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Abstract: Background: In December 2021, Omicron replaced Delta as the dominant coronavirus
disease 2019 (COVID-19) variant in Thailand. Both variants embody diverse epidemiological trends
and immunogenicity. We investigated whether Delta and Omicron patients’ biological and clinical
characteristics and immunogenicity differed post-COVID-19 infection. Methods: This retrospective
cohort study investigated the clinical outcomes and laboratory data of 5181 patients with mild-to-
moderate COVID-19 (Delta, 2704; Omicron, 2477) under home isolation. We evaluated anti-receptor-
binding domain immunoglobulin G (anti-RBD IgG) and surrogate viral neutralizing (sVNT) activity
in 495 individuals post-COVID-19 infection during the Delta pandemic. Results: Approximately 84%
of all patients received favipiravir. The median cycle threshold (Ct) values were lower for Omicron
patients than Delta patients (19 vs. 21; p < 0.001), regardless of vaccination status. Upper respiratory
tract symptoms were more frequent with Omicron patients than Delta patients. There were no
significant associations between Ct and Omicron symptoms (95% confidence interval 0.98–1.02). A
two-dose vaccine regimen reduced hospital readmission by 10% to 30% and death by under 1%.
Anti-RBD IgG and sVNT against Delta were higher among older individuals post-COVID-19 infection.
Older individuals expressed anti-RBD IgG and sVNT for a more extended period after two-dose
vaccination than other age groups. Conclusions: After a full vaccination course, breakthrough mild-to-
moderate Delta and Omicron infections have limited immunogenicity. Prior infections exert reduced
protection against later reinfection or infection from novel variants. However, this protection may
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be sufficient to prevent hospitalization and death, particularly in countries where vaccine supplies
are limited.

Keywords: breakthrough infection; neutralizing antibody; Delta; Omicron; COVID-19; immunogenicity

1. Introduction

In 2021, Thailand faced multiple rapid waves of coronavirus disease 2019 (COVID-19).
Social distancing and vaccines were encouraged as survival tools for people to circum-
vent the threats [1,2]. CoronaVac (a whole-cell inactivated vaccine, Sinovac, Life Sci-
ence) and ChAdOx1 (a modified chimpanzee DNA adenovirus-vectored vaccine, As-
traZeneca/Oxford) were more widely used than other vaccines by Thais [3]. The Coro-
naVac vaccine is based on a form of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) that has been weakened and safely generates an immune response [4]. The
AstraZeneca vaccine is based on the virus’s genetic instructions containing the SARS-CoV-2
structural surface glycoprotein antigen (spike protein; nCoV-19) gene to build the spike
protein. The spike protein fragments can then be recognized by the immune system [4,5].
Both vaccines were efficacious against symptomatic COVID-19 caused by the Wuhan strain,
but they proved to be less effective against other COVID-19 variants of concern, including
Delta and Omicron [6,7]. The vaccine effectiveness is low and wanes faster against infection
and mild-to-moderate symptomatic disease but is high against severe disease caused by the
Omicron variant. Evidence indicated that the vaccine effectiveness against severe disease
outcome after receipt of a primary series with either CoronaVac or AstraZeneca or a booster
dose increased to >70% for all vaccines within the first 3 months after a final dose [8]. Omi-
cron displaced Delta as the predominant variant during the study period [1]. Randomly
selected SARS-CoV-2 variants captured by surveillance conducted by the Department of
Medical Science [6] and worldwide during weeks 4 to 10 of 2022 demonstrated that almost
all new infections in Thailand were due to Omicron (99.6%) (Supplementary Figure S1).

Since 2020, the Thai National Treatment Guidelines for COVID-19 from the Ministry
of Public Health [9] recommended that favipiravir, a broad-spectrum nucleotide analog tar-
geting the viral RNA-dependent RNA polymerase [10], be the treatment option for patients
at increased risk of severe disease and mild severity of pneumonia. It has widely been
repurposed to treat mild-to-moderate cases of COVID-19, including Delta and Omicron.
In our experiences and in earlier studies, it showed promising results in patients with
mild-to-moderate COVID-19 with well-tolerated side effects [11,12]. Remdesivir [13], a
monophosphoramidate prodrug of the nucleoside GS-441524, is only recommended for
use in severe disease due to limited access. In addition, monipiravir [13], the oral prodrug
of beta-D-N4-hydroxycytidine (NHC), and anti-SARS-CoV-2 monoclonal antibodies were
not available during the study period.

A combination of waning vaccine-derived immunity and the arrival of the SARS-CoV-2
variants, Delta (B.1.617.2) and Omicron (B.1.1.529), led to breakthrough infections after
COVID-19 vaccination or prior infection [7,14]. This greatly overloaded the nation’s public
health system and exacerbated socioeconomic disparities [2,15]. In response, home isolation
(HI) was implemented for patients with mild-to-moderate symptoms nationwide to combat
the overwhelming demand for hospital beds (Supplementary File Method S1).

The Omicron variant caused less severe disease than other variants [16]. Nevertheless,
there were serious concerns about its increased transmissibility [17], potential for reduced
sensitivity to neutralizing antibodies, and newly emerged lineages (BA.4 and BA.5) [18–20].
Very few studies have verified the guidance for vaccination after a mild-to-moderate
COVID-19 infection, particularly in countries where the provision of full vaccination
courses is challenging [21]. Here, we present the results of our analyses of retrospective
information from mildly to moderately symptomatic individuals who were seropositive for
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SARS-CoV-2. All patients were in the HI system during the Delta and Omicron pandemics.
They were treated between July 2021 and March 2022.

2. Materials and Methods

This retrospective cohort study evaluated the treatment outcomes and immunogenic-
ity of mild-to-moderate COVID-19 patients admitted to the HI system of Siriraj Hospital,
Bangkok, Thailand. The Institutional Review Board (IRB), Faculty of Medicine Siriraj Hos-
pital, Mahidol University reviewed and approved the follow-up study (COA: Si 732/2021
and Si 833/2021), and it was registered in ClinicalTrials.gov (NCT05328479).

2.1. Study Population

The data collection reported here was performed between 8 July 2021 and 15 March
2022. The study population comprised 2704 and 2477 patients during the Delta (before
November 2021) and Omicron (after 12 January 2022) pandemics. All had been posi-
tive with SARS-CoV-2, determined via reverse transcriptase–polymerase chain reaction
(RT-PCR) testing. Someone who met the inclusion criteria was considered to have mild
symptoms, or perhaps be asymptomatic, and was referred to the Siriraj-Home system
(SI-Home) in which medicine is delivered by health personnel within 24 h rather than being
relegated to a field hospital or another potentially unpleasant arrangement. Data relating
to clinical information and laboratory test findings were retrieved (after IRB approval) from
patients’ electronic medical records without any personal identifiable information. The
study protocol and guidelines for COVID-19 standard care were based on national and
World Health Organization recommendations [15,22].

