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Abstract: Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that falls under the um-
brella of dementia and is characterised by the presence of highly neurotoxic amyloid-beta (Aβ) 
plaques and neurofibrillary tangles (NFTs) of tau protein within the brain. Historically, treatments 
for AD have consisted of medications that can slow the progression of symptoms but not halt or 
reverse them. The shortcomings of conventional drugs have led to a growing need for novel, effec-
tive approaches to the treatment of AD. In recent years, immunotherapies have been at the forefront 
of these efforts. Briefly, immunotherapies utilise the immune system of the patient to treat a condi-
tion, with common immunotherapies for AD consisting of the use of monoclonal antibodies or vac-
cines. Most of these treatments target the production and deposition of Aβ due to its neurotoxicity, 
but treatments specifically targeting tau protein are being researched as well. These treatments have 
had great variance in their efficacy and safety, leading to a constant need for the research and de-
velopment of new safe and effective treatments. 
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1. Introduction 
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder and the most 

prevalent form of dementia, accounting for 60–80% of cases [1] and is a growing burden 
on healthcare systems nationally and internationally. The Global Burden of Disease Study 
estimated that 57.4 million people globally were living with dementia in 2019 and this is 
predicted to reach 152.8 million people by 2050 [2]. Dementia is an umbrella syndrome 
characterised primarily by progressive deterioration in multiple cognitive domains, caus-
ing impairment in daily functioning across social, physical, and professional spheres [3,4]. 
The elderly are those primarily affected by AD [5], though this is not necessarily a direct 
outcome of ageing [6]. The neuropathology of AD is underpinned by the accumulation of 
plaques, which are extracellular aggregates of amyloid-β (Aβ), and neurofibrillary tangles 
(NFTs), which are intracellular aggregates of tau protein. 

Currently, people diagnosed with AD are treated with acetylcholinesterase inhibi-
tors (rivastigmine, galantamine, donepezil) and an N-methyl-D-aspartate (NMDA) recep-
tor antagonist (memantine). Though these treatments are able to restrain the manifesta-
tions of dementia for a period, they are incapable of completely halting either disease 
progression or symptom manifestation [7], and are hampered further by a number of 
common side effects, such as gastrointestinal irritation, dizziness, and headache [8]. Since 
AD is a convoluted disease caused by multiple components, its aetiology and pathogene-
sis remain obscure, and existing single-target, single-action drugs cannot radically delay 
its progression [9]. 
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More recently however, Aβ immunotherapy has gained attention as a promising ap-
proach to modify the course of AD. Immunotherapies use synthetic peptides or monoclo-
nal antibodies (mAbs) to decrease the Aβ load in the brain and slow the progression of 
the disease, by inducing the immune system to break down and clear the aberrant proteins 
[10]. In addition to these passive immunotherapies, the development of vaccines against 
target proteins in AD may have beneficial outcomes against the disease. Herein, we dis-
cuss the pathophysiology of AD and how it can be used to target effective immunothera-
pies in an attempt to prevent and manage AD. We also evaluate the current progress in 
immunotherapies/vaccines against AD, providing recommendations for future work. 

2. Pathophysiology of Alzheimer’s Disease 
Neuropathological examination of individuals living with AD identifies dense pro-

tein aggregates comprising extracellular Aβ plaques and intracellular NFTs (Figure 1) 
[11]. Examination of these individuals also presents associated chronic inflammation in 
the affected areas of the brain [8]. The tau found in the intracellular NFTs is a microtubule 
stabilising protein that plays an important role in Aβ toxicity, with levels of the protein in 
the brain correlating strongly with the cognitive decline seen in AD patients [12,13]. This 
is caused by an irreversible phenomenon of neurodegeneration and apoptosis in the hip-
pocampal and entorhinal cortex regions, leading to difficulty with memory, loss of exec-
utive functioning, apathy, and depression [8,14]. Adverse mechanisms such as impair-
ment of brain metabolic function [15], blood–brain barrier (BBB) disruption [16], increased 
oxidative stress, calcium homeostatic disturbance, impairment of cellular autophagy, neu-
roinflammation, and neuronal apoptosis commonly co-exist, contributing to the aetiology 
of the disease [8,17]. Due to the neurovascular coupling, the normal bulk clearance of cer-
ebrospinal fluid (CSF) and interstitial fluid (ISF) becomes hindered [18]. 

