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Abstract: Non-small-cell lung cancer (NSCLC) is considered as one of the malignant cancers that
causes premature death. The present study aimed to identify a few potential novel genes highlighting
their functions, pathways, and regulators for diagnosis, prognosis, and therapies of NSCLC by using
the integrated bioinformatics approaches. At first, we picked out 1943 DEGs between NSCLC and
control samples by using the statistical LIMMA approach. Then we selected 11 DEGs (CDK1, EGFR,
FYN, UBC, MYC, CCNB1, FOS, RHOB, CDC6, CDC20, and CHEK1) as the hub-DEGs (potential
key genes) by the protein–protein interaction network analysis of DEGs. The DEGs and hub-DEGs
regulatory network analysis commonly revealed four transcription factors (FOXC1, GATA2, YY1,
and NFIC) and five miRNAs (miR-335-5p, miR-26b-5p, miR-92a-3p, miR-155-5p, and miR-16-5p) as
the key transcriptional and post-transcriptional regulators of DEGs as well as hub-DEGs. We also
disclosed the pathogenetic processes of NSCLC by investigating the biological processes, molecular
function, cellular components, and KEGG pathways of DEGs. The multivariate survival probability
curves based on the expression of hub-DEGs in the SurvExpress web-tool and database showed the
significant differences between the low- and high-risk groups, which indicates strong prognostic
power of hub-DEGs. Then, we explored top-ranked 5-hub-DEGs-guided repurposable drugs based
on the Connectivity Map (CMap) database. Out of the selected drugs, we validated six FDA-approved
launched drugs (Dinaciclib, Afatinib, Icotinib, Bosutinib, Dasatinib, and TWS-119) by molecular
docking interaction analysis with the respective target proteins for the treatment against NSCLC.
The detected therapeutic targets and repurposable drugs require further attention by experimental
studies to establish them as potential biomarkers for precision medicine in NSCLC treatment.

Keywords: non-small cell lung cancer; gene expression profiles; molecular signatures; therapeutic
targets and agents; integrated bioinformatics approaches

1. Introduction

Lung cancer is treated as the leading cause of cancer-related death worldwide among
human cancer, which causes the dynamic degradation of the lung [1]. The most common
type of bronchial tumor is non-small-cell lung cancer (NSCLC), which accounts for approx-
imately 75% of all lung cancers [2]. The NSCLC is more deadly than the small-cell lung

Vaccines 2022, 10, 771. https://doi.org/10.3390/vaccines10050771 https://www.mdpi.com/journal/vaccines

https://doi.org/10.3390/vaccines10050771
https://doi.org/10.3390/vaccines10050771
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vaccines
https://www.mdpi.com
https://orcid.org/0000-0001-9788-1868
https://orcid.org/0000-0002-3883-3396
https://doi.org/10.3390/vaccines10050771
https://www.mdpi.com/journal/vaccines
https://www.mdpi.com/article/10.3390/vaccines10050771?type=check_update&version=1


Vaccines 2022, 10, 771 2 of 20

cancer (SCLC), though it grows and spreads slowly compared with the SCLC since it pro-
gresses to the advanced stage with few or without any symptoms. Although the targeted
therapy has achieved substantial development, the increasing mortality rate associated
with lung cancer lays emphasis on both prevention and early detection of lung cancer.
Traditional cancer diagnosis methods including histopathology and cytopathologyare prac-
ticed in the case of adenocarcinoma, squamous cell carcinoma, and large-cell carcinoma of
NSCLC [3–5]. The morphological judgment for the tumors has some limitations, including
the lack of significant morphological features, which leads to the identification ambigui-
ties [6–10]. Several non-causal risk factors (e.g., smoking, alcohol consumption, and high
air pollution) of lung cancer have been detected by several independent studies [11–15].
However, so far, there are no in-depth studies that explore the causal risk factors of NSCLC
highlighting their pathogenetic processes and associated candidate drugs for the treatment
against NSCLC. The causal risk factors are known as the mutated genes that drive the
cancer progression. Usually, non-causal risk factors are assumed to be responsible for
genetic mutation and some of them stimulate cancer progression. Cancer-causing mutated
genes are utilized for diagnosis, prognosis, and therapies of cancer [16,17]. Moreover, the
DNA vaccine is part of a new era of modern therapeutics where the gene-based prophylac-
tic vaccines are being developed [18–20]. The plasmid DNA vaccines and viral-vectored
vaccines are two types of gene-based vaccines on which many animal trials are being
practiced all over the world [21,22]. Therefore, the cancer-causing genes also might be a
great therapeutics target for the gene-based DNA vaccine development.