2.2. Patient Selection and Procedures

A subset of 495 patients (age ≥ 12 years) were recruited for a reactogenicity and
immunogenicity follow-up study after COVID-19 recovery at 21 to 150 days post-COVID-
19 onset. All participants provided informed consent for this study. They were tested for
SARS-CoV-2 antibodies and a surrogate virus neutralization (sVNT) against SARS-CoV-2
Wuhan and Delta variants (Figure 1). The patients were classified into different exposure
groups based on vaccination status prior to COVID-19 infection, study antibody, and PCR
test (Supplementary Methods S1).

 

Figure 1. Study source recruitment and enrollment.
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2.3. Outcome Measures

The rationale for mild-to-moderate COVID-19 treatment is described in Method S1. In
brief, the primary treatment strategy in Thailand included early favipiravir treatment and
recommended outpatient antiviral therapies. The primary outcome was a comparison of
patients’ baseline clinical and biological characteristics with Delta and Omicron variants of
SARS-CoV-2 infections in the HI system. Treatment groups were categorized into 3 groups:
(1) symptomatic treatment (S), (2) symptomatic treatment plus favipiravir treatment (Favi),
and (3) symptomatic treatment plus favipiravir and dexamethasone treatment (Favi/Dexa).
The “date of disease onset” was defined as the day when new-onset, self-reported respira-
tory symptoms were observed. The durations from illness onset to first hospital admission,
first favipiravir treatment, and discharge up to 14 days were measured. Viral loads were
considered in cycle threshold (Ct) value analyses. Analyses considered viral loads for
comparisons of Ct values by the vaccine exposure groups and self-reported symptoms. A
Ct value ≥30 corresponded to a copy number threshold <106/mL or less, indicating low
viral RNA [23].

2.4. Diagnosis of COVID-19

The diagnosis of COVID-19 is made based on the detection of ≥2 SARS-CoV-2 genes
via RT-PCR from a nasopharyngeal (NP) swab, throat swab, and/or any respiratory sam-
ples, as previously described [24]. Our COVID-19 diagnostic assay was a probe-based
qualitative RT-PCR probe. The Allplex™ 2019-nCoV Assay (Seegene, Seoul, South Ko-
rea) was used for SARS-CoV2 detection. The targeted COVID-19 genes detected here
included the nucleocapsid (N), envelope (E) of Sarbecovirus, and RNA-dependent RNA
polymerase (RdRp) of COVID-19 according to the manufacturer’s instructions and as
described previously [25].

2.5. Serological Assays

Patients were randomly invited to test for anti-SARS-CoV-2 receptor-binding domain
immunoglobulin G (anti-RBD IgG, (S1 subunit, No. 06S60)) and SARS-CoV-2 nucleocapsid
protein (SARS-CoV-2 IgG II Quant for use with ARCHITECT; Abbott Laboratories, Chicago,
IL, USA) [15]. The anti-SARS-CoV-2 RBD IgG assay linearly measures the level of antibody
between 21.0 and 40,000.0 arbitrary units (AUs)/mL, which was converted later to the
WHO International Standard concentration as binding antibody unit per mL (BAU/mL)
following the equation provided by the manufacturer (BAU/mL = 0.142 × AU/mL) [26].
A level greater or equal to the cutoff value of 50 AU/mL or 7.1 BAU/mL was defined as
seropositive. A Surrogate Virus Neutralization Test (sVNT) was undertaken against the
original (Wuhan) strain and the Delta (B1.1617.2) strain due to its availability during the
study period. Briefly, plasma was pre-incubated with horseradish-peroxidase-conjugated
receptor-binding domain protein (HRP-conjugated RBD protein). Subsequently, the mix-
ture was transferred to each well containing Streptavidin bound with Biotin-conjugated
angiotensin-converting enzyme 2 (ACE2). The plate was washed, and the substrate and
stop solution were added. Finally, the optical density absorbance was measured using a
spectrophotometer at 450 nm. The inhibition rate was calculated through this formula:

Inhibition rate (%) =

(
1− OD450 of Sample

OD450 of Negative control

)
× 100.

Sample diluent was used as the negative control. White blood cell count, C-reactive
protein, and D-dimer results were retrieved from electronic medical records from patients
who were readmitted to the hospital.

2.6. Statistical Analysis

Multivariable analysis was performed via binary logistic regression for vaccination vari-
ables. We used negative binomial mixed models to analyze factors associated with numeric
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variables, including symptoms and the Chalder fatigue scale [27] (Supplementary Table S1).
Cox regression analysis was used to analyze the factors of the negative conversion time (NCT)
of SARS-CoV-2 RNA. The NCT is closely related to clinical manifestation and disease progres-
sion in COVID-19 patients. First, univariate analysis was performed, and the indicators with
statistical significance were analyzed with Kaplan–Meier survival analysis. A Cox propor-
tional hazard model was used for multivariate analysis. Normally distributed continuous
variables were summarized as the mean ± SD; otherwise, the median (interquartile range,
IQR) was used. Categorical variables were expressed using numbers and percentages. The
statistical significance of Ct values, IgG, sVNT, and others was determined using Kruskal–
Wallis and Dunn’s multiple comparisons tests using GraphPad Prism 9 (GraphPad Software,
San Diego, CA, USA) and STATA version 17 (Stata Corp., College Station, TX, USA).

3. Results
3.1. Demographic and Clinical Data

During the Delta and Omicron pandemics, 2704 and 2477 patients were enrolled,
respectively (Table 1). The mean age of the Omicron patients was younger than that
of the Delta patients (31.3 ± 12.3 vs. 33.8 ± 11.6 years; p < 0.001). The proportion of
COVID-19 infections was highest in the group aged 25 years or more during the Delta
wave (1470 (54.4%)) and during the Omicron wave (1220, (49.3%)), whereas an increased
proportion of COVID-19 infections was observed in the young during the Omicron pan-
demic (1015, (41%)). The frequent initial symptoms in the Delta wave were low-grade fever
(95.2%) and cough (60.7%). With the Omicron wave, however, cough (47.7%) and being
asymptomatic (39.1%) were frequently found.

The median duration from disease onset to HI admission was 5.1 days (interquartile
range (IQR) = 2.4) for the Delta wave and 2.8 days (IQR = 1.6) for the Omicron wave
(p = 0.021). The median peak viral RNA based on Ct values during the Omicron wave
(19.0 (IQR = 5.7)) was lower than for the Delta wave (21.0 (IQR = 7.8); p < 0.001). Our
results showed no significant correlation between Ct values and vaccination status during
the Delta and Omicron pandemics. Retrospective analysis revealed that patients receiving
dexamethasone treatment had Ct levels significantly below 20 during the Delta wave
(p < 0.001). This finding indicates that the Ct levels were associated with disease severity in
the Delta but not in the Omicron wave. According to age groups, there was no differences
between common symptoms in all age groups in either the Delta or Omicron pandemics,
whereas the Ct values in all age groups in the Delta pandemic (Ct 20.1 to 21.8) were higher
than those in the Omicron pandemic (Ct 18.8 to 20.6) (Supplementary Tables S2 and S3).