 
Figure 1. Pathophysiological differences between a healthy and an AD brain. Tissue degeneration 
is highly prevalent. Neuronal degeneration to Aβ and NFTs is highlighted. Created with BioRen-
der.com. 
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2.1. BACE-1 and Aβ Generation 
The amyloid hypothesis is the most extensively studied concept of AD, in which ab-

normal processing of Aβ and/or impairment of its systemic clearance may be responsible 
for the progression of AD-related phenotypes (Figure 2) [19]. The characteristic Aβ 
plaques seen in AD originate from proteolysis of the amyloid precursor protein (APP) by 
sequential enzymatic action of beta-site amyloid APP-cleaving enzyme 1 (BACE-1) [20]. 
The membrane-bound APP is first cleaved by BACE-1, generating soluble amyloid pre-
cursor protein β (sAPPβ) and an integral fragment called C99 [21]. C99 is then cleaved 
again by γ-secretase [6], generating amyloid precursor protein intracellular domain 
(AICD) and free Aβ, an insoluble 36–43 amino acid peptide, which aggregate to form oli-
gomers. 

 
Figure 2. Generation of Aβ from APP. APP is cleaved by BACE-1 to generate C99 and is then cleaved 
again by γ-secretase to generate free A-beta. Created with BioRender.com. 

These oligomers are thought to acts as ‘seeds’ which induce further Aβ mis-folding 
and aggregation [22], and importantly are neurotoxic, leading to the apoptosis of neurons 
locally, and consequently the characteristic symptomatology of AD. The exact functions 
of APP and APP-derived fragments are not fully understood [23], and BACE-1 knockout 
animals appear physiologically healthy and do not express Aβ [24]. BACE-1 has also been 
shown to have increased concentrations and rates of activity in AD brains and body fluids, 
supporting the hypothesis that BACE-1 may play a significant role in AD [25]. Therefore, 
BACE-1 is a prime drug target for slowing down Aβ production in early AD [26,27], how-
ever, clinical trials have thus far had disappointing results, with a number of phase II and 
III studies halted early for limited or no effect on symptoms and variable effects on Aβ 
volume or deposition, with association with a reduction in brain tissue volume in follow-
up examinations [28–30]. 

2.2. Tau Protein 
One of the hallmarks of AD is the presence of NFTs, and filamentous inclusions in 

pyramidal neurons [31]. Tau proteins are responsible for several key functions within the 
central nervous system (CNS), primarily being stability modulators of axonal microtu-
bules. Like Aβ oligomers, intermediate aggregates of abnormal tau molecules are 
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cytotoxic and impair cognition [6]. While these NFTs have long been associated with AD, 
whether they are a pathogenic driver of the disease, or a result of Aβ or other underlying 
mechanisms, is unclear. In early-stage AD mouse models, it was noted that site-specific 
phosphorylation of tau inhibited Aβ toxicity via the neuronal p38 mitogen-activated pro-
tein kinase (MAPK) p38γ, a key signalling molecule involved in cellular stress responses 
[32]. 

2.3. APOE-ε4 
The apolipoprotein E-epsilon 4 (APOE-ε4) genotype has been implicated as a risk 

factor for late-onset AD [33], with a synergistic role of APOE-ε4 and inflammation, along-
side vascular factors, as a possible pathway to the onset of AD [34]. The human APOE 
gene has three key isoforms: APOE2, APOE3, and APOE4, with corresponding proteins 
[35,36]. Carrying and expressing the APOE4-coding allele is the chief genetic risk factor 
for AD, with predictive values exceeding polygenic scores for cognitive ageing in elderly 
populations [35,37]. APOE4 status has also been linked to Parkinson disease-associated 
dementia [38]. It has been suggested that the effect of APOE4 in the meningeal lymphatic 
system could reveal a missing link in our understanding of the aetiology and pathology 
of AD [33,35]. 

