passages
and intestines, where tight junctions secure the epithelial intercellular spaces, specialized
microfold epithelial cells (M-cells) deliver foreign antigens from the lumen to the MALT
(Figure 2) [24]. M-cells have fewer microvilli than the surrounding epithelial cells, instead
having short fold-like structures called microfolds. In addition, towards the basal side,
the M-cell plasma membrane is deeply invaginated to form a large M-cell pocket where
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B/T lymphocytes or DCs can reside. The very thin M-cell cytoplasm at the pocket helps
in the phagocytosis/transcytosis of antigens from the lumen and allows for easier contact
of MALT immune cells with pathogens and better antigen presentation [26]. M-cells have
exceptionally low numbers of lysosomes with low enzyme activity [27]. As a result, M-cells
do not process the antigens taken up but instead just transfer them intact to DCs, which
perform the antigen processing and presentation (Figure 2).
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Figure 2. Immune surveillance at the respiratory mucosa. Within the mucus layer are innate
immune factors such as antimicrobial peptides, proteases, complement system factors, and secretory
IgA and IgM antibodies. The dendritic cells (DCs) in the airways become activated on antigen capture
and traffic to draining lymph nodes via afferent lymphatics. In T cell zones, the DCs present the
antigens on MHC class II receptors to CD4+ T cells and on MHC class I receptors to CD8+ T cells,
along with CD80/CD86 co-stimulation. This antigen presentation by DCs promotes the maturation
and expansion of naive CD4+ and CD8+ T cells. CD4+ T cells with Th1 polarization assist in the
maturation of cell-based cytotoxic immune responses, whereas Th2 polarized CD4+ T follicular
helper (TFH) cells migrate to the T-B zone border and assist in the maturation of B cells by TCR-MHC
II engagement and CD40/CD40L co-stimulation. The T-B cell pairing causes B cell migration to the
germinal centers and their clonal expansion. Within the germinal centers, activated B cells (assisted
by follicular dendritic cells (FDC) and TFH) undergo somatic hypermutation followed by further
expansion. Through this iterative cycle B cells with high affinity to the target antigen are selected,
followed by class-switching to either plasma cells or memory B cells, which traffic back to the site of
infection in the respiratory mucosa. Created with BioRender.com.
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DCs are the true sentinels in MALT, residing in the M-cell pocket, sampling luminal
antigens, and then migrating either to the local MALT or the distant draining lymph
nodes. The local DCs not only induce immune responses against pathogens but also
play an important role in tolerance to antigens from commensal microbiota and food [28].
To help with the tolerogenic functions, the MALT-associated DCs and naïve CD4 T-cells
have higher interleukin (IL)-10 secretion than their splenic counterparts [29]. In mice,
CD11b+CD8- DCs form the tolerogenic DC component, whereas CD11b-CD8- and CD11b-
CD8+ DCs are pro-inflammatory, produce IL-12, and present antigens to and prime IFNγ

production from T cells [30]. The CD11b+CD103+ subpopulation of DCs migrates from
the lamina propria to the draining lymph nodes in a CCR7-dependent manner [31,32].
Through this migration, the CD103+ DCs present antigens from mucosal sites to CD8+ and
CD4+ T cells in the local lymph nodes, resulting in the expression of homing chemokines
CCL17, CCL19, CCL21, CCL22, CXCL13, and IL-16 (Figure 2) [31,32]. In mice and humans,
this process is responsible for the infection-driven spontaneous BALT formation [32]. In
addition, immune complexes with antigen-IgG antibody complexes (IgG-IC) are recognized
by the FcRn receptors found abundantly on mucosal DCs. The FcRn-bound IgG-ICs are
internalized into DC compartments where the antigen is processed into peptide epitopes
compatible with both major histocompatibility complex class I and II (MHCI/II) molecules.
This plays a major role in antigen cross-presentation leading to potent mucosal CD4 and
CD8 T-cell responses [33].