3.2. Rehospitalized COVID-19 Patients

Eighty-nine (3.3%) and forty-three (1.7%) patients in the HI system were eventu-
ally rehospitalized during the Delta and Omicron waves, respectively (Table 2). The
mean age of patients with Delta was older than that of patients with Omicron (55 years,
IQR = 24 vs. 33 years, IQR = 14; p < 0.001). Compared with the Omicron patients, those
with Delta had marked lymphocytopenia (0.4-fold) and neutrocytosis (1.8-fold). They also
had higher levels of serum C-reactive protein (CRP) (21.2-fold), aspartate aminotransferase
(1.6-fold), alanine aminotransferase (2.3-fold), and D-dimer (2-fold) (p < 0.05). Vaccination
with at least two doses was associated with reduced readmission rates of the Delta patients
(odds ratio (OR) = 0.305; 95% confidence interval (CI) 0.189–0.504) and Omicron patients
(OR = 0.131; 95% CI 0.052–0.334) than of unvaccinated and partially vaccinated Delta and
Omicron patients.
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Table 1. Characteristics and laboratory findings of all confirmed COVID-19 patients, compared between those with symptomatic treatment (S), symptomatic
treatment plus 5–14 days’ standard favipiravir treatment (Favi) and symptomatic treatment plus 5–14 days’ standard favipiravir treatment plus dexamethasone
treatment (Favi/Dexa) *.

Characteristics

July–October 2021 (Delta) January–March 2022 (Omicron)

p *,§All Patients
(n = 2704)

S
(n = 352)

Favi
(n = 2277)

Favi/Dexa
(n = 75) p *,† All Patients

(n = 2477)
S

(n = 520)
Favi

(n = 1957) p *,‡

n % n % n % n % n % n % n %

Female sex 1451 53.7 176 50.0 1235 54.2 40 53.3 0.332 1446 58.4 340 65.4 1106 56.5 0.020 0.001
Age, year, mean (SD) 33.8 (11.6) 15.7 (9.4) 36.0 (8.7) 52.5 (6.4) <0.001 31.3 (12.3) 36.0 (15.4) 30.1 (11.2) <0.001 <0.001

<25 955 35.3 275 78.1 677 29.7 3 4.0 <0.001 1015 41.0 115 22.1 900 46.0 <0.001 <0.001
25–60 1470 54.4 75 21.3 1350 59.3 45 60.0 1220 49.3 360 69.2 860 43.9
>60 279 10.3 2 0.6 250 11.0 27 36.0 242 9.8 45 8.7 197 10.1

Body weight, kg, mean (SD) 57.5 (22.0) 38.3 (21.4) 59.7 (20.9) 69.7 (13.2) 0.043 55.8 (22.4) 61.6 (16.7) 54.2 (23.4) 0.034 0.007
Presence of comorbidities

Diabetes mellitus 162 6.0 1 0.3 151 6.6 10 13.3 <0.001 150 6.1 34 6.5 116 5.9 0.604 0.922
Hypertension 313 11.6 7 2.0 283 12.4 23 30.7 <0.001 513 20.7 116 22.3 397 20.3 0.312 <0.001
Dyslipidemia 123 4.5 2 0.6 113 5.0 8 10.7 0.017 108 4.4 16 3.1 92 4.7 0.107 0.742

Obesity 23 0.9 0 0.0 23 1.0 0 0.0 0.114 41 1.7 7 1.3 34 1.7 0.534 0.009
Malignancy 22 0.8 0 0.0 21 0.9 1 1.3 0.176 25 1.0 2 0.4 23 1.2 0.109 0.458

Neurologic disease 7 0.3 0 0.0 7 0.3 0 0.0 0.288 271 10.9 78 15.0 193 9.9 0.001 <0.001
Heart disease 33 1.2 1 0.3 31 1.4 1 1.3 0.230 38 1.5 2 0.4 36 1.8 0.016 0.332
Lung disease 51 1.9 1 0.3 30 1.3 20 26.7 <0.001 na na na

Kidney disease 14 0.5 1 0.3 13 0.6 0 0.0 0.641 10 0.4 1 0.2 9 0.5 0.392 0.546
Others 336 12.4 33 9.4 292 12.8 11 14.7 0.158 753 30.4 162 31.2 591 30.2 0.674 <0.001

Presenting symptoms
Asymptomatic infection 390 14.4 103 29.3 286 12.6 1 1.3 <0.001 969 39.1 224 43.1 745 38.1 0.038 <0.001
Fever/history of fever 1250 46.2 133 37.8 1074 47.2 43 57.3 0.001 267 10.8 23 4.4 244 12.5 <0.001 <0.001

BT ¶ (◦C), median (IQR) ‖ 36.6 (0.7) 36.3 (0.6) 36.6 (0.7) 37.0 (0.6) 0.015 36.8 (0.5) 36.7 (0.4) 36.9 (0.5) 0.149 <0.001
<37.5 2474 95.2 318 97.0 2094 95.3 62 83.8 0.002 2107 88.8 489 95.5 1618 86.9 0.015 <0.001

37.5–38.0 120 4.6 10 3.0 99 4.5 11 14.9 244 10.3 21 4.1 223 12.0
>38.0 6 0.2 0 0.0 5 0.2 1 1.4 23 1.0 2 0.4 21 1.1

Cough 1642 60.7 152 43.2 1425 62.6 65 86.7 <0.001 1181 47.7 242 46.5 939 48.0 0.558 <0.001
Sore throat 1038 38.4 81 23.0 918 40.3 39 52.0 0.010 1181 47.7 242 46.5 939 48.0 0.558 <0.001
Rhinorrhea 419 15.5 47 13.4 358 15.7 14 18.7 0.383 626 25.3 143 27.5 483 24.7 0.189 <0.001

Productive sputum 537 19.9 46 13.1 465 20.4 26 34.7 0.029 na na na
Loss of taste 312 11.5 23 6.5 274 12.0 15 20.0 0.010 43 1.7 12 2.3 31 1.6 0.261 <0.001
Loss of smell 821 30.4 66 18.8 725 31.8 30 40.0 0.017 43 1.7 12 2.3 31 1.6 0.261 <0.001

Dyspnea 305 11.3 5 1.4 271 11.9 29 38.7 0.012 24 1.0 2 0.4 22 1.1 0.126 <0.001
Myalgia 282 10.4 11 3.1 249 10.9 22 29.3 0.005 206 8.3 52 10.0 154 7.9 0.118 0.009
Diarrhea 126 4.7 11 3.1 108 4.7 7 9.3 <0.001 63 2.5 10 1.9 53 2.7 0.312 <0.001

Nausea/vomiting 59 2.2 2 0.6 49 2.2 8 10.7 0.038 37 1.5 5 1.0 32 1.6 0.260 0.067
Others 1549 57.3 168 47.7 1328 58.3 53 70.7 <0.001 191 7.7 36 6.9 155 7.9 0.449 <0.001

Clinical features at the time of admission
Time from symptom onset to

PCR diagnosis, median (IQR), days 1.9 (1.6) 2.1 (1.9) 1.9 (1.6) 1.9 (1.5) 0.394 2.0 (1.1) 2.1 (1.0) 2.0 (1.1) 0.167 0.049

Time from symptom onset to
admission, median (IQR), days 5.1 (2.4) 5.6 (2.6) 5.0 (2.3) 5.2 (2.0) 0.337 2.8 (1.6) 3.2 (2.0) 2.6 (1.4) 0.032 0.021
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Table 1. Cont.