Gene expression profile analysis is now considered as one of the most promising
approaches for exploring cancer-causing mutated genes, which yields relevant information
for diagnosis, prognosis, and therapies of cancers. [23–26]. Computationally, mutated
genes (potential key genes) are predicted by the analysis of differential gene expression
patterns [16,17,23–29]. Therefore, in this study, an attempt was made to explore NSCLC-
causing key genes from the publicly available gene expression profiles, highlighting their
functions, pathways, and regulators, which yield relevant information for diagnosis, prog-
nosis, and therapies of NSCLC, by using the integrated bioinformatics approaches.

2. Materials and Methods

To reach the goal of this study, we analyzed a publicly available gene expression
dataset by using integrated bioinformatics approaches [16,28,29]. The global working
flowchart of this study is displayed in Figure 1.
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2.1. Collection of Gene Expression Profiles for NSCLC

To explore NSCLC-causing key genes, the Affymetrix Human Genome U133 plus
2.0 microarray gene expression dataset was retrieved from the NCBI Gene Expression
Omnibus (GEO) database [30] with accession number GSE19804, which contained 60 tumor
samples and 60 control samples on 54,675 genes. The dataset was generated by a previous
study [31]. The sample unit was aged from 37 to 80 years, with nine different tumor stages
(i.e., 1, 1A, 1B, 2, 2A, 2B, 3A, 3B, 4).

2.2. Differentially Expressed Genes (DEGs) Identification

At first, the gene expression dataset was normalized for identifying DEGs through the
Robust Multi-Array Average (RMA) expression measure and it was implemented by the
NCBI-GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/, accessed on 5 October 2021)
web-tool. Then, the LIMMA [32] statistical test was utilized to identify the DEGs between
NSCLC and control samples. To control the false discovery rate in multiple-testing, the
p-values were adjusted by Benjamini Hochberg’s [33] method. Both the adjusted p-value
and log2FC values were considered for identifying the upregulated and downregulated
DEGs as follows:

DEGs =

{
Upregulated DEGs, if adjusted p value < 0.001 & log2 FC > 1

Downregulated DEGs, if adjusted p value < 0.001 & log2 FC < −1
(1)

2.3. DEGs-Set Enrichment Analysis

The bioinformatics resources, Database for Annotation, Visualization and Integrated
Discovery (DAVID) (version v6.8) [34,35] was utilized to discern molecular function, biolog-
ical process, and molecular pathway annotations related to the identified DEGs. Besides, the
KEGG pathways identification was conducted through the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway database [36–38]. For statistical significance, the adjusted
p-value < 0.05 was considered, determined from Fisher Exact test and Benjamini–Hochberg’s
correction was used for the multiple testing correction techniques.

2.4. Protein-Protein Interaction Network Analysis of DEGs

The STRING database [39] was used to construct the protein–protein interaction (PPI)
network of the proteins encoded by DEGs. The STRING database uses a score combiner de-
pending on the product of probabilities [40]. To visualize and perform topological analyses
of the PPI network, the NetworkAnalyst [41] was utilized. The topological analysis was
applied to determine hub-DEGs/proteins through the CytoHubba plugin [42] in Cytoscape
3.8.2 using degree (connectivity) and betweenness metrics simultaneously [43]. The mini-
mum degree of 10 was considered as the cut off criterion in CytoHubba. Furthermore, the
Molecular Complex Detection (MCODE), a novel clustering algorithm [44] along with the
CytoHubba was used to identify the sub-modules from the PPI network. The top-scored
modules are presented in this analysis.

2.5. Mutation Analysis of Hub-DEGs

To investigate the genomic alterations/mutations of the hub-genes, the online cBioPor-
tal (https://www.cbioportal.org, accessed on 28 March 2022) was used over the NSCLC
datasets of the server [45,46]. The OncoPrint output was used to represent the most
important alteration frequency of genes.