4. Mucosal Humoral Response

A hallmark of mucosal immunity is the production of secretory IgA (sIgA) by acti-
vated B-cells in the MALT [34]. The activated B-cell class switching for IgA production
is driven by TGF-β, retinoic acid, IL-4, IL-6, and IL-10 [35,36] produced by stromal cells,
epithelial cells, DCs, and mucosal lymphocytes [37]. After class switching, IgA-secreting
B cells enter circulation via efferent lymphatic vessels and are disseminated to systemic
and other mucosal effector tissues as long-lived IgA-producing plasma cells [38]. IgAs are
produced as monomers found in serum or as dimeric sIgA secreted at the mucosal lamina
propria by the activated MALT B cells. The sIgA dimers are formed by two IgA monomers
covalently linked through disulfide bonds and a single 15-kDa joining or J chain and the
18 amino-acid carboxy-terminal extensions of one of the heavy chains of each monomeric
IgA [39,40]. In the MALT dimeric sIgA, binds with high affinity to the secretory component
(SC) ectodomain of polymeric Ig receptors (pIgR) found on the basolateral surface of epithe-
lial cells. The pIgR-bound IgA is then actively transported across the mucosal epithelium to
the lumen where the sIgA-SC complexes are released [39,40]. The sIgA-SC complex is acid
and protease-resistant and shows immune interactions that are unique from monomeric
IgA or IgG found in serum [36]. Unlike IgGs, IgA antibodies cannot activate the classical
complement pathway as they lack C1q binding sites. Therefore, IgAs predominantly serve
as neutralizing antibodies, leading to non-inflammatory immune responses that limit dam-
age to the mucosa. The sIgA antibodies protect the mucosa by inhibiting viral or bacterial
binding to epithelial cells and subsequent cell entry [41,42]. Pathogens like the influenza
virus that require glycan interactions for infection can be blocked by the interaction of
the glycans on IgA [43]. Multiple studies report that even during its passage through the
mucosal epithelium, sIgA effectively neutralizes viruses like Sendai, influenza, measles
virus, rotavirus, HIV, and SARS-CoV-2 [44–49]. The sIgA-SC complexes can interact with
innate defense machinery like mucins, lysozymes, lactoferrins, and lactoperoxidase [50].
Multiple antigen binding sites of the mucin-anchored sIgA-SC complexes provide high
avidity binding to pathogens. This causes pathogen agglutination, a process of forming
aggregates that are unable to penetrate through the mucin lining and infect the mucosal
epithelium [42,50]. The M cell and epithelium-bound sIgA-SC complex helps in excluding
harmful pathogens and toxins from the mucosal surface and favors biofilm formation by
commensal microbiome [25]. Secretory IgA is the most abundant and more cross-protective
than other immunoglobulin classes [51], can induce antibody-dependent cellular cytotox-
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icity [52], and has both immune-stimulating [53] and anti-inflammatory properties [54].
Several reports already show the importance of sIgA in immune responses and outcomes
for RSV [55], influenza [51], and SARS-CoV-2 [56].

5. Mucosal Cellular Immune Response

Central memory T cells (TCM) patrol secondary lymphoid organs, whereas T effector
memory cells (TEM) recirculate between blood and non-lymphoid tissues [57]. Tissue-
resident memory T cells (TRM) are found locally at multiple MALT sites [58], show distinct
cellular signaling and transcription profiles from TCMs and TRMs, and play important
roles in rapid responses to repeat infections [59]. Naïve T cells are activated and undergo
clonal expansion after antigen presentation and co-stimulation from antigen-presenting
cells (APC) like DCs and macrophages (Figure 2). The APCs also provide cytokine signals
that drive the T cell differentiation and homing to different MALT [60]. Effector CD8 T cells
are primed in the draining lymph nodes and migrate to the MALT at the site of infection,
where they undergo transcriptional reprogramming, which results in elevated expression
of TRM-specific cell surface proteins CD103 and CD69 [61]. CD103 interacts with E-cadherin
and promotes T-cell adhesion with epithelial cells, and CD69 acts as an antagonist of S1PR1
and prevents TRM egress from the respective MALT and its surrounding tissue [62]. TRMs
surveil the surrounding tissues and rapidly acquire effector CD8 functions on secondary
antigenic stimulation [63].

TRM cells are known to stably reside in the peripheral tissues without entering the
circulation; however, their longevity depends on the tissue of residence. For instance, TRMs
in the skin are reported to be stable for as long as 300 days post-infection [64], whereas the
lung TRM population wanes by 100 days post-influenza infection, leading to a loss in cross-
protection against influenza subtypes [65,66]. The lack of lung TRM longevity is not clearly
understood and is a concern and a challenge in optimal mucosal vaccine design against
respiratory pathogens like flu, RSV, and SARS-CoV-2. Repeated antigen exposure has been
shown to increase TRM longevity in mouse models of influenza, likely by upregulating the
pro-survival, anti-apoptosis protein Bcl2 [64,65]. In addition to CD69 and CD103, several
TRM cell surface markers play a role in their homing and retention in peripheral tissues.
TRM in the gut express α4β7 and CCR9, whereas those in the skin express CCR10 [61]. TRM
in the lungs and the genital tract express CD49a, with lung-specific TRMs also expressing
α4β1, CXCR6, and LFA1 [67]. In addition, tissue-released cytokines such as TGF-β, TNF-α,
IL-15, and IL-33 are important in maintaining TRM cells.

