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Abstract: Public health threat coming from a rapidly developing COVID-19 pandemic calls for
developing safe and effective vaccines with innovative designs. This paper presents preclinical trial
results of “Betuvax-CoV-2”, a vaccine developed as a subunit vaccine containing a recombinant RBD-
Fc fusion protein and betulin-based spherical virus-like nanoparticles as an adjuvant (“Betuspheres”).
The study aimed to demonstrate vaccine safety in mice, rats, and Chinchilla rabbits through acute,
subchronic, and reproductive toxicity studies. Along with safety, the vaccine demonstrated protective
efficacy through SARS-CoV-2-neutralizing antibody production in mice, rats, hamsters, rabbits,
and primates (rhesus macaque), and lung damage and infection protection in hamsters and rhesus
macaque model. Eventually, “Betuvax-CoV-2” was proved to confer superior efficacy and protection
against the SARS-CoV-2 in preclinical studies. Based on the above results, the vaccine was enabled to
enter clinical trials that are currently underway.

Keywords: SARS-CoV-2; RBD-based vaccine; nanoparticle vaccine; recombinant vaccine; betulin;
COVID-19

1. Introduction

The world population is currently struggling with an outbreak of COVID-19 caused
by the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) [1]. The
World Health Organization (WHO) reported over 400 million confirmed cases of COVID-19
and up to 6 million deaths by 8 February 2022 [2]. As a result, much effort was made to
develop safe and efficient vaccines. By 7 February 2022, there were 183 vaccine candidates
developed, and only 10 of them were approved for use by the WHO [3]. Nevertheless,
by mid-February 2022, only 61.9% of the world population received at least one dose
of a vaccine against COVID-19, that being approximately 10 billion administered doses,
but mostly in high-income countries, whereas in low-income countries, only 10.6% [4].
Although, in the past, the only known coronavirus infections were associated with mild
symptoms as in a “common cold”, the severe clinical conditions that SARS-CoV-2 causes
and the magnitude of the coronavirus pandemic sparked the scientific interest in developing
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vaccines and antiviral treatments despite the previous scarce research in the field. Moreover,
the fast evolution of the SARS-CoV-2 and the emergence of new highly contagious strains
like Omicron reclaimed the urgent need to develop safe, effective, and easily scalable
vaccines, including those for booster vaccination.

The SARS-CoV-2 Spike (S) protein is a major component that is required for receptor
binding, membrane fusion, and viral penetration. The S protein is processed at the S1/S2
cleavage site by host cell proteases, thus generating the N-terminal S1-ectodomain and
a C-terminal S2-membrane-anchored protein. The S1 domain consists of the following
subdomains: the NTD (N-terminal domain), the RBD (Receptor-Binding-Domain; residues
319-527), and the S1 and S2 subdomains (SD1, SD2) [5]. The RBD is responsible for
the interaction with angiotensin-converting enzyme 2 (ACE2), the primary SARS-CoV-2
receptor that is expressed in many tissues, including type II alveolar epithelial cells [6].
Therefore, the RBD is an antigen eliciting neutralizing antibodies and a major target in
vaccine development.

Currently, there are 40 approved vaccines and around two hundred vaccine can-
didates [3]. All so-far approved coronavirus vaccines can be classified into one of the
following groups: inactivated coronavirus vaccines, non-replicating virus vector-based
vaccines, mRNA-based, and protein subunit-based vaccines.

Inactivated vaccines are produced by the cultivation of SARS-CoV-2 in cell culture
and its subsequent inactivation. Their production requires a production line with a very
high biosafety level. Such vaccines induce a wide range of cellular and humoral responses
due to different viral epitopes that are recognized by immune cells instead of inducing
a specific immune response against the pathogen. In addition, for this vaccine type,
lower neutralizing antibodies were observed in comparison with the mRNA vaccines [7].
Inactivated vaccines against SARS-CoV-2 are being developed in Russia (CoviVac), China
(BBIBP-CorV, CoronaVac), and other countries. The CoronaVac, developed by the Chinese
company Sinovac (Beijing, People’s Republic of China), was one of the first vaccines to be
approved [8].

On the other hand, the non-replicating viral vector-based vaccines, such as, for exam-
ple, those based on the adenovirus, have good efficacy profiles and relatively persistent
immune responses [9]. Despite the high cell tropism and a strong immune response that
these vaccines can induce, the genomic integration of viral nucleic acid is highly likely.
Therefore, their long-term safety, powerful efficacy, and the possibilities of scaling up the
production remain questionable.

The pre-existing immunity against the viral vaccine vector may impair the vaccine’s
immunogenicity and efficacy. Therefore, repeated use or booster vaccination makes this
even more complicated. These vaccines may not be as effective for people with reces-
sive infectious viruses [10]. The approved vaccines which pertain to this class are the
following: Ad26.COV2.S (Janssen, Beerse, Belgium), Sputnik V and Sputnik Light (Gama-
leya National Center of Epidemiology and Microbiology, Moscow, Russia), Vaxzevria
(AstraZeneca/Oxford University), Convidecia (CanSino, Tianjin, China), and others.

RNA vaccines are based on a promising and simple but novel and insufficiently ex-
plored platform with several technological barriers. The main concern is related to the
stability of the mRNA during vaccine production, storage, and transportation. Due to
that, such vaccines require supply chains that conform to the strict temperature require-
ments [9]. Despite the concern that this technology may lead to genome integration of
the administered nucleic acid, this was considered unlikely since there is no interaction
between the mRNA and the genomic DNA of the host cell. Nevertheless, some experts
find that regulatory assessment of the mRNA-based vaccines should treat these vaccines as
gene therapeutics and evaluate them on genotoxicity as well [11]. Other potential draw-
backs of the mRNA vaccines include the risk of activation of the RNA-induced interferon
response leading to the decline in the vaccine efficacy due to the delay in the mRNA
translation and its degradation [12]. In addition, these vaccines have a relatively high
proportion of side effects in comparison with other types [10,13]. The main representa-



Vaccines 2022, 10, 1290 3 of 21

tives of the mRNA vaccines are mRNA-1273/Spikevax (Moderna, Cambridge, MA, USA)
and BNT162b2/Comirnaty (Pfizer/Biontech, Mainz, Germany), which represent the first
mRNA-based vaccines ever approved.

Coronavirus vaccines based on the non-replicating viral vectors and mRNA so far
demonstrated the highest efficacies. Nevertheless, these technologies bear a potential
risk of genotoxicity and mutagenicity. Some studies indeed demonstrated that host cells
could transcribe RNA to DNA, thus enabling genome integration. In addition, there is
still no data on the possible long-term adverse effects of any of these COVID-19 vaccines
that are currently in use. Meanwhile, the technology of subunit protein-based vaccines is
a well-studied platform with a wide number of approved vaccines, including influenza,
hepatitis B and C, and papillomavirus [14]. These types of vaccines have a predictable safety
profile and good stability [10]. Nevertheless, they often require an additional adjuvant
to boost the immune response [14]. An example of this type of COVID-19 vaccine is
Nuvaxovid/NVX-CoV2373 (Novavax, Gaithersburg, USA).