Characteristics

July–October 2021 (Delta) January–March 2022 (Omicron)

p *,§All Patients
(n = 2704)

S
(n = 352)

Favi
(n = 2277)

Favi/Dexa
(n = 75) p *,† All Patients

(n = 2477)
S

(n = 520)
Favi

(n = 1957) p *,‡

n % n % n % n % n % n % n %

Cycle threshold **
Cycle threshold, median (IQR) 21.0 (7.8) 24.1 (9.4) 20.7 (7.4) 18.5 (4.3) 0.001 19.0 (5.7) 21.4 (6.9) 19.7 (5.3) 0.001 <0.001

<20 1118 43.1 88 25.9 979 45.0 51 68.9 <0.001 1162 49.4 201 38.7 961 52.4 <0.001 <0.001
20–30 1218 47.0 189 55.6 1008 46.3 21 28.4 974 41.4 240 46.2 734 40.0
>30 255 9.8 63 18.5 190 8.7 2 2.7 216 9.2 78 15.0 138 7.5

Envelope (E), median (IQR) 17.5 (8.4) 20.9 (9.9) 17.3 (8.0) 14.3 (4.7) 0.012 18.0 (5.4) 17.8 (5.1) 19.0 (6.7) 0.121 <0.001
RNA-dependent RNA polymerase (RdRp),

median (IQR) 22.3 (8.2) 25.9 (9.6) 22.0 (7.7) 19.7 (4.7) <0.001 19.3 (5.4) 20.3 (6.9) 19.1 (5.0) 0.220 <0.001

Referred back to the hospital, yes 89 3.3 3 0.9 61 2.7 25 33.3 <0.001 43 1.7 5 1.0 38 1.9 0.128 <0.001
Dead, yes 5 0.2 0 0.0 0 0.0 5 6.7 <0.001 2 0.1 0 0.0 2 0.1 0.466 0.308

* Continuous data of characteristics and laboratory findings of all confirmed COVID-19 patients presented as mean (SD), median (IQR), and range at p < 0.05 indicates statistical
significance. † The statistical significance was assessed using the Fisher’s exact test and Kruskal–Wallis test; statistical difference within the Delta group was at p < 0.05. ‡ The statistical
significance was assessed using the Fisher’s exact test and Mann–Whitney test statistical difference within the Omicron group at p < 0.05. § The statistical significance was assessed using
the Fisher’s exact test and Mann–Whitney test; statistical difference between Delta and Omicron groups was at p < 0.05. ¶ Body temperature (BT) is a measure of the balance between
heat generation and heat loss of the body. ‖ Interquartile range (IQR) is a measure of statistical dispersion. ** Cycle threshold (Ct) value from RT-PCR tests represents the cycle number at
which the signal breaches the threshold for positivity; a lower Ct value is indicative of a high viral load.
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Table 2. Demographic, clinical, and laboratory findings of all of patients referred back for in-patient care and compared between those during the Delta and the
Omicron pandemic *.

Characteristics

July–October 2021 (Delta) January–March 2022 (Omicron)

p *,§All Patients (n = 89) Alive (n = 84) Dead (n = 5) p *,† All Patients (n = 43) Alive (n = 41) Dead (n = 2) p *,‡

n % n % n % n % n % n %

Male sex 44 49.4 43 51.2 1 20.0 0.175 20 46.5 18 43.9 2 100.0 0.121 0.753
Age, year, median (IQR) 55.0 (24.0) 55.5 (24.5) 54.0 (5.0) 0.617 33.0 (14.0) 30.5 (12.0) 81.0 (8.5) 0.073 <0.001

<18 5 5.6 5 6.0 0 0.0 0.017 25 58.1 25 61.0 0 0.0 0.022 0.697
18–44 26 29.2 26 31.0 0 0.0 4 9.3 4 9.8 0 0.0
45–64 37 41.6 32 38.1 5 100.0 3 7.0 3 7.3 0 0.0
≥65 21 23.6 21 25.0 0 0.0 11 25.6 9 22.0 2 100.0

Presence of comorbidities
Diabetes mellitus 23 25.8 21 25.0 2 40.0 0.457 7 16.3 7 17.1 0 0.0 na <0.001

Hypertension 28 31.5 26 31.0 2 40.0 0.672 10 23.3 10 24.4 0 0.0 na <0.001
Dyslipidemia 12 13.5 12 14.3 0 0.0 0.364 6 14.0 6 14.6 0 0.0 na <0.001
Heart disease na na na 3 7.0 3 7.3 0 0.0 na <0.002

Others 31 34.8 28 33.3 3 60.0 0.224 2 4.7 2 4.9 0 0.0 na 0.258
Presenting symptoms of entering HI ¶

Asymptomatic infection 9 10.1 9 10.7 0 0.0 0.440 32 74.4 30 73.2 2 100.0 0.396 0.020
Fever/history of fever 49 55.1 46 54.8 3 60.0 0.464 27 62.8 25 61.0 2 100.0 0.530 0.003

BT ‖ (◦C), median (IQR) ** 36.8 (0.5) 36.8 (0.5) 36.8 (0.2) 0.156 36.7 (0.9) 36.7 (0.9) - - na
>38.0 9 10.1 8 9.5 1 20.0 0.429 2 4.7 2 4.9 0 0.0 na 0.660

Cough 61 68.5 58 69.0 3 60.0 0.672 20 46.5 18 43.9 2 100.0 0.258 0.533
URI †† 45 50.6 43 51.2 2 40.0 0.489 21 48.8 21 51.2 0 0.0 0.111 0.174

Loss of taste/smell 22 24.7 21 25.0 1 20.0 0.201 1 2.3 1 2.4 0 0.0 0.793 0.008
Dyspnea 53 59.6 48 57.1 5 100.0 0.013 2 4.7 2 4.9 0 0.0 0.706 <0.001

Muscle aches 23 25.8 21 25.0 2 40.0 0.101 8 18.6 8 19.5 0 0.0 0.399 0.925
Diarrhea 13 14.6 11 13.1 2 40.0 0.098 2 4.7 2 4.9 0 0.0 0.706 0.219

Nausea/vomiting 10 11.2 10 11.9 1 20.0 0.413 6 14.0 6 14.6 0 0.0 0.483 0.372
Chest radiograph on referral date

Pneumonia detected in chest radiograph 51 57.3 48 57.1 3 60.0 0.638 12 27.9 12 29.3 0 0.0 na 0.158
Hematological, median (IQR)

WBC ‡‡ (×103/µL) 7.7 (7.4) 7.7 (7.4) 7.4 (7.2) 0.785 6.3 (4.0) 6.3 (3.7) 8.8 (9.8) 0.061 0.012
Lymphocytes (×103/µL) 0.8 (0.8) 0.9 (0.4) 0.8 (0.8) 0.038 1.8 (2.1) 1.8 (2.0) 2.1 (2.6) 0.914 <0.001