Due to their constant surveillance at the first exposure sites, TRM cells are an effective
and rapid mechanism in restricting pathogen replication (especially intracellular virus
replication) at barrier sites like skin, gut, and respiratory system [59,66]. TRM levels in
the mouse lungs are a better marker for reinfection protection than memory T cells in the
blood [68], hence one school of thought suggests that TRM be used as a benchmark for the
testing immunogenicity of mucosal vaccine candidates [69,70].

6. Inducing Immunity Systemically and at Local Mucosal Sites

Mucosal infections or immunization by mucosal vaccines prime the immune responses
that are detectable in both the mucosal and the systemic compartments [71]. Systemic
immunization by parenteral routes only induces weaker mucosal immunity [72]. Most
mucosal vaccines administered via the oral, intranasal, and inhaled routes induce B and
T cells that migrate to systemic secondary lymphoid tissues and even to mucosal tissues
different from the site of induction [41,50]. After IgA class switching, activated B cells in
the MALT usually elevate CCR10 expression on their surfaces, which favors migration to
epithelial cells in the lung, gut, mammary, and salivary glands that express CCL28 [73]. DCs
activated at a mucosal immunization site also recirculate to secondary lymphoid tissues to
induce T cell priming systemically and at distant mucosal tissues like the vaginal tract [74].
This led to the discovery of prime and pull vaccination to induce immune protection in
immunologically restrictive tissues like the genital tract [75]. A robust systemic T cell
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response can be generated by mucosal immunization (prime), followed by recruitment
(pull) of activated T cells either on their own or by topical chemokine application [76].
Therefore, depending on the pathogen’s site of entry, the route of mucosal immunization
should be carefully considered.

7. Modulating Mucosal Immune Responses by Immunization Routes

Even within mucosal immunization, different routes induce differences in the potency
and longevity of the immune response. The oral route usually activates the immune
responses in the GI tract, the oral mucosa, NALT, and the mammary glands. Intranasal and
inhaled delivery effectively induces immune responses in the salivary glands, the NALT, the
BALT, and the lower respiratory and urogenital tract [2,71]. Attenuated or recombinant non-
pathogenic viruses or bacteria, administered orally, have been successfully used as antigen
vectors to induce robust immune responses against mucosal pathogens and tumors induced
by HPV type 16 [77,78]. Similar studies performed using intranasal and inhaled routes
of administration report robust immune responses at the lung mucosa with a reduction
in transmission [11,12,19,20,79]. A unique feature of the intranasal/inhaled route is the
induction of Th17 effector and IL-17-producing TRM cells [80]. Earlier work shows that
the Th17 response occurs regardless of the adjuvants used [81]. However, adjuvants can
modulate and improve the robustness of this response [82]. Previously associated with
detrimental immune outcomes [83], the Th17 responses from nasal immunization [81] and
in Peyer’s patches [84] are now considered important for immune responses and pathogen
clearance. Due to the stratified keratinized nature of the vaginal mucosa and variations
in the local tissue environment from hormonal fluctuations, the intravaginal route is less
effective at inducing a local mucosal immune response [85]. As alternatives sublingual and
intranasal routes both induced higher numbers of IFNγ-secreting lung CD8 T cells than the
intramuscular route [86], but the sublingual route induced less neutralizing antibodies in
the genital tract than the intramuscular route [87]. Advancements in vaccine delivery and
adjuvant technology continue to improve mucosal immunity [88].

8. Training Mucosal Innate Immunity

Tolerance to foreign antigens by the mucosal innate immune system is a key reason
for infection by SARS-CoV-2, influenza, and RSV, which have short incubation periods.
The effector function of innate immune cells can be ‘trained’ by metabolic and epigenetic
reprogramming, such that instead of tolerating the vaccine or pathogen antigen, the innate
immune system mounts an early response [89–92]. The trained immunity is reported to
last from a few months up to a year [93] and can be induced by microbial or nonmicrobial
stimuli. Microbial sources reported to induce trained immunity include the BCG, oral polio,
smallpox, and measles vaccine [93–95], as well as the malaria parasite Plasmodium falciparum,
the hepatitis B virus, low-dose lipopolysaccharide (LPS), and the β-glucan component in
the cell wall of the fungal pathogen Candida albicans [96–98]. Trained immunity can also be
induced by non-microbial sources like liver X receptor agonists [99], lipoprotein a [100], uric
acid [101], aldosterone [102], interferons [103], S100 protein [104], and catecholamines [105].
Multiple labs report improvement of mucosal defense and protection against respira-
tory infections by successfully induced long-term trained immunity. Examples include
(1) BCG vaccine-induced synergistic protection against SARS-CoV-2 [90], yellow fever [106],
malaria [107], and typhoid [108]; (2) β-glucan induced protection against Leishmania [109],
M. tuberculosis [110], Pseudomonas [111], and tumor metastasis [112]; (3) S100-induced pro-
tection from neonatal sepsis [104]; and (4) CpG dinucleotide-induced protection from E.
coli meningitis [113]. The use of appropriate adjuvants to induce trained immunity in APCs
of the mucosa is a promising avenue for future vaccine technology.