That said, we decided to develop a subunit protein-based class of vaccines, “Betuvax-
CoV-2”, as the safest one and use VLP-mimicking technology to induce vaccine immuno-
genicity. The “Betuvax-CoV-2” vaccine is based on RBD and SD1 domains of the S1 protein
that are fused with the Fc-fragment of the human IgG1. This vaccine antigen is absorbed on
the surface of the 100–180 nm betulin-based spherical particles acting as a vaccine adjuvant
and mimicking the SARS-CoV-2 particles [15]. The present paper aims to summarize all pre-
clinical findings pertaining to the “Betuvax-CoV-2” vaccine, i.e., its safety, immunogenicity,
and protectiveness.

2. Materials and Methods
2.1. Animals & Ethics Statement

BALB/c and C57BL/6 mice that were used in the present research were obtained
from the Stolbovaya branch of the Scientific Center of Biomedical Technologies of the
Federal Medical and Biological Agency of the Russian Federation. One part of the study
was conducted at the Smorodintsev Research Institute of Influenza of the Ministry of
Health of the Russian Federation, Saint Petersburg. The experiments on the outbred
mice, rats, and rabbits were carried out at the Federal State Autonomous Educational
Institution of Higher Education I. M. Sechenov, the First Moscow State Medical University
of the Ministry of Health of the Russian Federation, Moscow, Russia. Golden hamsters
used in the immunogenicity and safety studies were obtained from the Branch of the
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of
Sciences (Nursery for the Laboratory Animals, Puschino, Russia). The experiments on
rhesus monkeys were conducted at the Research Institute of Medical Primatology, Sochi,
Russia. The animals were infected at the Federal State Budgetary Institution, Central
Research Institute No. 48 of the Russian Ministry of Defense, Sergiev Posad, Russia.

The number of animals used in the study was sufficient to assess the safety, immuno-
genicity, and protective properties of the vaccine, and, at the same time, the number was
sufficient to comply with the principles of ethical research. All animals were kept under
standard conditions in accordance with the Directive 2010/63/EU of the European Parlia-
ment and the Council of the European Union of 22 September 2010, on the protection of
animals used for scientific purposes. Animal husbandry was compliant with each facility’s
SOPs and sanitary and epidemiological rules SR 2.2.1.3218-14 “Sanitary and Epidemiologi-
cal Requirements for the Device, Equipment, and Maintenance of Experimental Biological
Clinics (Vivariums)” approved by the Resolution of the Chief State Sanitary Physician of
the Russian Federation of 29 August 2014, No. 51.

The animals were kept in the autoclaved sterile polycarbonate cages with Lignocel
Wood Fibers wood pellets (JRC, Rosenberg, Germany) as bedding and fed ad libitum using
standard food and purified water, under the following conditions: 20–24 ◦C, relative hu-
midity of 45–65%, and light/dark cycle of approximately 12 h per day. Housing conditions
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and experimental procedures were done with the approval and under the guidelines of the
ethics committee of animal experimentation of Sechenov University (approval number 047).

2.2. “Betuvax-CoV-2” Preparation

A recombinant RBD/S21/S14-FcIgG1 (RBD-Fc) antigen of the SARS-CoV-2 comprises
a C-terminal RBD sequence containing two additional S21P5 and S14P5 epitopes, fused with
the Fc-IgG1. The S14P5 epitope is located in the SD1 subdomain. Apparently, the antibodies
against this antigen region prevent the virus interaction with the ACE2-receptor. The S21P2
epitope is located in the S2 region and overlaps with the fusion peptide. Antibodies against
this epitope may counteract the fusion of the virus with the cell. Additionally, the order of
epitopes was changed to increase the stability of the protein. The antigen was mixed with a
previously prepared adjuvant as described in [15] so that the final concentration of RBD
antigen was 40 µg/mL or 10 µg/mL, and the adjuvant was 400 µg/mL. The components
were thoroughly mixed and placed in a shaker in the refrigerator for 3 h. The vials with the
vaccine were then stored in a refrigerator at 2–8 ◦C.

2.3. Safety Studies
2.3.1. Acute Toxicity Study

An acute toxicity study has been performed on the outbred mice (n = 120; 60 M
and 60 F) and the outbred rats (n = 120; 60 M and 60 F). The animals were divided into
groups according to their body weight (the requirement was that the difference between
the individual body weight and the mean is less than 10%). Both the mice and rats were
administered the vaccine intravenously or intramuscularly once at a dose of 10 µg or
40 µg or placebo (n = 20 per group; 10 M and 10 F). The body weight of the animals was
determined at the beginning of the experiment (as previously indicated), as well as on
the 7th and the 14th day following the administration. Clinical signs of the animals were
recorded daily. Animals were sacrificed on the 14th day of the experiment.

2.3.2. Subchronic Toxicity Study

A subchronic toxicity study of the vaccine was carried out in the outbred rats (n = 60;
30 M and 30 F) and Chinchilla rabbits (n = 24; 12 M and 12 F). Both groups of animals
were administered the vaccine intramuscularly at a dose of 5 or 20 µg or placebo (rats:
n = 20 per group; 10 M and 10 F; rabbits: n = 8 per group; 4 M and 4 F). The administrations
were performed once every 10 days over a 30-day period (4 injections in total). The overall
condition and the behavior of the animals were monitored daily, as well as the body
weight and the symptoms of intoxication. On the 31st and the 44th day after the first
administration, general and biochemical blood analysis, coagulometry, urinalysis, and
behavioral reactions were performed. The animals were sacrificed on the 31st and the 44th
day of the experiment.

2.3.3. Reproductive Toxicity in Female Rats

The reproductive toxicity of the vaccine was studied in female (n = 60) and male
(n = 30) outbred rats. Female rats were administered the vaccine intramuscularly at a
dose of 5 or 20 µg or placebo once a week over a 15-day period before mating with males
(3 injections in total, during 3 estrous cycles). A 0.9% sodium chloride solution was used as
a placebo. Following the administrations, females were placed together with intact males
(2:1) for 10 days (2 estrous cycles) (n = 30 per group, 10 M and 20 F). The overall condition
and the behavior of the animals were monitored daily. The body weight of female rats was
determined before the start of the study, after the last administration of the vaccine, and
the animals were sacrificed on the 20th day of the gestation period. The first possible day
of pregnancy was determined by the presence of spermatozoa in vaginal swabs.

On the 20th day of pregnancy, half of the females (n = 30) were sacrificed for the
examination of the reproductive system and pre- and post-implantation mortality (the
number of corpus luteum in the ovaries and the number of implantation sites, live and dead
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fetuses in the uterus, fetuses mass, and their craniocaudal size). The fertility index was
calculated as a ratio of the number of pregnant female rats to their total number. Half of the
pregnant female rats from each group were monitored until the delivery of the offspring
occurred. The offspring were then monitored for 35 days continually and evaluated on
general physical condition, behavior, body weight change, and mortality.

2.3.4. Reproductive Toxicity in Male Rats

Reproductive toxicity of the vaccine was studied in female (n = 60) and male (n = 30)
outbred rats. Male rats were administered the vaccine intramuscularly at a dose of 5 or 20 µg
or placebo once a week for 48 days before mating with females (7 injections in total). A 0.9%
sodium chloride solution was used as a placebo. At the end of the experiment, intact female
rats were placed together with male rats for mating (1:2) for 10 days (n = 30 per group,
10 M and 20 F). On the 20th day of the gestation period, half of the intact female rats and
all male rats were sacrificed for the examination of the reproductive system (histological
and morphological analysis of the testicles, functional state of the spermatozoa, and the
index of spermatogenesis, in addition to the same analyses that were used in the previously
described experiment). Half of the pregnant female rats were monitored until the offspring
were delivered. The offspring were continually monitored for 35 days for general physical
condition, behavior, body weight change, and mortality.