<1 × 103/uL 35 39.3 32 38.1 3 60.0 0.592 12 27.9 11 26.8 1 50.0 0.492 0.001
Neutrophil (×103/µL) 6.1 (7.0) 6.4 (7.4) 6.1 (7.0) 0.584 3.4 (2.5) 3.4 (2.6) 6.1 (7.3) 0.047 <0.001

Creatinine (mg/dL) 0.8 (0.4) 0.8 (0.4) 1.0 (1.6) 0.068 0.8 (0.8) 0.8 (0.9) 0.8 (0.3) 0.047 <0.001
eGFR §§ (mL/min/1.73 m2) 84.5 (37.5) 84.5 (38.2) 56.4 (87.1) 0.080 67.0 (64.5) 67.0 (64.5) - - na 0.139

AST ¶¶ (U/L) 47.5 (27.5) 47.0 (26.0) 59.0 (146.0) 0.043 30.0 (17.0) 30.0 (17.0) 36.0 - na <0.001
>40 35 39.3 32 38.1 3 60.0 0.056 10 23.3 10 24.4 0 0.0 0.552 <0.001

ALT ¶¶ (U/L) 41.5 (32.5) 42.0 (32.0) 19.0 (39.0) 0.337 18.0 (8.0) 17.5 (8.0) 22.0 - na <0.001
>40 29 32.6 28 33.3 1 20.0 0.511 3 7.0 3 7.3 0 0.0 0.771 <0.001

C-reactive protein (mg/L) 72.1 (65.2) 72.5 (64.0) 64.1 (54.7) 0.154 3.4 (9.2) 3.4 (8.7) 67.6 (29.3) 0.035 0.008
<10 6 9.5 4 6.7 2 66.7 0.005 31 73.8 30 75.0 1 50.0 0.114 <0.001

10–100 40 63.5 40 66.7 0 0.0 8 19.0 8 20.0 0 0.0
>100 17 27.0 16 26.7 1 33.3 3 7.1 2 5.0 1 50.0

Procalcitonin (ng/mL) 0.1 (0.3) 0.1 (0.2) 0.5 (1.5) 0.085 0.1 (0.3) 0.1 (0.3) 0.1 (0.2) 0.439 <0.001
>0.05 40 83.3 36 81.8 4 100.0 0.097 9 69.2 7 63.6 2 100.0 0.305 0.257
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Table 2. Cont.

Characteristics

July–October 2021 (Delta) January–March 2022 (Omicron)

p *,§All Patients (n = 89) Alive (n = 84) Dead (n = 5) p *,† All Patients (n = 43) Alive (n = 41) Dead (n = 2) p *,‡

n % n % n % n % n % n %

D-dimer, median (ng/mL) 2671.9 (1008.9) 2552.1 (1067.1) 4308.0 (2872.6) 0.059 1347.0 (4588.5) 1297.0 (2723.0) 7633.0 - na 0.029
<500 13 29.5 13 31.7 0 0.0 0.215 0 0.0 0 0.0 0 0.0 0.117 0.099

501–3000 25 56.8 23 56.1 2 66.7 5 62.5 5 71.4 0 0.0
>3000 6 13.6 5 12.2 1 33.3 3 37.5 2 28.6 1 100.0

Cycle Threshold ‖‖ (viral load at the time of entering HI)
Nucleocapsid (N), median (IQR) 19.1 (5.4) 19.2 (5.2) 16.1 (3.7) 0.846 18.9 (3.9) 18.9 (3.2) 18.2 (5.6) 0.729 0.023

<20 57 64.0 53 63.1 4 80.0 0.714 31 72.1 30 73.2 1 50.0 0.567 0.414
20–30 28 31.5 27 32.1 1 20.0 9 20.9 8 19.5 1 50.0
>30 4 4.5 4 4.8 0 0.0 3 7.0 3 7.3 0 0.0

Vaccine status
Unvaccinated 58 65.2 54 64.3 4 80.0 0.408 29 67.4 27 65.9 2 100.0 0.603 0.134

1 dose 10 11.2 9 10.7 1 20.0 9 20.9 9 22.0 0 0.0
≥2 doses 21 23.6 21 25.0 0 0.0 5 11.6 5 12.2 0 0.0

ORcrude (95% CI) *** 0.309 (0.189–0.504) 0.131 (0.052–0.334)
ORage and sex adjusted 0.142 (0.016–0.265) 0.109 (0.011–0.318)

ORfully adjusted 0.299 (0.012–7.643) 0.105 (0.005–0.294)

* Continuous data of demographic, clinical, and laboratory findings of all patients referred back presented as mean (SD), median (IQR), and range at p < 0.05 which indicates statistical
significance; OR, odds ratio. † The statistical significance was assessed using the Fisher’s exact test and Kruskal–Wallis test; statistical difference within the Delta group was at p < 0.05.
‡ The statistical significance was assessed using the Fisher’s exact test and Mann–Whitney test; statistical difference within the Omicron group was at p < 0.05. § The statistical significance
was assessed using the Fisher’s exact test and Mann–Whitney test; statistical difference between Delta and Omicron groups was at p < 0.05. ¶ Home isolation (HI): Once a COVID-19
infection has been diagnosed, medical staff will assess home isolation. The patients should generally be in good health and should not be suffering from any of the following conditions:
chronic obstructive pulmonary disease (COPD), chronic kidney disease (CKD), cardiovascular disease, cerebrovascular disease, uncontrollable diabetes, or other conditions that may be
considered by doctors to be a risk. Patients must agree to strictly isolate themselves from others. ‖ Body temperature (BT) is a measure of the balance between heat generation and heat
loss of the body. ** Interquartile range (IQR) is a measure of statistical dispersion. †† Upper respiratory infection (URI) affects the upper part of your respiratory system. ‡‡ White blood
count (WBC) is part of the immune system, helping to defend the body against infections and disease. §§ Estimated Glomerular Filtration Rate (eGFR) is used to determine if one has
kidney disease. ¶¶ Aspartate aminotransferase (AST) is an enzyme that is present in various tissues of the body, while alanine aminotransferase (ALT) is found mainly in your liver, used
to check for liver conditions, while AST is found in more parts of the body than ALT. For this reason, abnormal levels of ALT tend to be better indicators of liver problems than AST.
‖‖ Cycle threshold (Ct) value from RT-PCR tests represents the cycle number at which the signal breaches the threshold for positivity; a lower Ct value is indicative of a high viral
load. *** Effect estimates are reported as ORs (95% CIs); unvaccinated and 1-dose (reference) groups vs. >2 doses were compared by using multivariable logistic regression to calculate
adjusted ORs (aORs) with 95% CIs.
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3.3. Number of Symptoms and Fatigue Scores during Home Isolation

The risk factors of sex, the severity of illness, and vaccination status were signif-
icantly related to increased fatigue, determined by the Chalder fatigue scale (Table 3).
Neutralizing antibody titers were independently associated with the number of symptoms
(relative risk = 1.22; 95% CI 1.05–1.42; p = 0.009). However, the association of neutralizing
antibody titers was not statistically significant for fatigue. The severity of the initial ill-
ness was associated with persistent fatigue (adjusted relative risk (aRR) = 1.43; p = 0.039)
and was weakly associated with the number of symptoms (aRR = 1.22; p = 0.03). In the
stratified analysis of the patients, increased antibody titers remained associated with the
number of symptoms (aRR = 1.04; p = 0.025) and the fatigue score (aRR = 1.09; p = 0.015).
Patients who were vaccinated prior to COVID-19 infection reported a significantly lower
number of symptoms (p < 0.001) and lower fatigue scores (p = 0.01) than unvaccinated
patients. The Cox proportional hazard model revealed that fever (Exp(B), 0.75; p < 0.001),
cough (Exp(B), 0.84; p < 0.001) and loss of smell (Exp(B), 0.81; p < 0.001) were indepen-
dent risk factors of prolonged NCT of SARS-CoV-2 RNA in patients with COVID-19
(Supplementary Table S4 and Figure S2).