9. Currently Licensed Mucosal Vaccines

Progress in vaccine technology has shifted injectable vaccines from killed or attenu-
ated whole-cell vaccines towards protein subunit, viral vector, or nucleic acid (DNA or
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mRNA) vaccines [114,115]. The mucosal vaccine landscape is quite the opposite with the
eleven approved mucosal vaccines being either live attenuated, whole-cell inactivated,
or adenoviral vector vaccines (Table 1). This is partly because mucosal sites afford high
tolerance to whole-cell antigens while rapidly clearing subunit antigens [71]. The mucosal
route of vaccination like natural infection produces mucosal and systemic immunity, which
is more effective and cross-protective against subsequent infection and transmission pre-
vention than injectable vaccines [116]. In multiple studies, mucosal vaccination provides
better protection against mucosal pathogens like influenza, herpes simplex virus, and My-
cobacterium tuberculosis [117–119]. While studies with a head-to-head comparison between
mucosal and injectable routes are lacking, reports during the SARS-CoV-2 pandemic show
superior humoral and mucosal immune responses with the mucosal route [14,15]. While
circulating antibodies induced by injectable vaccines may transduce through at mucosal
sites, CD8 T cell homing to mucosal sites and TRM formation are better achieved by mucosal
vaccination [61,69,70].

Table 1. Currently approved commercial mucosal vaccines.

Vaccine Composition Pathogen Targeted Mucosal Route Approval
Year

Approving
Authority

Bivalent Oral Polio
Vaccine (bOPV)

Serotypes 1 and 3 attenuated by
serial culture Poliovirus Oral drops 1961 FDA

Dukoral

Heat and formaldehyde
inactivated O1 (Ogawa and
Inaba) with recombinant B

subunit of cholera toxin

Vibrio cholerae

Oral drink 2003 Canada

Shanchol
Bivalent heat and formaldehyde

inactivated O1 (Ogawa and
Inaba) and O139 serotypes

Oral drops 2013 WHO

Vaxchora

Live O1 Inaba serogroup
attenuated by deleting the

catalytic domain of the
ctxA gene

Oral drink 2015 FDA

Vivotif
Live Ty21a strain attenuated by

mutations in LPS and Vi
polysaccharide synthesis genes

Salmonella typhi Oral capsule 2013 FDA

Rotateq
Live pentavalent reassortant

rotaviruses, containing G1, G2,
G3, G4, and P1A strains

Rotavirus

Oral drops 2006 FDA

Rotarix
Live monovalent passage

attenuated G1 rotavirus strain
with P1A expression

Oral Drops 2008 FDA

Adenovirus vaccine
(types 4 and 7)

Live Adenovirus type 4 and
type 7 strains

Acute Ad4 and Ad7
respiratory disease Oral-2 tablets 2011 FDA

FluMist
Quadrivalent live attenuated

(cold-adapted) flu A and
B strains

Seasonal Influenza Nasal-Spray 2003 FDA

iNCOVACC
ChAd36 adenoviral vector

expressing the SARS-CoV-2
Spike protein (Wuhan)

SARS-CoV-2

Intranasal drops 2022
Central Drugs

Standard Control
Organization—India

Convidecia Air
Ad5 adenoviral vector

expressing the SARS-CoV-2
Spike protein (Wuhan)

Inhaled aerosol 2022

National Medical
Products

Administration of
China

10. Nucleic Acid and Subunit Mucosal Vaccines

Although nucleic acid technology (DNA/mRNA) has been researched since the
1990s [120], their use in humans was first licensed during the SARS-CoV-2 pandemic.
All licensed mucosal vaccines are composed of whole-cell pathogens either alive or dead,
and no nucleic acid or subunit mucosal vaccine has been successful so far. This is primarily
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due to mucosal tolerance to live or whole-cell antigens and because nucleic acid or sub-
unit antigens are susceptible to enzymatic, chemical, or microbiota-imposed degradation
(Table 2) [121]. They also suffer from poor penetrance of the mucus layer, rapid degradation
of nucleic acids, and poor cellular uptake or transfection efficiency [122]. The latest subunit
vaccines have three components: an antigen, an adjuvant, and a targeting system for precise
delivery to the right location and at the right time (Figure 3).