2.3.5. Embryo- and Fetotoxicity Study

Embryo- and fetotoxicity study of the vaccine was performed on mature female (n = 60)
and male rats (n = 30). Sexually mature males were kept with females (1:2) for 2 estrous
cycles (10 days) (n = 30 per group, 10 M and 20 F). The first possible day of pregnancy was
determined by the presence of spermatozoa in vaginal swabs. Pregnant female rats were
administered the vaccine intramuscularly at a dose of 5 or 20 µg or placebo once a week
till the 19th day of the pregnancy (3 injections in total). Half of the pregnant females were
monitored until the offspring were delivered and evaluated on general physical condition,
behavior, and body weight changes. Three to four days prior to the delivery, each female
rat was placed in a separate cage to record the childbirth, the duration of the gestation
period, and lactation.

The number of the pups, live and stillborn fetuses, and mortality were evaluated
over a 35-day period post-delivery period. The body weight of the pups was determined
at birth and on the 4th, 7th, 14th, 21st, 28th, and 35th day following the delivery. The
craniocaudal size was measured on the 4th day. The appearance of the coat, opening of the
eyes, detachment of the auricle, as well as motor activity, emotional reaction, and the ability
to coordinate movements were continually monitored and recorded. The effect on the rate
of maturation of sensory-motor reflexes during the feeding period was studied using the
following tests: negative geotaxis, flipping on a plane, cliff avoidance, and flipping in free
fall tests.

2.4. Immunogenicity

The immunogenicity was studied in mice, golden hamsters, and Chinchilla rabbits.
The C57BL/6 mice (n = 22) were immunized intraperitoneally, twice, at a dose of 5 or
20 µg/animal (n = 7 per group) or PBS (n = 8) over a 21-day period. The blood sera were
taken on the 21st and the 43rd day of the experiment.

The BALB/c mice (n = 8) were administered the vaccine intraperitoneally twice at a
dose of 5 µg/mouse (n = 5) or PBS (n = 3) over a 10-day period. The blood sera were taken
on the 10th and the 24th day of the experiment.

Outbred mice (n = 20 per group) and Chinchilla rabbits (n = 8 per group) were
administered two intramuscular shots at a dose of 5 or 20 µg or placebo (0.9% NaCl) over a
21-day period. Blood serum samples were taken from the rabbits on the 21st and the 35th
day and from the mice on the 21st and the 42nd.
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Hamsters (n = 36) were administered the vaccine intramuscularly at a dose of 5 or
20 µg/animal or placebo (0.9% NaCl) (n = 12 per group, 6 M and 6 F) twice, over a 28-day
period (the 1st and the 29th day of the experiment). On the 36th day of the experiment, the
blood samples from the hamsters were collected for the neutralizing antibody titers analysis.

2.5. Anti-SARS-CoV-2 S-Protein Specific IgG by ELISA

Total immunoglobulins against the SARS-CoV-2 were determined using the “SARS-
CoV-2-CoronaPass test system” (Biopalitra, Moscow, Russia). The antibody titers were
expressed as log base 2 (Log2). The conversion to the logarithmic titers is presented in
Table 1.

Table 1. Logarithmic titer data in reverse titer.

Conversion of Reverse Titer to Log2

Reverse titer 1:5 1:10 1:20 1:40 1:80 1:160 1:320 1:640 1:1280

Log2 2.32 3.32 4.32 5.32 6.32 7.32 8.32 9.32 10.32

Neutralizing antibodies against the SARS-CoV-2 in hamster blood plasma were de-
termined using the “SARS-CoV-2 Surrogate Virus Neutralization test kit” (GenScript,
Piscataway, NJ, USA).

Enzyme immunoassays were carried out using the “Multiskan GO” microplate spec-
trophotometer (Thermo Fisher Scientific, Waltham, MA, USA) at 450 nm.

2.6. Protective Efficacy

The protective efficacy of the vaccine was evaluated in a study using hamsters (n = 72)
and rhesus monkeys (Macaca mulatta) (n = 18). Hamsters were administered the vaccine
intramuscularly at a dose of 5 or 20 µg/animal (0.5 mL/animal) or intranasally at a dose
of 4 µg (100 µL/animal, 10 µL in each nostril 5 times a day with an interval of 30 min).
The control group received a placebo (0.9% NaCl) intramuscularly or intranasally or was
not administered any solution (virus dose control group) (n = 12 per group, 6 M and 6 F).
Healthy male rhesus monkeys (n = 18) received 0.5 mL of the vaccine intramuscularly at
a dose of 5 or 20 µg/animal or placebo (0.9% NaCl) (n = 6 per group). The vaccine was
administered twice on the 1st and the 29th day of the experiment (over a 28-day period).
Following the immunization, the animals were infected intranasally with the SARS-CoV-2
at a dose of 105 PFU (PFU—plaque-forming unit).

2.6.1. Infection of Animals with the SARS-CoV-2

For the preparation of the infectious mixture, a SARS-CoV-2 virus isolate B (WA/1/2020)
culture was used in the form of a freeze-dried 30% Vero C1008 cell suspension in a 10% su-
crose water solution with the addition of a 10% fresh chicken egg yolk. The initial biological
activity of the culture was 7 ± 0.2 lg PFU/mL. Content of two ampoules containing the cell
culture was resuspended in Hank’s solution supplemented with 2% FCS (fetal calf serum)
(Thermo Fisher Scientific, Waltham, MA, USA). The solution was administered intranasally
at a dose of 105 PFU/animal.

For further experiments, lung samples were taken from 4 hamsters and 2 monkeys
from each group on days 2, 4, and 6 following the infection. The SARS-CoV-2 accumulation
titer in the lungs was determined using the plaque assay on the Vero C1008 cell culture.
Lung samples from macaques were used for histology and immunohistology analysis.

2.6.2. Determination of the VSI (Virus Suppression Index) of the SARS-CoV-2 in the Lungs
of Golden Hamsters

Hamster lungs were homogenized and diluted in Hank’s solution with the addition of
2% FCS and antibiotics (streptomycin sulfate and benzylpenicillin sodium salt, 200 U/mL)
(Thermo Fisher Scientific, Waltham, MA, USA) to prepare a 10% lung suspension. The
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biological activity of the virus from the lung samples was determined by titrating the
prepared suspension to a monolayer of Vero C1008 cell culture in plastic vials with a 25 cm2

working surface area (CellStar, Greiner Bio-One GmbH, Kremsmünster, Austria). After
removing the medium, a monolayer of Vero C1008 cells was infected with 10-fold dilutions
of the virus. Vials with an infected monolayer were incubated for 1 h at 36.5–37.5 ◦C.
The inoculum was decanted and the primary agar coating, prepared according to the
prescription for the SARS-CoV-2, was added. The cell monolayer was incubated for 2 days
at 36.5–37.5 ◦C, after which a secondary agar coating was added and incubated for 24 h at
the same temperature. After the completion of this step, the number of negative colonies
was determined. A decrease in the level of viral load at the peak of infection was taken as a
parameter for evaluating the vaccine efficacy (at a 95% confidence level—decrease level
from 1.2 to 1.8 lg, at 99% confidence level—more than 1.8 lg).