3.4. Clinical Manifestations and Viral Burden

The Ct values decreased markedly in unvaccinated Omicron-dominant individu-
als (19 (IQR = 17–22)) compared with Delta-dominant individuals (21 (IQR = 18–26);
age/sex-adjusted; p < 0.001; Figure 2). No difference was observed in individuals vac-
cinated with either ChAdOx1 or CoronaVac (age/sex-adjusted, p = 0.175), indicating
that vaccination was still valuable in reducing viral load. During the Omicron wave,
new PCR-positive cases were likely to be in the low Ct subpopulation regardless of the
number of vaccine doses, the vaccine type, or the time since the last vaccination. How-
ever, Ct levels tended to vary during the Delta wave (Figure 3). During the Delta but
not the Omicron pandemics, patients who had at least two-dose vaccination prior to
COVID-19 infection reported a significantly lower number and probability of any symp-
toms (OR = 0.25; 95% CI 0.12–0.52; p < 0.001) and common COVID-19 symptoms (cough,
fever, and anosmia/ageusia (OR = 0.28; 95% CI 0.13–0.58; p < 0.001)) than unvaccinated
individuals (Figure 4A and Supplementary Table S5). No correlation between Ct values
and the probability of reporting any symptoms was noted in the Omicron pandemic
(Figure 4B–E and Supplementary Table S6).
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Table 3. COVID-19 patient factors associated with increasing number of symptoms and higher fatigue score at 14-day follow-up—negative binomial mixed models
(July 2021 to March 2022) *.

Characteristics n %
Number of Symptoms † (0–12) Fatigue Score ‡ (0–27)

RR § 95% CI ¶ p *,‖ aRR ** 95% CI p *,‖ RR 95% CI p *,†† aRR 95% CI p *,††

Female sex 2194 58.4 1.02 (0.94, 1.10) 0.650 1.03 (0.96, 1.11) 0.361 1.13 (0.99, 1.30) 0.071 1.15 (1.00, 1.31) 0.049 *
Age, year, median (range) 31 (17–47) 1.00 (1.00, 1.00) 0.966 1.00 (1.00, 1.00) 0.146 1.00 (0.99, 1.00) 0.458 1.00 (0.99, 1.00) 0.292

Comorbidity
Hypertension 769 20.5 1.05 (0.95, 1.16) 0.322 1.04 (0.93, 1.16) 0.488 0.97 (0.81, 1.15) 0.708 - - -
Dyslipidemia 231 6.2 1.01 (0.89, 1.15) 0.890 1.07 (0.93, 1.22) 0.353 0.97 (0.77, 1.22) 0.781 1.11 (0.86, 1.42) 0.427

Diabetes mellitus 311 8.3 0.99 (0.87, 1.13) 0.914 0.95 (0.83, 1.09) 0.491 0.83 (0.65, 1.05) 0.115 0.81 (0.63, 1.04) 0.104
Asthma/COPD ‡‡ 97 4.8 0.99 (0.85, 1.15) 0.882 0.99 (0.86, 1.14) 0.882 0.84 (0.64, 1.10) 0.211 0.85 (0.65, 1.11) 0.232

Chronic heart disease 65 1.7 1.07 (0.83, 1.39) 0.592 1.07 (0.84, 1.37) 0.568 1.22 (0.77, 1.93) 0.39 1.30 (0.83, 2.04) 0.252
Severity of initial illness 102 2.7 1.34 (1.11, 1.61) 0.002 * 1.22 (1.02, 1.45) 0.030 * 1.46 (0.95, 1.75) 0.051 1.43 (1.37, 1.72) 0.039 *
Immunosuppression §§,

median (range) 8.89 (7.94–9.53) 1.05 (1.03, 1.08) <0.001 * 1.04 (1.01, 1.08) 0.025 * 1.04 (1.00, 1.10) 0.074 1.09 (1.02, 1.16) 0.015 *

Neutralizing antibody titers ¶¶,
median (range) 4.58 (4.55–4.59) 1.22 (1.08, 1.37) 0.001 * 1.22 (1.05, 1.42) 0.009 * 1.18 (0.80, 1.20) 0.876 1.14 (0.66, 1.19) 0.324

Vaccinated, yes 2577 68.6 0.81 (0.76, 0.87) <0.001 * 0.78 (0.72, 0.84) <0.001 * 0.85 (0.75, 0.97) 0.014 * 0.84 (0.73, 0.96) 0.011 *

* Analysis of associated factors was conducted using negative binomial mixed models. RR, relative risk; aRR, adjusted relative risk. Statistical significance at the level of p < 0.05 is shown
in bold text. † Patients were assessed for 12 symptoms mentioned in Supplementary Table S1. ‡ Chalder fatigue score is only validated for patients aged >18 years (n = 3756); possible
fatigue scores range from 0 (no fatigue) to 27 (worst possible fatigue). § The relative risk (RR) is the risk of an event in an experimental group relative to that in a control group. ¶ The 95%
confidence interval (CI) is used to estimate the precision of the OR. ‖ Factors with significance level p < 0.05 in univariable analysis were included in the multivariable analysis of
symptoms at 14-day follow-up. ** Adjusted relative risk (aRR) is the difference in increased risk of symptoms and fatigue score. †† Factors with significance level p < 0.05 in univariable
analysis were included in the multivariable analysis of fatigue score at 14-day follow-up. ‡‡ COPD is chronic obstructive pulmonary disease. §§ SARS-CoV-2 spike protein antibody titers,
log10 transformed. ¶¶ Neutralizing antibody titers, log10 transformed.
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Figure 4. Ct value trajectories of confirmed COVID-19 infection and symptoms during the Delta and
Omicron pandemics in vaccinated and unvaccinated individuals. (A) Self-report symptoms in PCR-
positives by numbers of vaccination/reinfection status. Probability of reporting common (B,D) fever,
cough, anosmia, or ageusia or (C,E) any symptoms by Ct values and vaccination status in PCR-positives.
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3.5. Immune Responses against SARS-CoV-2 Variants

Higher antibody titers were observed in both unvaccinated COVID-19 and vaccinated
breakthrough COVID-19 patients. The titers reached their peak around 2 to 3 months post-
COVID-19 (PC) and decreased gradually over the following 3 months. The RBD-IgG geo-
metric mean titers (GMT) at baseline (1–2 months PC) were higher in the ChAdOx1 groups
(one, two, and three doses) than in the CoronaVac groups. However, no differences in titers
were observed between the two groups 3 months PC (ChAdOx1: one dose (822 binding
antibody units (BAU)/mL), two doses (945 BAU/mL), and three doses (886 BAU/mL) vs.
(CoronaVac: one dose (1174 BAU/mL) and two doses (974 BAU/mL)). In contrast, infected
individuals with prior vaccination had higher antibody titers at all time points compared
with previously unvaccinated participants with COVID-19 infection (p < 0.05; Figure 5A
and Supplementary Tables S7 and S8, Figure S3).