2.6. Physicochemical Properties of Hub Proteins

The physicochemical properties of the detected hub proteins were reported from the on-
line tool ProtParam (https://web.expasy.org/protparam/, accessed on 10 November 2021),
which allows the computation of various physical and chemical parameters for a given
protein. The physiochemical properties of molecular weight, theoretical pI, extinction

https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.cbioportal.org
https://web.expasy.org/protparam/
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coefficient, instability index, aliphatic index, and grand average of hydropathicity (GRAVY)
were checked for the reported hub protein in this study.

2.7. Regulatory Biomolecules Selection

To explore transcriptional and post-transcriptional regulators of DEGs, we performed
TFs-DEGs and miRNA-DEGs interaction network analysis, respectively. The TarBase and
miRTarBase [47,48] databases were used to identify the significant miRNAs. The JASPAR
database [49] retrieved the key regulatory transcription factors (TFs). The entire analysis
was conducted through the NetworkAnalyst [41].

2.8. Cross-Validation and Evaluation of the Performance of Reported Biomolecules

At first, patients were divided into a low-risk group (control group) and high-risk
group (SCLC group) in the SurvExpress online server [50]. Then, the differences between
the risk groups from the expression levels of hub-DEGs were investigated by using box
plots and survival probability curves.The statistical significance of the differences in the box
plots were evaluated through the t-test. Survival signatures of the reported biomolecules
were evaluated through Kaplan–Meier plots, and a log-rank p-value < 0.01 for the statistical
significance in all survival analyses.

2.9. Drug Repositioning

The hub-DEGs-guided probable drugs or drug candidate molecules were retrieved
through the online drug-repositioning tool and database Connectivity Map (CMap) [51].
This is an integrative platform that accumulates the information of the drug or drug candi-
date molecules from published data sources in clinical experimental stages, investigational
stages, and approved for treatment stages. Furthermore, the molecular docking simulation
study [52] was conducted for the target biomolecules with the repositioned drug to identify
the best-fitted position with binding affinity. The highest docking score with the best-fit
pose was considered for the drug–protein interaction affinity. An important type of molec-
ular docking is protein–ligand docking because of its therapeutic applications in modern
structure-based drug design [52]. Here, have performed some vital protein ligand docking
and studied the interacting amino acids of the same complex. The 3D structure of the target
proteins was obtained from Protein Data bank (PDB). The chemical structure of drugs
was retrieved from PubChem database (https://pubchem.ncbi.nlm.nih.gov/, accessed on
5 December 2021). All generated chemical compound structures were energy minimized
by the MMFF94 force field [53]. For the binding sites, predictions of target proteins were
analyzed through 3DLigandSite—Ligand-binding site prediction Server [54]. Docking
analysis was carried out using Autodock 4.2 [55] and AutoDock Vina [56]. The interactions
like Hydrogen Bonding and other non-bonded terms between all drug and target proteins
were carried out using the Accelrys Discovery Studio Visualizer software [57].

3. Results
3.1. Differentially Expressed Genes (DEGs) Identification

At first, we normalized the genes expression profiles by using RMA. Then, we analyzed
the normalized dataset by the statistical LIMMA approach and isolated 1943 DEGs between
NSCLC and control samples with the cutoff at adjusted p-value < 0.001 and |log2FC| < 1
(Figure 2A). Among those, 1367 DEGs were upregulated, and the remaining 576 DEGs
were downregulated (Figure 2B). Further analysis was conducted based on these DEGs.

https://pubchem.ncbi.nlm.nih.gov/
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Figure 2. Gene expression profile of microarray data. (A) The volcano plot which represents the scatter
plot of log2FC values versus −log10(adjusted p-values). (B) The volcano plot highlighting DEGs, where
green bullets represent the upregulated (adjusted p-value < 0.001 and log2FC > 1) and downregulated
(adjusted p-value < 0.001 and log2FC < −1) DEGs selected based on the described criteria.