Table 2. Advantages and Disadvantages of different vaccine technologies in mucosal vaccination.

Antigen Delivery Advantage Disadvantage References

mRNA

Synthetic, non-infectious, and free
from cellular or egg proteins.

Sensitive to pH and degradation
by enzymes.

[71,123,124]

Short development and
manufacturing time. Inability to penetrate mucus barriers.

Produces high systemic
antibody titers.

Adjuvants are required to break
mucosal immune tolerance.

Transient expression. Poor mucosal immune response.

Cannot modify host genome. Ultra-low cold chain required
for storage.

Protein Subunit

Can be lyophilized for good
environmental stability. High antigen requirement.

[71,123]

Can be used regardless of age or
immunocompromised status

Sensitive to pH and degradation
by enzymes.

Cannot modify host genome. Inability to penetrate mucus barriers.

Adjuvants are required to break
mucosal immune tolerance.

Poor mucosal immune response.

Complex manufacturing requirements
(conjugation chemistry).

Difficult to isolate the most
relevant antigens.

Live Viral

Well-established technology. Better
stability than mRNA vaccines.

Complex manufacturing and
safety requirements.

[71,123,125]

Naturally capable of penetrating
mucus barriers, tolerating high/low

pH, and infecting target cells.

Cannot be given to
immunocompromised patients.

Induces strong mucosal and systemic
immune responses.

Small chance of reverting to a
pathogenic form and causing disease.

May not need adjuvants Takes time to develop.

Simple to manufacture.

Viral Vector

Induces strong mucosal and systemic
immune responses.

Concerns for host genome
modification/integration.

[71,123,126]

Naturally capable of penetrating
mucus barriers, tolerating high/low

pH, and infecting target cells.

Complex manufacturing and
safety requirements.

May not need adjuvants. Better
stability than mRNA vaccines.

Response reduced due to pre-existing
immunity against the vector.

Simple to manufacture. Takes time to develop.

Cannot cause diseases like live
attenuated viruses.
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11. Synthetic Carriers and Routes of Mucosal Vaccine Delivery

Many effective mucosal delivery systems for nucleic acid and subunit vaccines use
nanoscale carriers. These delivery systems include non-viral particles like polymeric or
lipid nanoparticles [127], liposomes [128], immune stimulatory complexes (ISCOMS) [129],
micelles, microspheres [130], self-assembling peptides [131], proteosomes [132], and lipid–
aqueous phase emulsions (Figure 3) [133]. Due to the less dramatic changes in the pH,
the nasal route is better suited for nucleic acid and subunit vaccines than the oral route.
However, antigen uptake by APCs and subsequent immune response could still be poor
due to the profuse mucosal secretions and mucociliary clearance [2]. Advances in nanocar-
rier biomaterials have initiated the development of protective delivery strategies [124,134].
Some of these polymer biomaterials include polysaccharides (chitosan, β-glucans, cy-
clodextrin, etc.) [135], polypeptides (poly-L-lysine) [136], polyamines (Polyethyleneimine—
PEI) [137], polyesters (Polyhydroxyalkanoate—PHA, poly lactic-co-glycolic acid—PLGA,
Poly β-amino ester—PBAE) [138], and polyamidoamine dendrimers with modifications
like fluorination [139], glycosylation [140], and PEGylation [141]. These polymers used
in different stoichiometry can control various vaccine properties such as surface charge,
rigidity, distribution and retention in the lymph nodes, and maturation and uptake by the
DCs [134].