The anti-RBD IgG levels and sVNT against the Delta variant were markedly correlated
(r = 0.486 to r = 0.599), particularly in the unvaccinated group and vaccinated group
(Figure 6 and Supplementary Table S9). In both males and females, the GMT of anti-RBD
IgG was significantly higher in unvaccinated cases after 2 months (Figure 7A). Older
individuals had significantly higher GMT of anti-RBD IgG than the younger individuals in
both the unvaccinated and ChAdOx1 groups. Although there was no significant difference
in anti-RBD IgG between age groups in the CoronaVac groups, anti-RBD IgG tended to be
higher in the older than in the younger individuals (Figure 8A).

Most patients had highly positive sVNT against Wuhan and Delta. Higher sVNT was
observed chiefly in breakthrough COVID-19 patients vaccinated with either CoronaVac-
prime or ChAdOx1-prime, regardless of the numbers of dose. The titers peaked around 2 to
3 months PC and decreased by approximately 10% to 20% after 3 months, compared with
2 to 3 months PC (Figure 5B and Supplementary Figure S3). The titers were significantly
higher against the Wuhan strain than the Delta variant (p < 0.001). Using sVNT, the
proportion of individuals with a value for a neutralizing test against Delta above the sVNT
cutoff of 30 was approximately 66% to 88% of unvaccinated participants (pink dots). This
range contrasted with 83% to 89% for one or two doses of ChAdOx1 (pale blue dots), 100%
for three doses of ChAdOx1, and 67% to 95% for one or two doses of CoronaVac.

In fully vaccinated individuals at 2 to 3 months PC, the mean sVNT to the Delta
relative to the Wuhan variant was reduced 0.7-fold (from 96.4 to 72.3, ChAdOx1 group). As
compared with unvaccinated COVID-19 patients, the mean sVNT for the Delta variant of
ChAdOx1-boosted individuals at 2 to 3 months PC were increased 2.8-fold (from 34.7 to
98) and 2.1-fold (from 34.7 to 72.3, compared with two-dose ChAdOx1 group, Figure 5B).
In both males and females, the sVNT was significantly higher in unvaccinated cases after
2 months (Figure 7B). The proportion of plasma samples exhibiting such a neutralizing
activity against Delta tended to be nearly 1- to 2-fold higher among older than younger
individuals (Figure 8B–D and Supplementary Table S10).
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Figure 5. Immune responses after breakthrough COVID-19 infection with prior CoronaVac or
ChAdOx1 vaccination during the Delta pandemic. (A) The scatter plot of geometric mean titers
(GMTs) of SARS-CoV-2 anti-spike protein receptor-binding domain antibodies’ (Anti-RBD IgG)
concentrations in serum samples obtained from subjects after COVID-19 infection and with prior
various vaccination status (CoronaVac vs. ChAdOx1). Sera at different time points from patients
recovered from COVID-19 are shown as reference level (red). (B) Scatter plots demonstrate an
inhibition rate of Wuhan and Delta RBD-blocking antibodies measured using a surrogate viral
neutralization test (sVNT) by vaccination/reinfection status; the lower dot line represents the cut-off
level for seropositivity. All sera were from the patients during the Delta pandemic. * p < 0.05;
** p < 0.01; **** p < 0.0001.
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Figure 6. Immune responses after breakthrough COVID-19 infection with prior CoronaVac or
ChAdOx1 vaccination during the Delta pandemic. Dot plots show the correlation between the level
of anti-SARS-CoV-2 RBD IgG and surrogate viral neutralization test (sVNT) for the SARS-CoV-2
delta variant in plasma of study participants (total, (A) who were unvaccinated (C), or completed
two doses of ChAdOxX1 (B), CoronaVac (D) and had breakthrough infection.
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4. Discussion

We confirmed the following central findings. First, illness is mild in most patients,
and medical intervention is not needed, particularly in fully vaccinated individuals. These
findings confirm that early access to treatment and prompt responses via telehealth visits
and antiviral medications provide statistically favorable efficacy in sustaining COVID-19
and improving outcomes in an appropriate outpatient setting [28]. Recent studies demon-
strated that patients receiving favipiravir had higher viral clearance rates than patients
given standard symptomatic treatment; this higher rate prevented hospitalization [28]. A
systematic review and meta-analysis of clinical trials summarized that favipiravir exerted
low efficacy in mortality reduction for patients with mild-to-moderate COVID-19. However,
the authors also pointed out that that finding might have resulted from delayed treatment
in many trials [29].

Second, understanding the relationship between symptoms, viral load, and predictive
immunity is crucial to planning for booster vaccination programs. Our results contrast
with a recent study [30] reporting lower Ct values for patients infected during the relatively
mild Omicron wave than patients infected during the Delta wave. Data showed that
primary immunization with two doses of ChAdOx1 or CoronaVac vaccine provided limited
protection against symptomatic disease caused by the Delta and the Omicron variants, and
vaccine effectiveness waned quickly. Higher neutralizing activity was observed after a
booster dose [31]. However, we are the first to show that breakthrough COVID-19 infection
with prior vaccination was associated with a significantly lower number of symptoms and
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fatigue even in the mild-to-moderate COVID-19 disease. On the other hand, the lower
the number of symptoms was, the lower the antibody titers were. The difference in risk
between the Delta and Omicron waves varied considerably with age but not gender. The
risk of hospitalization differed the most for those aged 60 years (50% lower for Omicron
compared with Delta) [32]. In contrast, for children under the age of 12 years, there was
no significant difference in the risk of hospitalization between Omicron and Delta. The
risk of death remained minimal in children. Our unpublished data showed that infected
children during the Delta and Omicron pandemics were hospitalized due to insufficient oral
intake, anorexia, gastrointestinal tract symptoms, and hypovolemia rather than increased
COVID-19 severity.

In addition, in the Omicron pandemic, children made up a larger proportion of
patients than in the previous infection waves. One potential explanation for this was
that the Omicron variant’s extremely high transmissibility, when coupled with a lack of
built-up immunity due to vaccination for 5–11-year-olds in Thailand not being authorized
in early 2022 or past infection in young children, left children more vulnerable to Omicron,
compared with adults who had access to vaccines for months. Another reason might be that
other restrictions and isolation policies were eased at the same time, and parents had the
ability to return to the workplace, where transmission also occurred, and immunity waned.