2.4. TREM2 
Triggering receptor expressed on myeloid cells 2 (TREM2)—a marker of microglial 

inflammatory reactions—is another important marker in the pathophysiology of AD [39]. 
Soluble TREM2 (sTREM2) is released upon microglial activation, leading to increased lev-
els of CSF sTREM2 seen in AD [40], and is involved in APOE4′s downstream activation of 
microglia [35]. TREM2 also facilitates additional microglial activation and clustering 
around Aβ and NFTs, increasing amyloid uptake, phagocytic activity, and plaque com-
paction in the early stages of AD [41]. 

2.5. Other Contributing Factors 
Other factors such as smoking, reduced physical activity, infection, and prior condi-

tions (e.g., diabetes and obesity) can also lead to developing AD [42,43], with likely mech-
anisms involving abnormal cholesterol metabolism and chronic inflammation. A humoral 
immune component has also been implicated in the pathology of AD [44]. It is now widely 
accepted that circulating immune cells have a significant role in brain pathologies and that 
their impact is dependent on their type, location, and activity [45]. 

3. Role of the Immune System in AD 
The adaptive immune system is central to the pathogenesis and progression of AD, 

with glial and T lymphocyte interactions a key driver of neuroinflammation (Figure 3) 
and neuronal destruction. Microglia and astroglia, the brain-resident immune cells, are 
powerful regulators of neuroinflammatory responses in AD [46,47]. Microglia are the 
principal immune effector in the CNS, acting as both phagocytes and antigen-presenting 
cells (APCs) and there has been some debate regarding their contribution to the clearance 
of Aβ following their activation [48]. Recent advances in neuroinflammation research has 
led to the discovery of several novel inflammatory pathways regulating many cerebral 
pathologies, such as the 5-lipoxygenase (ALOX5) pathway [8]. 

The lymphatic system of the brain carries immune cells from the CSF, connecting to 
the deep cervical lymph nodes, which enables peripheral T cells to respond to brain anti-
gens [49]. Both CD4+ T helper and CD8+ effector T lymphocytes aggregate in the brain in 
AD, and play a role in the pathology and progression of the disease [50]. However, in 
contrast to the peripheral mechanisms, the major APCs in AD are the microglial cells, 
which show increases in genes and markers associated with T cell interaction [51]. There 
also appears to be a loss of intrinsic immunosuppression associated with AD, with 
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transient depletion of Foxp3+ regulatory T cells affecting the choroid plexus and associated 
with subsequent recruitment of immunoregulatory cells, such as monocyte-derived mac-
rophages and regulatory T cells, to cerebral sites of plaque pathology [52]. These effector 
and regulatory functions of lymphocytes are altered with ageing, and other immune man-
ifestations accompany the progression of AD [53]. The neurodegeneration and concurrent 
involvement of the peripheral immune system in AD patients has been suggested to pro-
mote leukocyte division and telomere shortening [54].  

 
Figure 3. Glial- and astrocyte-mediated neuroinflammation related to AD. Both microglial and as-
trocyte-mediated pathways result in the release and activation of pro-inflammatory molecules such 
as IL-1α, IL-6, and TNF-α. Created with BioRender.com. 

This makes the diagnosis of novel therapeutic interventions of critical importance in 
AD management moving into the future. For decades, therapies have been developed that 
directly target Aβ production or aggregation, however, all have failed to slow disease 
progression [12]. 