12. Live Attenuated Viruses and Viral Vectors for Mucosal Vaccines

Historically live attenuated vaccines (LAVs) were produced by evolving pathogenic
viruses via serial passage through a foreign host species using tissue cultures, chicken eggs,
or live animals [142]. Eventually, by selection pressure, the viruses develop mutations
that favor their growth in the foreign species and become less virulent to the original
host (humans). However, recent vaccine ventures have used codon de-optimization and
insertion of key mutations in the SARS-CoV-2 and other viral genomes to produce LAVs
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for COVID-19 and other viral diseases [143,144]. These modern LAVs contain nearly all the
immunogenic antigens preserved in their native conformation. Therefore, live attenuated
vaccines are the most immunogenic and have a long history of success at preventing in-
fections (Table 2) [125]. All successful vaccines against systemic viruses such as measles,
mumps, rubella, variola (smallpox), and varicella (chickenpox) are live virus-replicating
vaccines [145]. These viruses may transmit by aerosolization but replicate systemically
and have long incubation periods (≈10–16 days), leading to good exposure to the host
mucosal and systemic immune system. Similar successes have been observed with live
enteric viral vaccines against polio and rotavirus [146]. However, live attenuated vaccines
have a higher risk of reversion to a virulent state than other vaccine types and the danger
of infection in patients with HIV or other immunocompromised states such as cancer
therapy or transplantation [71,145]. Live attenuated influenza vaccines were tried over the
last decade and demonstrated less than adequate protection from infection [147]. How-
ever, intranasal vaccination using adenoviral vectored influenza nucleoprotein-induced
sustained CD8 TRM cells in mouse lungs for longer than a year [148]. The induced CD8
TRM cell protection in vaccine-treated mice persisted longer than in influenza-infected
mice. Viral vectors do not suffer from the same limitations as subunit or nucleic acid
vaccines and therefore represent the most promising strategy for mucosal vaccines [71],
especially in the respiratory tract. Intranasal delivery of adenoviral vectored SARS-CoV-2
spike antigen-induced protective immune responses in animal models [11–13] and human
clinical trials [14,149]. While both intranasal and intramuscular routes induced comparable
systemic humoral and T cell responses, on SARS-CoV-2 viral challenge, the hamsters vac-
cinated by intranasal route showed significantly lower viral loads in the nasal tract and
lungs than the hamsters that received intramuscular vaccination [11]. Although recombi-
nant human adenoviruses are the predominantly used viral vaccine vectors [150], several
other recombinant viruses such as modified vaccinia virus Ankara (MVA—poxvirus) [151],
chimpanzee-derived adenoviruses (ChAd) [11–13], recombinant rhesus cytomegalovirus
(RhCMV) [152], recombinant RSV [153], recombinant lentivirus [154], attenuated influenza
or parainfluenza viruses [155,156], and Newcastle disease virus (NDV) [157] have been
tested with varying success as viral vectors for mucosal vaccine delivery [5].

13. Improving Mucosal Immune Response by Adjuvants

Mucosal vaccine responses can be significantly improved with the use of adjuvants,
which can act as delivery vehicles, immunostimulatory molecules, or both (Figure 3
and Table 3). Most adjuvants fall into the Toll-like receptor (TLR) agonist category, en-
hancing the mucosal immune response and lowering the antigen requirement when co-
administered with the antigen [158]. The TLR4 agonist 3-O-desacyl-4′-monophosphoryl
lipid A (MPL) is one of the most widely mucosal adjuvants [159] as a combination with
QS21 saponin (AS01) or alum (AS04) in several approved intramuscular vaccines like
Fendrix (Hepatitis B virus—HBV), Shingrix (Varicella zoster virus—VZV), and Cervarix
(Human papillomavirus—HPV) [160,161]. The activation of antigen-presenting and innate
immune cells by TLR4 agonists favors Th1 differentiation and strong Th1-associated hu-
moral responses [162]. Multiple studies report the successful generation of robust immune
responses by intranasal administration of TLR4 agonists [163–165]. Administration of
a synthetic TLR4 agonist, Glucopyranosyl Lipid Adjuvant—stable emulsion (GLA-SE)—
induced Th1/Th17-biased systemic and mucosal antibody responses when administered
intramuscularly [166] or intranasally [167]. Other TLR ligands tested in mucosal vaccines
have been (a) TLR3-specific double-stranded RNA analog polyinosine: polycytosine acid
(poly I: C) [168,169], (b) TLR5-specific flagellins [170,171], (c) TLR7 agonists like imidazo-
quinoline derivatives [172], and TLR9 agonists like CpG-oligodeoxynucleotides [173]. The
best-studied mucosal adjuvants are bacterial ADP-ribosylating enterotoxins derived from
either cholera toxin (CT) or Escherichia coli heat labile enterotoxin (LT) [71,174]. Devoid of
enterotoxicity, the LT-adjuvanted inactivated intranasal influenza vaccine (Nasalflu-Berna
Biotech) was initially approved in Europe but later proved to cause Bell’s palsy in vaccine
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recipients due to LT accumulation in the olfactory bulb and other nervous tissues [175].
Similar incidences of Bell’s palsy were reported in other vaccine trials [176]. The double
mutant LT (R192G/L211A) (dmLT) activates the immune system just as well but without
the associated epithelial cell cAMP intoxication or intestinal fluid secretion of LT and has
been used in about 25 preclinical studies since 2000 [177]. CTA1-DD adjuvant combines
the beneficial immunostimulatory effects of the V. cholerae CTA subunit enzyme with the
D-domain dimer from S. aureus that targets B cells [178]. α-Galactosylceramide activates
invariant natural killer T (iNKT) cells and promotes antigen cross-presentation by DC
to CD8 T cells [179]. Multiple studies report good efficacy of α-Galactosylceramide ad-
juvanted live or inactivated intranasal influenza vaccines without antigen redirection to
the nervous system and devoid of serious implications to the CNS [180,181]. Chitosan
and N-dihydrogalactochitosan nanoparticles are good delivery vehicles due to their high
positive charges, which enable strong interactions with antigen molecules and help in
crossing biological barriers [182,183]. Being potent activators of macrophages NK cells and
lymphocytes, they also serve as adjuvants [184]. Chitosan nanoparticles have been used in
the intranasal route to induce high IgA levels in different models [185,186].