2.6.3. Histological Study

In this study, 18 lung complexes from monkeys were examined, including trachea,
main bronchi, left and right lungs, esophagus, fragments of the aorta, fat tissue of the
mediastinum, thymus, and lymph nodes (the sections were fixed in a 10% formalin). The
material was excised with macroscopic photo documentation. As a result, over 120 diagnos-
tically significant areas of the lungs were obtained for histopathological micropreparations.

Using a computer video system (IBM PC + microscope Leica DM 1000, Leica Camera,
Wetzlar, Germany) and the ImageScope-M software package (Systems for Microscopy
and Analysis, Moscow, Russia), the “airiness” parameter, specific area of the histological
section occupied by air and free from infiltration or exudate from the alveolar space, was
determined in a semi-automatic mode.

An immunohistochemical study was performed to immunotype infiltrated cells in
the lungs using antibodies against the T-lymphocyte marker (CD3—Cell Marque, 103-
R94, Rocklin, CA, USA) and macrophages M2-phenotype (CD163 MsmAb—Cell Marque,
163M-15, Rocklin, CA, USA). Antibodies against vascular endothelial cells (CD31 Mon.
mouse—Cell Marque, JC-70, Rocklin, CA, USA) were also used. The morphometric evalua-
tion consisted in counting the number of cells per 1 mm2 area of the lung parenchyma.

For immunohistochemical evaluation of the coronavirus proteins (S- and N-proteins),
SARS-CoV2 spike (Genetex, GTX135356, Irvine, CA, USA) and SARS-CoV2 nucleocapsid
(Invitrogen, MA1-7404, Waltham, MA, USA) antibodies were used. The result was evalu-
ated visually and qualitatively. The lung tissue from a patient who died from a coronavirus
infection served as a positive control. The negative control was the lung tissue from a
patient who died from causes unrelated to the respiratory system.

2.7. Statistical Analysis

The obtained data were analyzed with Microsoft Office Excel 2010 (Microsoft, Redmond,
WA, USA) and GraphPad Prism v6.01 software (GraphPad Software, San Diego, CA, USA)
for geometric mean, standard deviation, arithmetic mean, and standard errors. No samples
or animals were excluded from the analysis. The Kruskal–Wallis H test, or its parametric
equivalent one-way analysis of variance (ANOVA), was used for the analysis of variance
between the group means, with subsequent pairwise comparison using the Tukey test or
nonparametric pairwise multiple comparisons by Dunnett’s test. Values p < 0.05 were accepted
as statistically significant.

3. Results
3.1. “ Betuvax-CoV-2” Vaccine Safety in Toxicity Studies
3.1.1. Acute and Subchronic Toxicity Studies

The acute toxicity study in outbred mice and rats with single intravenous and intra-
muscular vaccine injections demonstrated that a single administration of the vaccine at
10 µg/animal or 40 µg/animal did not lead to mortality, body, or organ weight decrease, or
worsening of the overall condition. The determination of lethal doses LD10, LD16, LD50,



Vaccines 2022, 10, 1290 8 of 21

or LD84 was impossible due to the absence of mortality. It was also shown that the animals
steadily gained weight with no lags for the entire period of the study. The average values of
the initial body weight and the body weight at the end of the study are depicted in Figure 1.
A comparison of six groups (males and females separately) using the Kruskal-Wallis test
did not show any significant differences (p > 0.05). The necropsy study, carried out on the
14th day following the vaccine administration, showed no abnormalities in the structure of
the internal organs in mice and rats or any pathological changes (data not shown).
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Figure 1. Mean changes of body weight over time in the acute toxicity study in mice and rats groups.
M—males, F—females, IM inj.—intramuscular injection, IV inj.—intravenous injection; p > 0.05.

Subchronic toxicity studies in rats and Chinchilla rabbits showed that there were
no differences observed between the experimental group and the control in terms of the
activity, movement, appearance, physiological functions, animal behavior, bone marrow
cellularity or myelogram parameters, body weight, based on hematological, biochemical,
or coagulometric parameters and urine analysis.

The necropsy study did not reveal any deviations in the structure of the body and the
internal organs in experimental groups. There were also no intergroup differences in the
mass of internal organs (heart, lungs, liver, kidneys, brain), including immunocompetent
organs (thymus, spleen). Histological examination of the internal organs and tissues
in experimental animals and the control demonstrated no pathological changes (data
not shown).

The absence of toxicity, including the lack of immunotoxicity and local irritation, was
demonstrated for the “Betuvax-CoV-2” vaccine in the acute and subchronic toxicity studies
in mice, rats, and rabbits.
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3.1.2. Reproductive Toxicity Study in Female Rats

To evaluate the condition of the reproductive system of pregnant female rats, immu-
nization was performed 15 days before mating. The administration of the “Betuvax-CoV-2”
vaccine at doses of 5 and 20 µg/animal did not affect the reproductive function adversely
(Figure 2). The embryo mortality at all stages of the development in female rats immunized
with the vaccine did not differ from the control. There were also no significant differences
in fetus weight or size (p > 0.05, Kruskal-Wallis test).
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Figure 2. Examination of the reproductive system according to the following parameters: fetus
number, fetus mass, total embryo mortality rate, fetus craniocaudal size from female rats intramus-
cularly immunized with the “Betuvax-CoV-2” vaccine 15 days before mating (F, before the mating),
before mating with males previously immunized during a 48-day period (M, before the mating),
and during the first 19 days of the pregnancy (F, during the pregnancy). F—females, M—males;
IM—intramuscular administration; p > 0.05.

Macroscopic and histological examination of rats’ ovaries that were immunized with
the “Betuvax-CoV-2” vaccine within 15 days before mating showed no signs of pathological
changes. The ovaries in all groups were dark red, moderately dense, and with an uneven
surface. Follicles of various sizes and degrees of maturation were visible. The follicular
epithelium was not changed; the nuclei were light and clear, and the ovarian medulla was
full-blooded (data not shown).

The effect of the “Betuvax-CoV-2” vaccine, when administered to female rats 15 days
before mating, was assessed on the postnatal development of the offspring (Figure 3). Half
of the pregnant rats were monitored continuously until the delivery of the offspring. The
development of the offspring was observed for 35 days for general physical condition,
behavior, weight dynamics, and mortality. All pregnant animals in the experimental groups
demonstrated normal birth and labor processes. The general and specific indicators of
postnatal development did not differ significantly from the control values (p > 0.05, Kruskal-
Wallis test). The duration of the pregnancy in experimental females was in accordance with
the physiological norm for this type of animal and the control. All rat pups were born
viable and no mortality during the first month was recorded. The physical development of
the offspring proceeded without any deviations.
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Figure 3. Evaluation of postnatal development of the offspring according to the following parameters:
duration of the pregnancy, the number of rat pups in a litter, rat pup mass, when female rats were
intramuscularly immunized with the “Betuvax-CoV-2” vaccine 15 days before mating (F, before
the mating); during the first 19 days of the pregnancy (F, during the pregnancy). F—females; IM—
intramuscular injection; p > 0.05.

3.1.3. Reproductive Toxicity Study in Male Rats

The condition of the reproductive system of the pregnant rats who were mated with
the males who were previously administered the “Betuvax-CoV-2” vaccine for 48 days
before mating (at doses of 5 µg and 20 µg) is depicted in Figure 2. The values indicating
the condition of the reproductive system did not differ from those females mated with the
males of the control group (p > 0.05, Kruskal–Wallis test). In this way, the administration of
the vaccine did not adversely affect the reproductive function of male rats.