In the mild-to-moderate COVID-19 cases during the Delta and Omicron pandemics,
IgG and sVNT were higher in patients with more severe common COVID-19 symptoms.
The titers were also associated with high viral loads and older individuals (who were
generally vaccinated and had more severe symptoms than asymptomatic individuals) [7].
Higher igG and sVNT was shown in breakthrough COVID-19 patients vaccinated with ei-
ther CoronaVac-prime or ChAdOx1-primary doses. The titers peaked around 2 to 3 months
PC and remained stable for at least 3 months. However, receiving booster vaccines en-
sured better predictive immunity against COVID-19. In the Omicron pandemic, viral
load was not correlated with symptoms. This finding was likely due to Omicron’s milder
conditions, an improved vaccination campaign, and quick access to medication treatment.
Our results are consistent with the findings of Servellita et al. [7], who examined neu-
tralizing responses in Delta and Omicron breakthrough infections. Substantial increases
in antibody titers to Wuhan and Delta were demonstrated, especially after vaccination
boosting. In symptomatic or mild Delta and Omicron breakthrough infections, the extent
of conferred cross-neutralizing immunity against Omicron and Delta was limited. How-
ever, Wratil et al. [33] found that sera from patients with Omicron breakthrough infections
significantly enhanced Omicron viral neutralization (17.4-fold).

It is well documented that COVID-19 primarily manifests as a respiratory tract in-
fection, and emerging data indicate it involves multiple systems. Several hematological
laboratory investigations have shown that lymphocytes, neutrophils, CRP, elevated D-
dimer, and hemostasis are altered significantly in COVID-19 patients [12]. This finding is a
potential indicator for both disease progression and the effectiveness of therapy [12]. Evi-
dence indicates that mild COVID-19 may be associated with a potent initial innate antiviral
response induction and viral neutralization. These might evade host innate immune activa-
tion and, in turn, increase proinflammatory response and immune cell infiltration [34,35].
Even though we did not have a complete set of these parameters for every subject due to the
nature of retrospective data from mild-to-moderate COVID-19, we had some patients with
worsening conditions who were eventually hospitalized and whose blood was examined.
Our results indicated that, during the Delta but not the Omicron wave, these patients had
increased neutrophils and lymphocytopenia and activation of the coagulation cascade.
However, there were reports that Omicron patients had abnormal levels of neutrophils,
lymphocytes, and monocytes and demonstrated signs of coagulopathies [35–37]. The
adaptive immune response was a key element of the clinical outcome after SARS-CoV-2
infection and supported vaccine efficacy. T-cell responses activated early and correlated
with protection but were relatively weakened in severe COVID-19 and were associated with
intense activation and lymphopenia [38]. Inflammatory cytokines such as IL-6, IL-8, IL-1β,
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TNF-α, IFNγ-induced protein10 (IP-10), granulocyte-macrophage colony-stimulating factor
(GM-CSF), and chemokines (CC motif) ligand 2 (CCL2), CCL-5, and CCL3 were generally
produced by macrophages, mast cells, endothelial and epithelial cells during the innate
immune response. Many studies have shown that elevated IL-6 significantly affected the
onset of cytokine storm [39,40]. IL-6 played a pleiotropic role in the immune system and
was crucial for the formation of TH17 and follicular helper T cells. However, IL-6 could
block cytotoxic CD8 + T cells by inhibiting IFN-γ secretion. In addition, IL-6 could impair
the cell-induced antiviral response in the cytokine storm. Our unpublished data showed
some increased IL-6 levels in some COVID-19 patients. However, we need to clarify the
factors predisposing cytokine storms and other inflammatory cytokines. Some studies
investigated the T-cell immunity induced after SARS-CoV-2 infection in mild symptomatic
cases, showing S-SARS-CoV-2-specific IFN-γ T-cell response was developed [41]. CD4+

T-cell responses against SARS-CoV-2 were more prevalent than CD8+ T-cell responses in
adults with mild-to-moderate COVID-19 infection [42]. Still, more in-depth research on the
underlying etiology is necessary. Gao Y et al. [43] demonstrated that SARS-CoV-2 spike-
specific CD4+ and CD8+ T cells elicited by BNT162B2 vaccination or previous infection
remain largely intact against the Omicron variant. Together with intrinsic viral factors,
these immune reactivities, in part, explain why severe disease appears to be minimal after
breakthrough infection with this particular variant.

A recent genome-wide association analysis (GWAS) [44] showed associations of loci
on chromosomes 5q32 and 9q21.13 with COVID-19 susceptibility and two suggestive loci
on the severity of chromosomes 12q22 and 3p24.3. Interestingly, the association signal
on chromosome 5q32 coincided with IL17B encoding a T-cell-derived cytokine known as
interleukin-17B (IL-17B). IL-17B was reported to play a role as a proinflammatory inducer
in inflammatory disease, stimulating the release of tumor necrosis factor-α (TNF-α) and
interleukin-1β (IL-1β) from a monocytic cell line, resulting in neutrophil infiltration [45,46].
This supports our finding of hyperneutrophilia seen in our COVID-19 cohort.

These data combined with ours suggest that the higher infectivity of Omicron may be
related to (1) a decreased viral load, (2) probably lower past protective immunity against
Omicron (either from vaccines or natural infection with Delta), (3) an asymptomatic stage of
infected individuals with respiratory symptoms, and (4) age [20]. The substantial variations
in patients’ symptoms and immunogenicity underscore the heterogenicity of protective
immunity against future infections. However, an individual previously infected with
SARS-CoV-2 is advised to receive a full vaccination course or at least one additional dose
of a vaccine after the infection to protect against reinfection from circulating variants [47].
High vaccination rates also help to reduce the transmission of COVID-19. Unfortunately,
vaccination rates are still low in some rural areas, important risk groups, and low-income
countries [48].

There are several limitations to our study. We only had blood test results from a
small subset of hospitalized patients and assumed these findings might be similar to all
milder infection cases without hospitalization. No patients with Omicron were treated
with Dexamethasone (Favi/Dexa) in the HI system due to the reduced severity of the
Omicron infection and increased hospitalization availability for worse cases. However, to
compare both waves, we excluded patients in the Favi/dexa group in the Delta wave from
the analyses, and the p-value was not affected in all parameters. Furthermore, no serology
data from patients during the Omicron wave or long-term follow-up data were available
for our analysis. Consequently, we could not determine the antibody levels against the
Omicron variants, the vaccine efficacy after COVID-19 infection, or the vaccine impact on
long COVID-19.

Our future COVID-19 research aims are (1) to gain further insight into the long-term
monitoring of neutralizing antibodies and (2) to establish whether breakthrough Omicron
infections provide protective immunity against reinfection by SARS-CoV-2 Omicron sub-
lineages BA.4 and BA.5.
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5. Conclusions

Omicron’s mild severity means that a full vaccination course is effective against severe
outcomes. Consequently, in countries where vaccine supplies are limited, a full vaccination
course with prime or mixed vaccines, and a booster shot for individuals at risk, might
be enough to induce high levels of short-term immunity and prevent hospitalization and
death. These outcomes should be achievable regardless of a higher viral burden or the
symptoms, especially during the Omicron wave in the absence of novel variants.
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