Table 3. Improving the mucosal immune response involves adjuvant strategies that are different
from those used by systemic vaccines.

Class Molecule/Mechanism Immune Cell Target Patents

Bacterial Toxins

Double-mutant Labile Toxin Dendritic cell, Macrophages,
M cells US6033673A

Cholera Toxin Dendritic cell, CD4+ T cells WO2001062283A2

Cholera Toxin A1-dimer
D-domain (S. aureus)

Dendritic cell, Macrophages,
CD4+ T cells US8834898B2

α-Galactosylceramide CD1 binding Dendritic cell, CD8+ T cells WO2007007946A1

TLR ligands

MPL—TLR4 Dendritic cell, Macrophages US20170182152A1

CpG—TLR9 B cells, Plasma cells US6589940B1

Flagellin—TLR5 Dendritic cell, Macrophages US7404963B2

Cytokines IL-1, IL-12, IL-18, GM-CSF,
RANTES

CD8+ T cells, B cells—IgA,
Monocytes, Natural Killer

cells, CD4+ and CD8+ T cells

US6168923B1

US5800810A

EP1075275A1

US5679356A

Chitosan Mucoadhesive, improves
antigen uptake

Dendritic cell, Macrophages,
Natural Killer cells CN107648603B

14. Mucosal Vaccine Lessons from Natural Infections

Unlike viruses like measles, mumps, rubella, variola, and varicella, which have long
incubation periods (≈10–16 days) and spread systemically to other parts of the body, respi-
ratory viruses like SARS-CoV-2, influenza, and RSV or enteric viruses like norovirus are
restricted to the mucosa and have evolved shorter incubation periods (2–5 days) [145]. As
the respiratory and gastrointestinal mucosa is exposed to a large variety and amounts of
ingested or inhaled foreign antigens (food, dust, pollen, etc.), its innate immune compart-
ments have evolved mechanisms to tolerate transient harmless foreign proteins [89–92]. As
the innate immune system is responsible for the detection and elimination of the pathogen
for the first 5–7 days of infection, viruses with short incubation periods like SARS-CoV-2,
influenza, norovirus, and RSV undergo unchecked replication at the mucosal sites before
the adaptive immune response kicks in [187–190]. Although the current systemic vaccines
effectively reduce the disease severity, the short incubation and rapid viral replication
leave a considerable transmission window open before the neutralizing antibody or T-cell
response can control the infection. While mRNA vaccines induced IgG titers in the saliva
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of vaccinated people [191], their neutralizing efficacy and ability to prevent transmission
are not known. On the other hand, adenoviral vector vaccines administered intranasally
are reported to induce systemic and mucosal IgA and prevent transmission in multiple
preclinical models [11–13]. Similar immune responses were observed in human clinical
trials [14,15]. Hybrid models of vaccination showed successful immune responses and
protection in animals primed with the systemic mRNA (or other) vaccines followed by
an intranasal booster with the SARS-CoV-2 spike protein [192] or adenoviral vaccines
expressing SARS-CoV-2 spike [193,194]. The creation of next-generation vaccines demands
a better understanding of different aspects of mucosal immunity, such as sensing at the
mucosal epithelium [195,196], tolerance mechanisms in the innate immune system [89,92],
the importance of IgA class switching, IgA secretion [197,198] and TRM surveillance, and
the role of microbiota in vaccine response [199,200].

15. Relevance of Mucosal Vaccination against Respiratory Pathogens

Respiratory viruses such as influenza, RSV, and SARS-CoV-2 first infect the upper
respiratory tract, then spread to the lower respiratory tract and the alveoli causing viral or
secondary bacterial pneumonia which is the principal cause of death [201–203]. Secretory
mucosal immunity is more effective than systemic immunity at neutralizing incoming
viruses while the TRM cell surveillance rapidly responds to virus-infected mucosal cells [58].
Secretory IgA is effective at preventing viral spread from the upper respiratory tract [204]
while neutralizing IgG titers are required to control the infection in the lungs [71]. The
sIgA levels in the upper respiratory tract are the best correlates of protection against RSV
transmission, with similar results reported from SARS-CoV-2 studies [205,206]. A key
roadblock in successful mucosal vaccination is the innate immune tolerance afforded to all
antigens in the mucosa. Recent scientific breakthroughs have opened avenues to develop
trained immunity-based vaccines that use ligands of pathogen recognition receptors (PRR)
found on APCs. Many PRR ligands such as LPS, flagellin, β-glucans, chitin, FimH, muramyl
dipeptide, and CpG oligodeoxynucleotides show experimental evidence of cross-protection
against mucosal pathogens [207].