Cytokines in AD 
While microglia and astrocytes play numerous roles within brain tissue, their in-

volvement in neuroinflammation through cytokine activity is a crucial aspect of AD that 
requires significant management. As microglia are recruited and overactivated and astro-
cytes detect cellular death, they release pro-inflammatory cytokines into the surrounding 
extracellular space which then have a range of actions. Tumor necrosis factor α (TNF-α) 
is highly prolific, being the most studied cytokine involved in AD. In transgenic mouse 
models of AD, elevated TNF-α levels were observed in brain tissues and correlated with 
levels of cognitive decline in the mice. Furthermore, deletion of the tumor necrosis factor 
receptor 1 (TNFR1) gene in transgenic AD mice showed decreased Aβ generation, plaque 
burden, BACE-1 expression, and cognitive deficits [55]. Evidence also suggests that TNF-
α directly interferes with microglial clearance of Aβ deposits [56]. Other cytokines also 
play a role in neuroinflammation. Interleukin (IL) 1α plays a significant role in overex-
pression of APP, as well as being highly expressed in an AD brain compared to a healthy 
brain [57] which can create a loop of IL-1 secretion and APP synthesis. IL-6 is also an im-
portant molecule within AD. While its direct impact is yet to be properly understood, it is 
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established to be involved in an upregulation of TNF-α and microglial activation [58]. 
Moreover, blocking IL-6 activity can improve long-term memory and hippocampal func-
tion [59]. Lastly, inhibition of the IL-12/IL-23 pathway may attenuate AD pathology and 
cognitive deficit. In a pathway that is not yet understood, ablation of the p40 subunit 
within IL-12/23 was shown to have reduced the amount of soluble Aβ and improved cog-
nitive function in AD mouse models [48,60]. 

4. Immunotherapies for AD 
Immunotherapies have become one of the most promising methods to reverse or 

slow the progression of AD [61]. Several types of Aβ peptide immunotherapy for AD are 
under investigation, through approaches such as active immunisation and mAbs directed 
against Aβ peptide [62] and tau pathology [63–66]. Focus has been on the development of 
multitarget AD immunotherapies, the optimisation of antibody titers and epitopes, phar-
macogenetic/pharmacoepigenetic validation of the immunisation procedure, the prophy-
lactic treatment of genetically stratified patients at a pre-symptomatic stage, and the defi-
nition of primary endpoints in prevention, based on objective/multifactorial biomarkers 
[64]. Matrix metalloproteinases’ involvement in CNS disorders, such as AD, has also made 
them attractive therapeutic targets [67]. 

4.1. Antibody Therapies for AD 
In clinical trials of patients with early AD, administration of anti-amyloid antibodies 

reduced plaque volume, suggesting that passive immunotherapies may be promising dis-
ease-modifying interventions (Figure 4). Currently, the only approved disease-modifying 
treatment of AD is the drug aducanumab, a mAb specific to Aβ and that shows efficacy 
in the reduction in Aβ density within patients [68]. Single chain fragment variables 
(scFvs), containing only the variable region of the heavy and light chains of antibodies, 
have shown great potential for the treatment of AD [69]. Thirteen phase III trials using the 
mAbs bapineuzumab [70], solanezumab [71], gantenerumab [72,73], and crenezumab [74] 
have been conducted in recent years, however, all were discontinued due to a lack of effi-
cacy on improving cognitive function (Table 1). Another candidate, BAN2401, also known 
as lecanemab, entered a phase III clinical trial in July 2020 and displays significant reduc-
tion in Aβ aggregates and improvement in clinical symptoms [75,76]. A post-translation-
ally modified variant of the Aβ peptide which has a pyroglutamate at the N-terminus 
(pGlu3) is an attractive antibody target, due to its neo-epitope character and its propensity 
to form neurotoxic oligomeric aggregates [77]. PBD-C06 is an antibody targeting pGlu-Aβ 
which also circumvents inflammatory issues (complement inactivation) and immunogen-
icity (de-immunisation) and has great potential to clear the most toxic Aβ aggregates and 
improve cognition in AD patients at effective doses, while also avoiding inhibition of in-
flammatory responses in vitro [77]. 
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Figure 4. The general theory for immunotherapy against AD pertaining to Aβ pathophysiology. 
Antibody therapy involves the administering of antibodies to the patient, active immunotherapy 
involves using a vaccine to make the patient produce their own. Created with BioRender.com. 