3.2. Protein-Protein Interaction Analysis

The PPI network analysis was conducted to reveal the central highly connected pro-
teins which are called hub-DEGs, or proteins or key genes/proteins based on the degree
measures (Figure 3) through Cytoscope 3.7.2 with CytoHubba. The degree was considered
as ≥10 along with the other default parameters. The proposed top hub proteins are CDK1,
EGFR, FYN, UBC, MYC, CCNB1, FOS, RHOB, CDC6, CDC20, and CHEK1, which could be
the main proteins in the NSCLC pathogenesis mechanism. By using the MCODE algorithm,
19 sub-network modules were selected considering the default parameters such as node
score cutoff of 0.2, K-Core value of 2, and maximum depth from the seed node of 100 along
with the other default parameters. Based on the score, the top four modules are represented
in Figure 4 and details of analysis results are provided in Supplementary Figure S1. The
sub-modules were checked and the presence of the proposed hub proteins was found.
The presence of the hub proteins indicates that these are more reliable to treat as potential
therapeutic targets.

3.3. Mutation Analysis of Hub-DEGs

The genomic alteration/mutation analysis of 11 hub-DEGs revealed that the EGFR,
MYC, and CHEK1 genes had 12%, 8%, and 1.3% genomic alteration/mutation over the
four lung cancer studies. Other genes were consistent among the studies. For details of the
genomic alteration/mutation summary, see Supplementary Figure S1.

The physicochemical properties of the identified hub proteins are reported in this
study. These properties are essential for deeper investigation of the significant biomolecules.
The EGFR protein had the highest molecular weight (MW) of 134,277.4 kda, where the
UBC reflected the lowest 18,006.82 kda MW. The isoelectric point ranged from 4.77 (FOS) to
9.64 (CDC6) among the reported hub proteins. The detailed information is summarized
in Table 1.
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Table 1. The physicochemical properties of the reported hub proteins.
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x Grand Average of

Hydropathicity
(GRAVY)

CDK1 297 34,095.45 8.38 37 39 42,860 39.26 97.78 −0.281

EGFR 1210 134,277.4 6.26 138 126 128,890 44.59 80.74 −0.316

FYN 537 60,761.9 6.23 68 63 94,240 36.41 75.36 −0.489

UBC 158 18,006.82 8.87 18 22 29,700 45.78 72.91 −0.533

MYC 439 48,804.08 5.33 64 51 29,505 92.23 66.42 −0.772

CCNB1 433 48,337.43 7.09 52 52 30,620 50.59 90.09 −0.239

FOS 380 40,695.41 4.77 51 33 21,930 78.82 65.32 −0.369

RHOB 196 22,123.39 5.1 32 26 21,930 46.35 87.96 −0.26

CDC6 560 62,720.28 9.64 58 91 20,940 48.57 94.89 −0.383

CDC20 499 54,722.59 9.33 42 54 106,255 47.72 76.31 −0.483

CHEK1 476 54,433.57 8.5 61 66 76,485 42.26 84.75 −0.459

Note: * Extinction coefficients are in units of M−1 cm−1, at 280 nm measured in water.



Vaccines 2022, 10, 771 7 of 20
Vaccines 2022, 10, x  7 of 21 
 

 

 

Figure 4. The first four sub networks based on score, identified by the MCODE algorithm. The scores 

of 6.071, 3.76, 3.684, and 3.4 were exhibited by the (A) first, (B) second, (C) third, and (D) forth sub 

modules, respectively. 

3.3. Mutation Analysis of Hub-DEGs 

The genomic alteration/mutation analysis of 11 hub-DEGs revealed that the EGFR, 

MYC, and CHEK1 genes had 12%, 8%, and 1.3% genomic alteration/mutation over the four 

lung cancer studies. Other genes were consistent among the studies. For details of the 

genomic alteration/mutation summary, see Supplementary Figure S1. 

The physicochemical properties of the identified hub proteins are reported in this 

study. These properties are essential for deeper investigation of the significant biomole-

cules. The EGFR protein had the highest molecular weight (MW) of 134,277.4 kda, where 

the UBC reflected the lowest 18,006.82 kda MW. The isoelectric point ranged from 4.77 

(FOS) to 9.64 (CDC6) among the reported hub proteins. The detailed information is sum-

marized in Table 1. 

  

Figure 4. The first four sub networks based on score, identified by the MCODE algorithm. The scores
of 6.071, 3.76, 3.684, and 3.4 were exhibited by the (A) first, (B) second, (C) third, and (D) forth sub
modules, respectively.