A macroscopic testicle study in outbred male rats that were intramuscularly admin-
istered the “Betuvax-CoV-2” vaccine at doses of 5 µg and 20 µg once a week for 48 days
demonstrated no pathological changes. Testicles of all experimental groups were un-
changed compared to the control, oval, pale gray in color; the blood vessels with well-
expressed lobulated structure (data not shown).

Histological study in rat testicles showed that the administration of the vaccine at
20 µg once a week for 48 days had an adverse effect on the condition of the spermatogenic
epithelium expressed in abnormal polarity and germ cell localization. It manifests as cell
desquamation into the lumen of seminiferous tubules (in 6 out of 10 males of the 20 µg
group). The spermatogenesis index of the rats administered the vaccine at 5 µg did not
show significant intergroup differences (p > 0.05, Dunnett’s test). However, the 20 µg group
was significantly different from the control (p < 0.001, Dunnett’s test), the absolute difference
between the sample means in the control group, and the 20 µg group was only 0.22. Thus,
the spermatogenesis in the 20 µg group decreased slightly and had no pronounced effect
on the reproductive potential of male rats.

Statistically significant intergroup differences in the functional state of the spermatozoa
of rats that were administered the “Betuvax-CoV-2” vaccine at 5 and 20 µg once a week for
48 days were also not detected. There were no adverse effects on the embryo development
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recorded. This was confirmed by examining the reproductive system of pregnant females
and the development of the offspring (Figure 2).

3.1.4. Embryo- and Fetotoxicity Study

Embryo- and fetotoxic effects of the vaccine were examined during the antenatal
period in cases when the vaccine was administered intramuscularly to female rats during
the first 19 days of the pregnancy. Intramuscular injections were administered once a week
from the 1st to the 19th day of pregnancy at 5 or 20 µg and did not show embryotoxic and
teratogenic effects in terms of the offspring development. Mortality was absent and there
were no signs of toxicosis, visible pregnancy abnormalities, or decreased body weight gain
of female rats in the experimental group in comparison to the control. Embryo mortality
at all stages of the development at all doses did not differ from the corresponding values
of the control group (0%). Significant differences from the control in weight and size of
the fetus and placenta were also not revealed (Figure 2). No external abnormalities of the
embryos were found. The study of nine sagittal sections confirmed the absence of internal
developmental anomalies. No anomalies in the skeleton development and delays in the
ossification of the skeleton of the embryos were also found (data not shown).

The effects of intramuscular administration of the vaccine on female rats during the
first 19 days of pregnancy were evaluated during the postnatal development of the offspring
as well (Figure 3). Integral and specific indicators of postnatal development of rat pups
from experimental female rats did not differ significantly from the control values (p > 0.05,
Kruskal–Wallis test). None of the doses affected the physical development of the offspring,
the development of sensory-motor reflexes during the period of feeding, motor activity, or
emotional reactions after the end of feeding.

The physical development of the offspring was normal. The recorded time of the
manifestation of specific developmental events, such as the detachment of the auricles, the
appearance of the primary hairline, or the opening of the eyes, were within the control
and standard fluctuations for this animal species. Embryos with developmental anomalies,
both external and internal, were absent from all experimental groups.

Thus, the results of the preclinical study indicate a high safety, absence of general toxi-
city, or reproductive toxicity of the “Betuvax-CoV-2” vaccine in mice, rats, and Chinchilla
rabbits of both sexes.

3.2. “Betuvax-CoV-2” Vaccine Stimulates Humoral Immune Response
3.2.1. Antibody Titers in the Sera of C57/Black and BALB/c Mice

Immunization and sample acquisition for this study were performed as shown in
Figure 4, top panel. The study showed that the vaccine antigen-specific antibody level has
increased after a single immunization with “Betuvax-CoV-2”, yet it was not considerable.
A significant increase in specific antibody titers in the immunized C57/black mice in
comparison with control was observed after two intraperitoneal injections of the vaccine
preparation. The IgG titers significantly increased in both groups: upon administration of
the vaccine at a dose of 5 µg/animal (GMT (geometric mean titer) = 1600) and at a dose of
20 µg/animal (GMT = 2377), compared to control (p < 0.05, Tukey’s test) (Figure 4).

A significant increase in specific antibody titers in the serum of BALB/c mice was
registered after a single immunization compared to the control group (PBS). The GMT
value after a single immunization at a dose of just 5 µg was 14,703. The antibody titers
after re-vaccination compared with those after a single immunization were multiplied by
9 times (GMT = 132,578). All groups were significantly different from each other (p < 0.05,
Tukey’s test) (Figure 4).



Vaccines 2022, 10, 1290 12 of 21

Vaccines 2021, 9, x FOR PEER REVIEW 12 of 22 
 

 

and standard fluctuations for this animal species. Embryos with developmental anoma-
lies, both external and internal, were absent from all experimental groups. 

Thus, the results of the preclinical study indicate a high safety, absence of general 
toxicity, or reproductive toxicity of the “Betuvax-CoV-2” vaccine in mice, rats, and Chin-
chilla rabbits of both sexes. 

3.2. “Betuvax-CoV-2” vaccine Stimulates Humoral Immune Response  
3.2.1. Antibody Titers in the Sera of C57/Black and BALB/c Mice 

Immunization and sample acquisition for this study were performed as shown in 
Figure 4, top panel. The study showed that the vaccine antigen-specific antibody level has 
increased after a single immunization with “Betuvax-CoV-2”, yet it was not considerable. 
A significant increase in specific antibody titers in the immunized C57/black mice in com-
parison with control was observed after two intraperitoneal injections of the vaccine prep-
aration. The IgG titers significantly increased in both groups: upon administration of the 
vaccine at a dose of 5 μg/animal (GMT (geometric mean titer) = 1600) and at a dose of 20 
μg/animal (GMT = 2377), compared to control (p < 0.05, Tukey’s test) (Figure 4). 

A significant increase in specific antibody titers in the serum of BALB/c mice was 
registered after a single immunization compared to the control group (PBS). The GMT 
value after a single immunization at a dose of just 5 μg was 14,703. The antibody titers 
after re-vaccination compared with those after a single immunization were multiplied by 
9 times (GMT = 132,578). All groups were significantly different from each other (p < 0.05, 
Tukey’s test) (Figure 4). 

 
Figure 4. The level of antibodies against the SARS-CoV-2 RBD-based protein in the sera of immun-
ized C57/black (left) and BALB/c (right) mice after a single (x1) or double (x2) intraperitoneal im-
munization with “Betuvax-CoV-2” at a dose of 5 μg or 20 μg (left) and 5 μg (right). Separate sym-
bols (dots) represent individual values of titers in animals; the horizontal line shows average 
group geometric mean titers; p < 0.05. 

3.2.2. Antibody Titers in the Sera of Rabbits and Outbred Mice 
The study in rabbits and mice was performed according to the scheme in Figure 5. 