16. Advantages of Adenoviral Vectors in Mucosal Vaccination

Vaccination is integral to infection prevention due to the high mutation rate in SARS-
CoV-2. Over the last 2–3 years, tested COVID-19 vaccines have used several modified viral
vectors, such as adenoviruses, vaccinia, measles, herpes viruses, rhabdoviruses, influenza,
and lentiviruses. Viral vectors have high transduction efficiency in a wide variety of cell
types and produce high levels of the target antigens. However, large-scale viral vector
use is limited by several factors, such as safety concerns, reproducibility, immunogenicity,
potential carcinogenicity, and inflammation against the viral vector [71,145]. Lentivirus vec-
tors, once infected, cannot be eradicated from the body [208], whereas measles and herpes
vector vaccines are cytotoxic [209]. The adenoviral vector vaccine has been used effectively
in preclinical [11–13] and clinical [14,15,149,210] settings as a vaccine against SARS-CoV-2.
The adenoviruses are thermostable and induce moderate innate immunity without the
presence of adjuvants (Figure 4 and Table 2). As replicating adenoviruses naturally cause
respiratory infections, they are already optimal at penetrating the mucus layers in the
airways and transducing a variety of cells in the mucosa. The Ad5-nCoV adenoviral vector
vaccine was the first SARS-CoV-2 vaccine to be administered as an inhaled aerosol. This
route was found to induce a strong humoral and cellular response at 1/5th the intramus-
cular dose and protected both upper and lower respiratory pathways from SARS-CoV-2
infection [15]. The aerosolized, inhaled Ad5-nCoV blocked SARS-CoV-2 replication in
the respiratory tract, thereby preventing person-to-person transmission, an advantage not
seen from the intramuscular injection. In addition to these advantages, adenoviral vectors
can accommodate large or multiple genes thereby allowing multicistronic expression of
different antigens on the same vector [211]. This contributes to the low cost of manufactur-
ing and relatively easy production scale-up to meet vaccine demands. An extremely rare
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(0.3–1.5/100,000 vaccinations) adverse event called vaccine-induced immune thrombotic
thrombocytopenia (VITT) occurs shortly after initial IM vaccination with adenoviral vector
COVID-19 vaccines [212–214]. VITT is characterized by elevated anti-platelet factor 4 (PF4)
antibodies and D-dimer levels, with signs of thrombosis, particularly in the cerebral venous
sinus [215,216]. Studies demonstrate that VITT occurs due to intravenous administration
of adenovirus or its leakage into the circulation following microvascular injury [217–221].
Although under investigation, it is unlikely that aerosolized inhaled adenoviral vaccine
would leak into circulation and cause VITT. Published Ad5-nCoV phase 3 and 4 studies do
not report any cases of VITT [149,210]. Vaccines delivered by inhalation show good drug
absorption, fast immune response, and high bioavailability [222]. They can be administered
with little healthcare infrastructure and eliminate the fear of needles as a reason for poor
patient compliance [223]. Higher efficacy than the intramuscular route and intranasal
sprays [224] mean that mass vaccination can be achieved at a lower cost.
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17. Future Perspectives

Mucosal vaccines show promise in both disease treatment and transmission inter-
ruption. The pre-COVID mucosal vaccine development had stalled and was limited to
traditional forms of antigen delivery such as inactivated and attenuated pathogen vac-
cines. The different mucous membrane barriers may be responsible for this limitation. The
COVID-19 pandemic has reignited interest in the development of mucosal vaccines. The
primary focus of respiratory vaccines is to induce a robust and durable immune response
by (a) delivering the antigen through the mucus layers, (b) targeting the antigen delivery
to antigen-presenting cells (APCs) such as M cells, DCs, and macrophages, (c) inducing
a robust antigen expression and presentation by the APCs, (d) driving a robust humoral
(secretory IgA) and cytotoxic (CD8+) immune response with durable local memory (TRM
cells), and (e) reducing adverse events seen in vaccination by systemic route. In this review,
we discuss scientific progress achieved in various aspects of respiratory mucosal vaccines.
We believe that mucosal vaccine technology would be key in not only controlling the trans-
mission of future pandemics like SARS-CoV-2 but also in controlling seasonal influenza
and RSV, which disproportionately impact the young and elderly populations.
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