3.4. Biological Importance of DEGs

DAVID (version v6.8) revealed the molecular function, biological process, and molec-
ular pathway annotations of the identified DEGs through the gene over-representation
analysis. The significant GO terms were retrieved, which included the biological processes,
molecular function, and cellular components (Table 2). The significant GO terms are sum-
marized and presented in Table 2 for upregulated and downregulated genes separately.
The significant functional pathways obtained from the KEGG Pathway analysis are also
shown in Figure 5 for the hub-DEGs. The pathways in cancer, cytokine–cytokine receptor
interaction, chemokine signaling pathway, cell-adhesion molecules (CAMs), cAMP signal-
ing pathway, MAPK signaling pathway, and TNF signaling pathway are the significant
pathways shared by the upregulated genes (Figure 5A). The metabolic pathways, cell cycle,
PI3K-Akt signaling pathway, focal adhesion, and ECM-receptor interaction key pathways
are exhibited by the downregulated genes (Figure 5B).
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Table 2. The functional enrichment analysis of the DEGs to clarify the gene ontology terms in the
NSCLC disease. The top GO terms are summarized and presented here.

Upregulated Genes

GO Term Number of Genes Coverage (%) p-Value

GOTERM_BP_DIRECT

GO:0001525 angiogenesis 40 4.27 1.77 × 10−12

GO:0007155 cell adhesion 59 6.3 1.28 × 10−11

GO:0006954 inflammatory response 50 5.3 2.33 × 10−10

GO:0007166 cell-surface receptor signaling pathway 41 4.4 2.97 × 10−10

GO:0006955 immune response 49 5.2 2.29 × 10−8

GO:0032496 response to lipopolysaccharide 26 2.8 2.80 × 10−7

GO:0006935 chemotaxis 22 2.3 3.17 × 10−7

GO:0007165 signal transduction 94 10.0 5.91 × 10−7

GOTERM_CC_DIRECT

GO:0005886 plasma membrane 295 31.5 8.30 ×10−16

GO:0005576 extracellular region 145 15.5 1.69 ×10−14

GO:0005615 extracellular space 127 13.5 3.91× 10−14

GO:0045121 membrane raft 34 3.6 6.18 × 10−10

GO:0070062 extracellular exosome 185 19.7 9.29 × 10−7

GO:0009986 cell surface 52 5.5 2.02 × 10−6

GO:0005925 focal adhesion 41 4.4 3.45 × 10−6

GO:0016021 integral component of membrane 297 31.7 2.91 × 10−5

GOTERM_MF_DIRECT

GO:0008201 heparin binding 29 3.1 1.15 × 10−9

GO:0030246 carbohydrate binding 27 2.9 1.36 × 10−6

GO:0005178 integrin binding 19 2.0 1.46 × 10−6

GO:0005509 calcium ion binding 59 6.3 2.60 × 10−5

GO:0051015 actin filament binding 19 2.0 3.86 × 10−5

GO:0004872 receptor activity 25 2.7 7.30 × 10−5

GO:0005515 protein binding 460 49.1 8.91 × 10−5

GO:0003779 actin binding 28 3.0 2.41 × 10−4

Down Regulated Genes

GO Term Number of Genes Coverage (%) p-Value

GOTERM_BP_DIRECT

GO:0030574 collagen catabolic process 15 3.4 1.70 × 10−10

GO:0007067 mitotic nuclear division 26 5.9 7.35 × 10−10

GO:0051301 cell division 29 6.5 1.30 × 10−8

GO:0007062 sister chromatid cohesion 14 3.2 7.36 × 10−7

GO:0030198 extracellular matrix organization 19 4.3 7.37 × 10−7

GO:0000082 G1/S transition of mitotic cell cycle 13 3.0 4.17 × 10−6

GO:0030199 collagen fibril organization 8 1.8 2.75 × 10−5

GO:0001649 osteoblast differentiation 12 2.7 2.90 × 10−5

GO:0000281 mitotic cytokinesis 7 1.6 4.50 × 10−5

GO:0006508 proteolysis 27 6.1 1.12 × 10−4

GOTERM_CC_DIRECT

GO:0005615 extracellular space 63 14.2 5.08 × 10−8

GO:0070062 extracellular exosome 101 22.8 1.18 × 10−6

GO:0005578 proteinaceous extracellular matrix 21 4.7 3.05 × 10−6

GO:0000777 condensed chromosome kinetochore 12 2.7 3.95 × 10−6

GO:0005581 collagen trimer 12 2.7 6.85 × 10−6

GO:0030496 midbody 14 3.2 6.95 × 10−6