Table 1. Clinical trial information for mAb treatments against AD and their findings. Treatments 
may have influenced Aβ deposition, but none reach the primary endpoint of ameliorating cognitive 
decline. 

Ref Compound Phase Target Type Participants Findings 

[68] Aducanumab Ib Aβ mAb 197 
Reduced Aβ, did not improve cog-

nition. 

[70,78] Bapineuzumab III Aβ mAb 1121, 1331 
Did not improve cognition, did not 

reduce Aβ deposition. 

[71] Solanezumab III Aβ mAb 2052 
Did not improve cognition, Levels 

of Aβ40 decreased, Aβ42 did not 
change. 

[73] Gantenerumab III Aβ mAb 799 
Study halted due to no effect on 

cognition or Aβ deposition. 

[74] Crenezumab II Aβ mAb 448 
No effect on cognition, elevated CSF 

levels of Aβ were associated with 
treatment. 

[76] Lecanemab II Aβ mAb 854 

Treatment showed a reduction in 
Aβ and a reduction in cognitive de-
cline over an 18-month period, mis-
sing 12-month primary endpoints. 

4.2. Active Vaccinations against AD 
There are a number of targets currently being evaluated for use in an active vaccine 

therapy for AD (Figure 4). About 140 (85%) immunisation procedures against Aβ deposi-
tion and 25 (15%) against tau have been reported, but no Food and Drug Administration 
approval of any AD vaccine has been achieved [64]. An Aβ42 trimer DNA vaccine may 
provide a path forward in finding viable options for AD prevention or a means of delaying 
disease progression. The DNA vaccine, AV-1959D, targeting the N-terminal epitope of the 
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Aβ peptide, is immunogenic in mice, rabbits, and non-human primates, as well as being 
effective in mouse models of AD (Table 2). Repeated dose safety assessment did not find 
any adverse short- or long-term effects of the vaccine in mice. Mice treated with the vac-
cine demonstrated elevated anti-Aβ antibodies over time [79]. Early immunisation with a 
conjugated Aβ3–10-keyhole limpet hemocyanin vaccine can greatly reduce tau phosphory-
lation, however, these immunotherapies are not clinically effective when administered too 
late [61]. 

Table 2. Research information for several active vaccine treatments against AD and their findings. 
All demonstrate potential in the form of immune responses being generated but must be monitored 
carefully to prevent adverse events from occurring. 

Ref Compound Phase Target Type  Participants Findings 

[79] AV-1959D 
Pre-clini-

cal 
Aβ 

DNA Vac-
cine 

60 

No short- or long-term toxicities de-
monstrated. The vaccine elicited an 
immune response in the form of an-
tibody production specific to Aβ42 

[78] Y-5a15 
Pre-clini-

cal 
Aβ Vaccine N/A 

Treatment elicited significant levels 
of Aβ antibodies, reduced levels of 
Aβ, and improved cognitive func-

tion in mice. 

[10,80] AN1792 IIa Aβ Vaccine 375 

Reduced Aβ load in the brain, ter-
minated due to development of ad-
verse events resulting from the trea-

tment. 

[79,81–83] Protollin 
Pre-clini-

cal 
Aβ Vaccine N/A 

Significant reduction in Aβ in mice, 
cognitive function improved follo-
wing treatment. Adjuvant was not 

observed in brain tissue. 