The study on rabbits showed that the RBD-specific antibody level after the first immun-
ization in the 5 μg, 20 μg, and the control groups did not differ significantly (p = 0.999, 

Figure 4. The level of antibodies against the SARS-CoV-2 RBD-based protein in the sera of immu-
nized C57/black (left) and BALB/c (right) mice after a single (1×) or double (2×) intraperitoneal
immunization with “Betuvax-CoV-2” at a dose of 5 µg or 20 µg (left) and 5 µg (right). Separate
symbols (dots) represent individual values of titers in animals; the horizontal line shows average
group geometric mean titers; p < 0.05.

3.2.2. Antibody Titers in the Sera of Rabbits and Outbred Mice

The study in rabbits and mice was performed according to the scheme in Figure 5. The
study on rabbits showed that the RBD-specific antibody level after the first immunization in
the 5 µg, 20 µg, and the control groups did not differ significantly (p = 0.999, Kruskal–Wallis
test), yet in the outbred mice, it significantly differed (p < 0.001, Kruskal–Wallis test) in the
20 µg group (Log2 = 4.40, GMT = 1:21) (p < 0.001, Dunnett’s test).

In rabbits, 14 days after the second immunization (on the 35th day of the exper-
iment), the antibody level in the 5 µg, 20 µg, and the control groups differed signif-
icantly (p = 0.044, Kruskal–Wallis test). The level of antibodies increased in the 5 µg
group (Log2 = 7.57, GMT = 1:190) (p = 0.024, Dunnett’s test) as well as in the 20 µg group
(Log2 = 6.07, GMT = 1:67) (p = 0.04, Dunnett’s test) compared with the control (Figure 5).

In the outbred mice, 21 days after the second immunization, on the 42nd day after the
first administration of the vaccine, the GMT of antibodies in the 5 µg, 20 µg, and control
groups was significantly different (p < 0.001, Kruskal–Wallis test). In the 5 µg group, the
level of antibodies did not significantly increase (Log2 = 3.99, GMT = 1:16) (p = 0.088,
Dunnett’s test) compared to the control group. In the 20 µg group, the antibody level
significantly increased (Log2 = 8.24, GMT = 1:305) (p < 0.001, Dunnett’s test) compared to
the control (Figure 5).
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serum of the intramuscularly immunized rabbits (left) and outbred mice (right) with “Betuvax-CoV-2”
at 5 and 20 µg/animal; * p < 0.05.

3.2.3. The Level of Neutralizing Antibodies in the Sera of Golden Hamsters

The presence of neutralizing antibodies against the SARS-CoV-2 was determined by
the “SARS-CoV-2 Surrogate Virus Neutralization Test Kit” (GenScript, Piscataway, NJ,
USA) in the blood plasma of hamsters taken on the 36th day after two immunizations.
The first group of hamsters with an intramuscular placebo injection (0.9% NaCl) showed
the absence of antibodies against the SARS-CoV-2. The second group of hamsters, immu-
nized intramuscularly with “Betuvax-CoV-2” at 5 µg/animal, showed a response in the
production of neutralizing antibodies in 33.3% of the animals (2 out of 6 females and 2
out of 6 males). The third group of hamsters immunized intramuscularly at 20 µg/animal
produced neutralizing antibodies in 92% of cases (5 out of 6 males and 6 out of 6 females)
(Table 2).

Table 2. Golden hamsters with neutralizing antibodies against SARS-CoV-2.

Hamsters with
Neutralizing
Antibodies

Control
0.9% NaCl

n = 12 (6M, 6F)

Betuvax-CoV-2
(5 µg/Animal)

n = 12 (6 M, 6 F)

Betuvax-CoV-2
(20 µg/Animal)
n = 12 (6 M, 6 F)

Quantity of hamsters
with neutralizing

antibodies/
all hamsters

0/12 4/12 11/12

To conclude on the immunogenic studies shown above, “Betuvax-CoV-2” demon-
strated that all animal species (mice, rats, rabbits, hamsters) produced virus-neutralizing
antibodies against the RBD component of the SARS-CoV-2.
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3.3. “Betuvax-CoV-2” Vaccine Shows High Protective Efficacy against the SARS-CoV-2
3.3.1. Accumulation of the SARS-CoV-2 Virus in the Lungs of Golden Hamsters

The specific antiviral activity of the vaccine (protective efficacy) was evaluated in
golden hamsters at 5 µg and 20 µg (intramuscularly) and 4 µg (intranasally) before the
infection with SARS-CoV-2. The experiment was performed on hamsters as described in
Figure 6, top panel. Neither in males nor females were there clinical signs of deviations of
health condition, local irritation, or statistically significant intergroup differences in terms
of body weight or body temperature during the immunization period (data not shown).
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Figure 6. The level of the SARS-CoV-2 accumulation in the lungs of vaccinated golden hamsters
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* p < 0.05.

After an intranasal infection with the SARS-CoV-2 at 105 PFU in the 20 µg/animal
hamster group (double intramuscular injection) and in the 4 µg/animal group (double
intranasal injection), the virus concentration in the lungs was completely suppressed on
the 6th day of the study in comparison with placebo (Figure 6).

The Virus Suppression Index (VSI) in the hamster lungs is presented in Table 3. In
the 20 µg/animal hamster group, the VSI was: 1.4 ± 0.2 lg PFU·mL−1—on the 4th day
after the infection, 2.2 ± 0.2 lg PFU·mL−1—on the 6th day after infection. In the group that
was immunized intranasally at a dose of 4 µg/animal (100 µL of a dosage of 40 µg/mL):
1.3 ± 0.2 lg PFU·mL−1 and 2.2 ± 0.2 lg PFU·mL−1 on the 4th and 6th day, respectively.
When the hamsters were immunized intramuscularly at a dose of 5 µg/animal, the VSI
ranged from 0.2 ± 0.3 to 0.4 ± 0.4 lg PFU·mL−1. In accordance with the Guidelines for
Preclinical Studies [16], the vaccine is effective if the VSI is from 1.2 to 1.8 lg with p < 0.05,
at 1.8 lg or more with p < 0.01.
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Table 3. Virus Suppression Index for vaccinated hamsters.

Hamster Groups
Virus Suppression Index, lg PFU·mL−1

2nd Day 4th Day 6th Day

5 µg/animal, IM 0.4 ± 0.3 0.4 ± 0.4 0.2 ± 0.3

20 µg/animal, IM 0.2 ± 0.2 1.4 ± 0.2 * 2.2 ± 0.2 **

4 µg/animal, IN 0.5 ± 0.2 1.3 ± 0.2 * 2.2 ± 0.2 **
In accordance with the Guidelines for Preclinical Studies [16], the drug is effective if the * VSI is from 1.2 to 1.8 lg
(p < 0.05) * and if the VSI is at 1.8 lg or more (p < 0.01) **. IM—intramuscular, IN—intranasal administration.

Therefore, in the groups that were vaccinated intramuscularly (20 µg/animal) and
intranasally (4 µg/animal), the VSI on the 4th day was in the range from 1.2 to 1.8 lg
indicating the vaccine efficacy with p < 0.05. The VSI was above 1.8 lg on the 6th day
in the intramuscular 20 µg administration and intranasal 4 µg administration groups,
which testifies a complete absence of the virus production in the lungs, indicating vaccine
protectiveness with p < 0.01.

Thus, it has been shown that the protectiveness of a double intramuscular admin-
istration of the vaccine at 20 µg and the intranasal administration at 4 µg against the
SARS-CoV-2 was 99%.