GO:0005576 extracellular region 64 14.4 1.01 × 10−5

GO:0005819 spindle 12 2.7 9.10 × 10−5

GOTERM_MF_DIRECT

GO:0004222 metalloendopeptidase activity 13 2.9 7.55 × 10−6

GO:0004252 serine-type endopeptidase activity 19 4.3 1.56 × 10−5

GO:0005201 extracellular matrix structural constituent 10 2.2 1.57 × 10−5

GO:0042802 identical protein binding 32 7.2 6.18 × 10−4

GO:0019901 protein kinase binding 19 4.3 0.0019
GO:0005524 ATP binding 51 11.5 0.0021
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3.5. Regulatory Transcriptional/Post Transcriptional Candidates in in NSCLC

The TFs-DEGs interaction network and the miRNA-DEGs interaction network re-
vealed the substantial TFs and the miRNAs (Figure 6) that may significantly regulate the
DEGs. The transcription factors (FOXC1, GATA2, YY1, E2F1, FOXL1, NFIC, NFKB1, PPARG,
TFAP2A, USF2) and miRNA (miR-335-5p, miR-26b-5p, miR-16-5p, miR-124-3p, miR-92a-3p,
miR-7b-5p, miR-93-5p, miR-17-5p, miR-155-5p) were selected as the key transcriptional and
post-transcriptional regulatory biomolecules of DEGs. Furthermore, the interaction net-
work of hub proteins with TFs and miRNA were constructed (Figure 7). The hub-proteins
versus TFs interaction network reflected four TFs (FOXC1, GATA2, YY1, and NFIC) as the
key regulatory TFs of the drug target hub-DEGs/proteins (Figure 7A). On the other hand,
five miRNAs (miR-335-5p, miR-26b-5p, miR-92a-3p, miR-155-5p, and miR-16-5p) were
found as the key regulatory miRNAs of hub-DEGs/proteins (Figure 7B). These regulatory
biomolecules were also found from the interaction network analysis of DEGs-TF and all
DEGs-miRNA, respectively (Figure 6).
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3.6. Risk Discrimination Performance of Reporter Biomolecules

The risk discrimination performance and the differential expression pattern were
observed by the online gene validation website SurvExpress. The analysis was conducted
through the TCGA Lung squamous cell carcinoma survival information for the hub genes
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and the key transcription factors. The survival curve for the high- and low-risk group
and the box plot of their gene expressions are shown in (Figure 8). For both analyses, the
prognostic index, log-rank test, and hazard ratio are shown (Figure 8). All hub proteins and
reported TFs showed statistically significant performances in terms of survival probabilities
in all datasets, in both the high- and low-risk groups.
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tors) proteins.

3.7. Drug Repositioning

The identification of the drug candidate molecules through CMap database revealed
the repurposed drugs for the top hub drug-target proteins. The CMap database reflected
the drug candidate molecules for the submitted hub proteins. Among the top hub proteins,
for the CDK1, EGFR, FYN, and MYC, we found repurposable drugs in pre-clinical trials,
FDA-approved drugs, and those in other experimental stages (Table 3).
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Table 3. The repurposed drugs that were found from the CMap database.

Target Proteins Name of Drug Mechanism of Action Phase

CDK1

aminopurvalanol-a CDK inhibitor, tyrosine kinase inhibitor Pre-clinical

BMS-265246 CDK inhibitor Pre-clinical

CDK1-5-inhibitor CDK inhibitor, glycogen synthase
kinase inhibitor Pre-clinical

CGP-60474 CDK inhibitor Pre-clinical

CGP-74514 CDK inhibitor Pre-clinical

CHIR-99021 glycogen synthase kinase inhibitor Pre-clinical

dinaciclib CDK inhibitor Phase 3

indirubin-3-monoxime CDK inhibitor, glycogen synthase
kinase inhibitor Pre-clinical