Vaccination targeting only the tau protein has shown benefits in some mouse studies 
but human studies are limited [65]. To prevent the accumulation of plaques, novel and 
safer plant-based vaccine strategies have been suggested [84]. In 2002, the first active AD 
vaccine (AN1792) developed by ELAN in Ireland and Wyeth in the USA went through a 
phase IIa clinical trial but was suspended due to the development of meningoencephalitis 
in ~6% of the individuals [10,80]. The exact mechanism of this was unknown and deter-
mined to have no clear relation to serum anti-Aβ42 antibody titers but may have been an 
autoimmune response rising from T cell interactions [85,86]. Other groups have evaluated 
the effect of combining systemic immunomodulators and influenza vaccines as a means 
of increasing immune action against plaques. As such, programmed cell death protein 1 
(PD-1) checkpoint blockade—inhibition of T cell apoptosis by preventing binding to PD-
1, known to modify AD [87]—in conjunction with the influenza vaccine, is hypothesised 
to have a dual immunostimulatory effect that could provide clinical benefit. The combi-
nation treatment was effective in attenuating cognitive deficit and Aβ pathology build-up 
in APP/PS1 mice through recruitment of monocyte-derived macrophages to the CNS [88]. 
More recently, a vaccine developed by modifying yeast cells to express Aβ1-15 on their 
cell wall, named Y-5A15, was shown to improve cognitive function, and decrease plaque 
formation and neuronal damage in animal models [78].  

In November of 2021, a phase I clinical trial of the vaccine Protollin was reported [89]. 
Protollin is a combination of Neisseria meningitidis outer membrane proteins complexed 
with Shigella flexneri 2a lipopolysaccharide. This combination works by activating Toll-
like receptors (TLRs) 2 and 4 within the nasal cavity. The immune response then moves 
to the cervical lymph nodes where CD4+ T cells can be activated and migrate to the CNS 
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[81]. The vaccine is delivered intranasally and displays efficacy in the removal of Aβ in 
transgenic mouse models of AD [87,88]. 

4.3. The limitations and Challenges of Immunotherapies 
While immunotherapies demonstrate a promising route towards the treatment of 

AD, there are problems and complications that can arise. As described with the vaccine 
AN1792, the development of adverse events or reactions to the treatment is a major con-
cern. Over-reactivity is a possibility when administering an immunotherapy and can re-
sult in more harm than good for the patient. In the case of AD, an over-reactive immune 
response could lead to further neurodegeneration via several pathways. Similarly to mi-
croglial and astrocyte signalling, excess inflammatory cytokine production could lead to 
further neuroinflammation that could exacerbate the disease state [90]. Furthermore, au-
toreactive T cell responses have the potential to develop and are a crucial safety consider-
ation that must be monitored for. 

Other concerns relating to efficacy of immunotherapies must also be considered. Part 
of the appeal of immunotherapies is that they rely on the patient’s immune system as the 
treatment for the condition. However, patients in advanced stage dementia are typically 
older individuals and present with weaker immune systems, either age-related or being 
immunocompromised due to comorbidities. As a result, there are several avenues by 
which an immunotherapy may fail. For example, decreased activity and availability of 
naïve CD4+ and CD8+ T cells [91], the increased likelihood of CD5+ B cells producing auto-
antibodies [92], as well as the impaired production of naïve B cells within bone marrow 
[93]. Furthermore, age-related immunosenescence may contribute to a tolerance of the im-
munotherapy and it may be unable to elicit immunogenicity [94,95]. 

4.4. Analysis of Immunotherapeutic Efficacy 
When conducting an immunotherapeutic trial, analysis of treatment efficacy is criti-

cal for the further development of that treatment. As a result, the use of concurrent bi-
omarker analysis is recommended. Common biomarker analysis of AD looks for changes 
of CSF Aβ42/40, phosphorylated tau (P-tau) and total tau (T-tau) [96] and neurogranin, a 
cerebral post-synaptic protein involved in long-term potentiation, whose elevation in the 
CSF appears specific to AD [97]. 