As the level of the SARS-CoV-2 accumulation in the lungs of the immunized hamsters
was lower than in the control group, it might also suggest that there was no ADE (antibody-
dependent enhancement) effect in the short-term period of observation.

3.3.2. Evaluation of the Protective Activity of the “Betuvax-CoV-2” Vaccine against the
SARS-CoV-2 in the Lungs of Rhesus Monkeys

The protective activity of the vaccine was studied in intramuscularly immunized
rhesus macaques at 5 or 20 µg before the infection with the SARS-CoV-2 (Figure 7, top panel).
There were no clinical signs of changes in health condition, local irritation, or significant
intergroup differences in body weight or body temperature during the immunization
period (data not shown).

After the macaques were intranasally infected with the SARS-CoV-2 at 105 PFU, there
were changes in pathohistology, such as interstitial inflammation and widespread (in
pulmonary circulation) thrombosis (thrombovasculitis) of large, medium, and small vessels
in the lung tissues. However, the tissue changes in the animals of the control group (1) were
significantly different from those in the vaccine groups of 5 µg and 20 µg (2 and 3). In the
control group, the pathomorphological picture showed signs of exudative inflammation
and catarrhal changes in the bronchi. The most characteristic symptom was thrombo-
hemorrhagic changes. In the vaccine groups, there was a slight hemorrhagic component,
however, with a more pronounced manifestation of interstitial inflammation in the form of
lympho-macrophage infiltration. Also, in these groups, there were no progressive lesions,
necrosis, abscess formation, or signs of fibrinous effusion in the alveoli (Figure 7A).

The airiness index expresses the specific area in the lumen of alveoli on a histological
section participating in external respiration and gas exchange. According to the airiness
index, the number of differences found between the groups, such as signs of damage, were
probably of viral origin. In fact, the presence of normal airiness foci was registered only in
the lungs of animals of the vaccine groups (Figure 7A).

Tracheal injury included less pronounced signs of partial desquamation of the epithe-
lium at the level of the lower third, as well as a minimally pronounced parietal accumula-
tion of mucofibrinous exudate (in the control group). The animals in the vaccine groups
observed no changes in the trachea for the duration of the study.
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3.3.3. Immunohistochemical and Morphometric Characteristics of the
Inflammatory Infiltrate

Immunohistochemical evaluation of the tissue samples was carried out using anti-
human antibodies against CD163, a marker of macrophages (M2, histiocytes), and antibod-
ies against CD3, a panlymphocyte marker. Lung tissue from a deceased person confirmed
to be infected with the novel coronavirus infection was used as a positive control.

The lymphocyte-macrophage ratio was the highest in the control group on the 6th
day—at about 70% (66.7%). Therefore, about two-thirds of the leukocytes in the infiltrate
were T-lymphocytes. The most pronounced immune response at the level of tissue and
according to the infiltrate characteristics was in the control group. More pronounced
inflammatory manifestations were specific to the animals in the experimental groups, and
the maximum number of macrophages was in the 20 µg group.

As it is shown in Figure 7A, lung samples from the control group (1, Figure 7A) were
consistent with subtotal hemorrhagic interstitial pneumonia. Segmental bronchi in the
distal sections were filled with blood, full of fibrin and many leukocytes. All vessels were
sharply plethoric, mostly thrombosed. Subpleural vessels were especially pronounced with
leukocyte infiltration. There were also some foci of effusion pleurisy. In Figure 7A, on the
upper part of the control group (1, Figure 7A), it can be seen that the lobar bronchus was
entirely filled with blood. Dystelectasis, thickening of the interalveolar septa due to edema
and massive leukocyte infiltration, and subtotal thrombosis of the vessels of all calibers
were recorded as well.

For the group with a dose of 5 µg (2, Figure 7A) in both samples, the lobar and
segmental bronchi were passable; there was no secret or exudate. Focal interstitial edema,
infiltration, and partial thrombosis of large and a part of small vessels were also observed.
In both samples (2, Figure 7A), areas of high airiness were also determined.
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The group immunized with 20 µg (3, Figure 7A) was characterized by passable lobar
and segmental bronchi and the absence of exudate. Peribranchial focal lympho-macrophage
infiltration and focal changes were absent. Some blood vessels were either thrombosed
or contained sludge, but no hemorrhagic component was observed. On the upper part (3,
Figure 7A), the stroma of the organ was diffusely infiltrated with leukocytes; there were no
segmented leukocytes or focal changes. In these groups (3, Figure 7A), large areas of high
airiness and single lymphoid nodules were also observed.

3.3.4. Detection of Viral Proteins in Lung Tissue

The mosaic arrangement of lung tissue areas with virus S-protein was determined
by immunohistochemistry (IHC) on the 2nd, 4th, and 6th day after infection. Reactions
with antibodies against the N-protein turned out to be negative both with the experimental
material and with the control samples. Figure 7B shows that there was a trend toward a
decrease in the detection of the S-protein in the lungs of primates depending on the use
of the “Betuvax-CoV-2” vaccine and its dosage. The detectable protein inclusions of the
S-protein in groups 5 µg and 20 µg (2 and 3, respectively, Figure 7B) were significantly less
compared to the control group (1, Figure 7B).

Moreover, the ADE effect was evaluated according to the criteria of overall morpholog-
ical and physiological state, as well as macroscopic changes in the lungs of the vaccinated
and the control animals. Macroscopic assessment of the lungs of monkeys, as well as the
immunohistochemical analysis of the accumulation of the S-protein of the SARS-CoV-2
in the lungs of the vaccinated animals, showed no ADE effect, supporting our previous
findings in hamsters.

As a result of determining the protective activity of the “Betuvax-CoV-2” vaccine in
intramuscularly immunized hamsters at a dose of 20 µg/animal and intranasally at a dose
of 4 µg/animal, an elimination of the virus from the lungs was shown to be 99%. Histology
of rhesus monkey tissue also showed that animals vaccinated intramuscularly at 5 or 20 µg
did not demonstrate pronounced signs of damage to the vascular component, unlike the
control group, but reflected an inflammatory component of the immune system to a greater
extent. Also, IHC identification of the S-protein showed a significantly lower presence
in the vaccinated macaques. In the study of the protection activity in both hamsters and
rhesus monkeys, no manifestations of the ADE effect were recorded during the observation.

4. Discussion

The present preclinical study of the “Betuvax-CoV-2” vaccine was conducted to evalu-
ate its safety and efficacy. The vaccine was studied in various toxicity studies (acute and
subchronic toxicity) and, as a result, it was proved to be safe for use. Mortality was zero,
the animals gained body weight, the mass of the internal organs did not change, and no
pathologies were recorded. Also, there were no signs of immunotoxicity or local irritation.

Reproductive toxicity tests in female rats had shown that the administration of the
vaccine at a dose of 5 or 20 µg, both before mating and during pregnancy, did not adversely
affect the reproductive function or had teratogenic effects on the development of the
offspring. The course of the pregnancy and the pup’s postnatal development did not differ
from the control parameters. The mortality of the pups was zero.

Multiple administration of the vaccine (7 times within a 48-day period) to male rats as
part of the reproductive toxicity study did not adversely affect the pregnancy of the females
and the postnatal development of their offspring. Macroscopic examination of the testicles
revealed no pathological changes. However, a histological study showed that male rats
who received the vaccine at a dose of 20 µg 7 times during a 48-day period showed some
change in the spermatogenic epithelium. Nevertheless, the spermatogenesis index in this
group decreased insignificantly and did not affect the reproductive potential of the male
rats. The functional state of spermatozoa did not differ from the control group as well.