JNJ-7706621 CDK inhibitor Pre-clinical

kenpaullone CDK inhibitor, glycogen synthase
kinase inhibitor Pre-clinical

olomoucine CDK inhibitor Pre-clinical

PF-573228 focal adhesion kinase inhibitor Pre-clinical

PHA-767491 CDC inhibitor Pre-clinical

purvalanol-a CDK inhibitor Pre-clinical

Ro-3306 CDK inhibitor Pre-clinical

SU9516 CDK inhibitor Pre-clinical

1-azakenpaullone glycogen synthase kinase inhibitor Pre-clinical

8-hydroxy-DPAT serotonin receptor agonist Pre-clinical

EGFR

afatinib EGFR inhibitor Launched

brigatinib ALK tyrosine kinase receptor inhibitor,
EGFR inhibitor Launched

erlotinib EGFR inhibitor Launched

gefitinib EGFR inhibitor Launched

icotinib EGFR inhibitor Launched

lapatinib EGFR inhibitor Launched

lidocaine histamine receptor agonist Launched

olmutinib EGFR inhibitor, Bruton’s tyrosine kinase
(BTK) inhibitor Launched

osimertinib EGFR inhibitor Launched

vandetanib EGFR inhibitor, RET tyrosine kinase inhibitor,
VEGFR inhibitor Launched

FYN

bosutinib Abl kinase inhibitor, Bcr-Abl kinase inhibitor,
src inhibitor Launched

dasatinib
Bcr-Abl kinase inhibitor, ephrin inhibitor, KIT

inhibitor, PDGFR tyrosine kinase receptor
inhibitor, src inhibitor, tyrosine kinase inhibitor

Launched

MYC TWS-119 glycogen synthase kinase inhibitor Pre-clinical

The molecular docking analysis for the FDA-approved, launched drugs with the hub
proteins was conducted. The best pose with the highest docking score was considered to
select the drug–protein interaction. The potential repositioned drug candidates need deeper
attention for further experimental validation, which leads to the development of more



Vaccines 2022, 10, 771 13 of 20

efficient therapy for NSCLC treatment. The molecular docking analysis results are summa-
rized in Figure 9, where (i) indicates the protein–drug complex and (ii) indicates the 2D
diagram with interacting amino acid. For the Dinaciclib–CDK1 complex, interaction in the
substrate-binding site (SBS-1) of CDK1 generated a binding-free energy of −9.3 Kcal/mol.
Residues such as THR14, TYR15, VAL18, LYS33, GLN132, ASN133, ALA145, ASP146, and
VAL165 surround the amino acid and THR14, GLN132, GLN132, ASN133, and ASP146
are involved in the hydrogen-bond interaction while the other surrounding amino acid
residues are involved in hydrophobic interactions (Figure 9A). The docking simulation of
EGFR inhibitor was performed with three compounds, including Afatinib, Erlotinib, and
Gefitinib (Figure 9B–D). The highest affinity for substrate binding sites (SBS-2), with a bind-
ing free energy of −9.0 Kcal/mol, was found for Afatinib in the EGFR open conformation
model, and binding-free energies of −8.5 Kcal/mol and −8.2 Kcal/mol were found for for
Erlotinib and Gefitinib compounds in EGFR conformations respectively. Therefore, the
chemical compound of Afatinib was strongly bound with EGFR conformation. LEU718,
LYS745, MET793, CYS797, ARG841, ASN842, ASP855, and LEU858 are the surrounding
residues for the Afatinib–EGFR complex. MET793, ASN842, ASP855, and LEU718 are
involved in the hydrogen-bond interaction, while the other surrounding amino acids such
as LYS745, LEU718, LEU858, and ARG841, CYS797, and ARG841 are involved in Pi–Cation,
Alkyl, and Pi–Alkyl interactions respectively. The docking simulation of FYN inhibitor
was performed with two compounds including Bosutinib and Dasatinib (Figure 9E,F). The
highest affinity for SBS-3, with a binding-free energy of −7.1 Kcal/mol, was found for
Bosutinib in FYN conformation, and a binding-free energy of −6.9 Kcal/mol was found for
the Dasatinib—EGFR complex. Therefore, the compound of Bosutinib was strongly bound
with the FYN conformation. Trp149, Tyr150, Arg176, Leu224, and Gln225 are surrounding
residues for the Bosutinib–FYN complex. TRP149, GLN225, and ARG176 are involved in
the hydrogen-bond interaction, while the other surrounding amino acids such as TRP149
and TRP149, and TRP149, TYR150, and LEU224 are involved in C-H and Pi-Orbital’s
interactions respectively.