4.5. Cerebral Amyloid Angiopathy and Amyloid-Related Imaging Abnormalities 
Cerebral amyloid angiopathy (CAA) and amyloid-related imaging abnormalities 

(ARIAs) are conditions that present great challenges for immunotherapies, particularly 
with mAb treatments. CAA is the deposition of Aβ within cerebral vascular tissue and is 
heavily implicated in intracerebral haemorrhages and ARIA complications and is com-
mon among AD patients [98]. In clinical trials, aducanumab and lecanemab exhibited 
strong ARIA complications, which may have been related to CAA. The treatments re-
sulted in ARIA–vasogenic oedema (ARIA-E), which was more common in participants 
that were APOE-ε4 positive [68,76], further demonstrating the gene’s implication in AD 
[37]. Furthermore, a common trend within mAb trials is the demonstration of dose-de-
pendency for the removal of Aβ. Both aducanumab and lecanemab demonstrated the 
greatest reduction in Aβ within the 10 mg/kg dose groups. Unfortunately, the presenta-
tion of ARIA complications has a negative impact on the appeal of the treatment. Another 
mAb—crenezumab—demonstrated fewer ARIA complications. In the trial, one partici-
pant receiving a 15 mg/kg dose every four weeks (n = 247) exhibited asymptomatic ARIA-
E, and one participant in the same cohort exhibited asymptomatic ARIA–cerebral macro-
haemorrhage (ARIA-H) [74]. While the treatment was tolerated better, presented lower 
safety implications, and reduced Aβ density, the primary focus of the study—cognition—
was not met. 



Vaccines 2022, 10, 1527 10 of 14 
 

 

5. Conclusions 
Although Aβ is the most extensively studied pathological hallmark of AD patho-

physiology, many recent therapeutic approaches directing against this peptide have often 
failed in clinical trials, and thus, more attention is shifting toward tau pathology and neu-
roinflammation as therapeutic targets. Immunotherapy focusing on reducing the Aβ bur-
den is a promising treatment strategy for AD [78]. This might be attributed to deficient 
pathogenic targets, inappropriate models, defective immunotherapeutic procedures, and 
inadequate clinical trial design. Two important factors that may have been under-esti-
mated in AD pre-clinical research are the relevance of current AD mouse models and the 
immunological differences between mice and humans. The exact contribution of the dif-
ferent reactive microglia subtypes to AD is currently unclear and the subject of intense 
research. Many factors need to be considered—including sex, age, species, molecular di-
versity, health status, communication with the periphery—to fully decipher the role of 
microglia in AD. This is undoubtedly challenging but also a very exciting field of research, 
which holds the promise of defining innovative therapeutic strategies and subsequently 
reducing the socio-economic burden of this devastating disease [99]. Effective vaccines 
which halt or slow AD might be an effective and convenient approach to avoid enormous 
treatment-related expense [62]. A key consideration in vaccination against AD is the tim-
ing of treatment. Given that there is an age-related decline in immune function, vaccines 
may be more likely to prevent AD instead of providing treatment. Early vaccination, 
which prevents plaque build-up before symptoms have shown, may be more effective, 
while also providing a rationale for the current failure of AB immunotherapies in trials, 
as these are always tested in patients with symptomatic disease.  

A vaccine against AD is technically feasible; however, important methodological as-
pects should be changed for clinical success, including (i) the development of multitarget 
AD immunotherapies; (ii) the optimisation of antibody titers and epitopes; (iii) the phar-
macogenetic/pharmacoepigenetic validation of the immunisation procedure; (iv) the 
prophylactic treatment of genetically stratified patients at a pre-symptomatic stage; and 
(v) the definition of primary endpoints in prevention, based on objective/multifactorial 
biomarkers. Even with exquisite protocols, an individual, uni-target vaccine would be po-
tentially useful in at most 20–30% of defined cases, according to the genetic, epigenetic, 
and pharmacogenetic background of AD patients [64]. Compared to passive immunother-
apies, vaccines have several disadvantages. They depend on some degree of consistency 
of immune response in each individual, but people are heterogeneous. The characteristics 
of antibodies induced by vaccines are limited by the human immune system and cannot, 
for example, include artificial modifications for which therapeutic mAbs might be given 
to optimise their effectiveness. However, passive therapies are costly, and short term, 
while vaccines produce antibodies internally at much lower cost, so vaccination might be 
the most promising approach to reducing the global burden of dementia [100]. 
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