It should also be noted that the subchronic toxicity study revealed no similar changes
in spermatogenic epithelium, as well as other signs of reproductive toxicity in males. The
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changes revealed in the male reproductive toxicity study were probably associated with a
high dose of the vaccine. In the subchronic toxicity study, the drug vaccine was adminis-
tered 4 times intramuscularly (1 time in 10 days) or 2 times intramuscularly (with an interval
of 21 or 28 days), while in this experiment, the males received 7 intramuscular injections of
the vaccine (once per week) at a dose of 20 µg, corresponding to the human dose.

The study of immunogenic properties of the “Betuvax-CoV-2” vaccine has proved
its ability to stimulate both humoral and cellular immune responses. Previously we
showed [15] that two-dose immunization of the mice leads to the formation of an adaptive T-
cell immune response. We observed an increase in both CD4+ and CD8+ Tem Spike-specific
cells after two administrations. Moreover, based on the type of the antigen formulation
(betulin adjuvant, size, and shape of nanoparticles), the Th1-directed polarization of the
cytokine response with the level of the CD4+ Tem (IL-2 and TNFα) was determined. A
statistically significant increase was also shown for the multifunctional CD8+ T cells (IFNγ+
IL-2+ TNFα+). This cytokine pattern is thought to be beneficial because patients with
severe COVID-19 are usually characterized by decreased IFNγ levels and a shift to a more
pronounced Th2 profile [17].

The administration of the “Betuvax-CoV-2” vaccine to mice (C57BL/6, BALB/c, out-
bred), Chinchilla rabbits, hamsters, and primates at a dose of 5 or 20 µg resulted in the
increase of the titers of the RBD-specific antibodies, specifically after the second shot. Anti-
bodies against the RBD component of the vaccine were neutralizing, thereby providing a
protective immune response against the SARS-CoV-2.

The protective activity of the vaccine was studied in golden hamsters and rhesus
monkeys after being infected with the SARS-CoV-2. In a study on the suppression of
the virus production in the lungs of golden hamsters, it was shown that the protection
level of the “Betuvax-CoV-2”, when administered intramuscularly at a dose of 20 µg, as
well as intranasally at a dose of 4 µg, was 99%. Histological examination of the lungs
of macaques also confirmed this finding. In the group of intramuscular injection of the
vaccine, there were no pronounced signs of damage to the microvessels with developing
hemorrhagic manifestations and subtotal vessel thrombosis of the pulmonary circulation
as in the control group. The immunized groups did not show signs of strong intra-alveolar
exudation, formation of hyaline membranes, or pathological secretion in the lumen of
the bronchi and bronchioles. The immunophenotypic characteristic of the infiltrate in the
later stages indicated a predominant cellular immunity. In addition, immunohistochemical
detection of the S-protein in the lungs of the infected primates was markedly lower in the
5 µg and the 20 µg intramuscular vaccine groups. It should be noted that in the study
of the protection activity in hamsters and macaques, the ADE effect of the vaccine was
not recorded.

Some of the advantages of the “Betuvax-CoV-2” vaccine over other available vac-
cines are its high safety profile and comfort of use. As the “Betuvax-CoV-2” vaccine is a
subunit protein vaccine, it does not contain any viruses such as Ad26.COV2.S (Janssen),
Sputnik V (Gamaleya National Center of Epidemiology and Microbiology), Vaxzevria
(AstraZeneca/Oxford University), or Convidecia (CanSino) adenovirus-based vaccines.
Therefore, this vaccine does not deliver any genetic material, which could lead to un-
wanted inflammation and side effects, as previously described [13,18–22]. However, a
rare, dangerous side effect of these types of vaccines is the vaccine-induced thrombotic
thrombocytopenia (VITT) which was suggested to be associated with the use of viral vector
components that bind to platelet factor 4 and form immunogenic complexes which attacked
by the circulating IgG. Consequently, PF4/IgG complexes can bind to the surface of platelets
and activate them, resulting in a prothrombotic state [23–25], although more studies are
required to confirm the exact underlying mechanism. Moreover, previously generated
immunity to the adenovirus capsid might prevent future uses of a booster vaccine, other
adenoviral based-vaccines, or therapeutic agents. As the use of booster vaccines becomes
more and more frequent with the rise of novel SARS-CoV-2 strains [26], it is important to
note the possibility of using the “Betuvax-CoV-2” repeatedly in a single individual.
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The mRNA-based vaccines such as mRNA-1273/Spikevax (Moderna) or BNT162b2/
Comirnaty (Pfizer/Biontech) are reported to be highly effective [27,28]. However, a great
number of various side effects were reported as well [13]. This is in line with the fact that
this type of vaccine is new with unknown long-term side effects. On the contrary, the
“Betuvax-CoV-2” vaccine represents a more traditional vaccine development approach
using a recombinant protein as an antigen. Furthermore, an increased risk of anaphylactic
shock has been reported for Moderna and Pfizer vaccines [29] which could be associated
with the adjuvant, the antigen, or the overall formulation. Meanwhile, the “Betuvax-CoV-2”
has not been reported to cause any such effect. Additionally, mRNA-based vaccines often
require extreme temperature conditions for long-term storage [30]. The “Betuvax-CoV-2”,
on the contrary, can be stored at 2–8 ◦C in refrigerators for up to a year. This feature could
be particularly attractive for countries that do not have an opportunity to keep the vaccine
under such conditions.

Based on the design and the vaccine type, the closest vaccine to the “Betuvax-CoV-2”
is Nuvaxovid/NVX-CoV2373 by Novavax. This vaccine has been shown to be efficient
and safe [31], although it uses a different antigen based on the full-length Spike protein.
Therefore, one more possible advantage of the “Betuvax-CoV-2” vaccine might arise from
the antigen used rather than from the adjuvant platform. The “Betuvax-CoV-2” is based
on the RBD of Spike protein, as opposed to the full-length Spike encoded in all registered
vaccines. This could be an advantageous feature since the immune response elicited in
response to full-length Spike could be broad in terms of the antibody repertoire, whereas
only neutralizing antibodies against RBD would prevent the virus from entering the
cells [32]. Moreover, the antibodies that are not specific to the RBD domain might then be
involved in ADE [33,34], so the use of the RBD-based protein could be advantageous in
terms of both safety and the efficacy of the vaccine.

5. Conclusions

Thus, the results of the preclinical studies showed the immunogenicity (humoral and
cell immunity), protection (significant reduction in virus loads), and safety of the vaccine,
including the absence of the ADE effect, thus demonstrating a favorable “risk-benefit” ratio.

Given that there is active development and spread of new strains of the SARS-CoV-
2 such as Omicron, there is still a high demand for frequent boosting and the use of
polyvalent vaccines for different strains, which differ greatly in antigenic determinants.
The “Betuvax-CoV-2” vaccine, due to its high safety profile, efficacy, and the possibility
of scalable production for different emerging strains, is well suited as a booster vaccine.
We are also considering the development of an intranasal vaccine against the coronavirus,
which showed remarkable protection in this study. Currently, intramuscular injection of
the “Betuvax-CoV-2” vaccine is currently being evaluated in a phase 1/2 of a randomized,
double-blind placebo-control clinical trial (NCT05270954).
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