For the TWS-119–MYC complex, the interaction in SBS-4 of MYC generated a binding-
free energy of −7.9 Kcal/mol. Residues such as Ser952, Val953, Glu956, Arg254, His258,
and Gln261 are surrounding amino acids and GLN261, GLU956, and HIS258 are involved
in the hydrogen-bond interaction while the other surrounding amino acid residues are
involved in hydrophobic interactions (Figure 9G). The ultimate potential of the drugs
with the molecular signatures of the NSCLC demanded close attention for experimental
validation for developing effective and safe medications.
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Figure 9. The molecular docking poses for the selected repurposed drugs and potential target
proteins. The figure showed the best docking pose between protein and drug, like in (A) between
CDK1-Dinaciclib; in (B) between EGFR-Afatinib; in (C) between EGFR-Erlotinib; in (D) between
EGFR-Gefitinib; in (E) between FYN-Bosutinib; in (F) between FYN-Dasatinib and in (G) between
MYC-TWS119 respectively.
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4. Discussion

Identification of disease-causing crucial biomarkers may shed light on a deeper under-
standing of the molecular mechanism of disease [58–63]. The present study was conducted
to analyze the NSCLC gene expression data to determine the DEGs, extensive molecular
pathways, significant hub proteins, and associated regulatory biomolecules in order to pick
up the potential therapeutic targets for NSCLC through a multi-omics data integration
framework. Through the gene expression patterns analysis, we identified 1943 DEGs,
including 1367 upregulated and 576 downregulated genes. The functional enrichment
analysis revealed that the proposed upregulated DEGs are significantly involved with some
cancer-causing molecular functions and pathways, including cytokine–cytokine receptor
interaction, chemokine signaling pathway, cell-adhesion molecules (CAMs), cAMP signal-
ing pathway, MAPK signaling pathway, TNF signaling pathway, cGMP-PKG signaling
pathway, Proteoglycans in cancer, and Rap1 signaling pathway (Figure 5). The down-
regulated genes are shared metabolic pathways, cell cycle, PI3K-Akt signaling pathway,
focal adhesion, ECM-receptor interaction, p53 signaling pathway, and protein digestion
and absorption pathways. All of these functions and pathways are significantly related
to cancer development and play crucial roles in the NSCLC microenvironment. Recent
studies indicated the importance of the tumor microenvironment as a decisive factor in
tumorigenesis in various cancers [64–68]. Therefore, the physicochemical properties will
be helpful to explore the further analysis of the reported proteins as a therapeutic target
for NSCLC.

To detect the basic mechanism of disease, the protein–protein interaction network
analysis is becoming a promising approach [69]. The PPI network analysis in this study
revealed the hub-DEGs’ encoded hub-proteins. The CDK1 is related to the cell cycle
activities. Up-regulation of CDK1 genes may be indicative of poor survival rates and a
higher risk for cancer recurrence. The CDK1 gene is also related to several other cancer
diseases [70,71]. The EGFR gene is associated with cell growth and had a contribution
in lung cancer studied before [72,73]. The study revealed that the growth is suppressed
and the radiosensitivity is amplified by the activities of ubiquitin C (UBC) in NSCLC
cells [74–77]. The CDC6, CDC20, and CHEK1 genes are closely related to the occurrence
and development of small-cell lung cancer, and CHEK1 is treated as a therapeutic target
for lung cancer [78]. Eight hub genes (CDK1, EGFR, UBC, MYC, CCNB1, RHOB, CDC6,
and CDC20) have tumor suppressor functions, while five hub genes (CDK1, EGFR, FYN,
UBC, and CCNB1) are protein kinases as well. The MCODE cluster analysis clearly showed
that the hub genes were distributed among the distinguished sub network (Figure 4)
modules, which provided the strong evidence about the proposed signature biomolecules
that these are reliable as therapeutic targets. Thus, the predicted hub-DEGs and relevant
information might be useful in early detection of NSCLC. On the other hand, the genomic
alteration/mutation analysis of the hub-DEGs reflected that most mutation for the EGFR
occurred across the four lung cancer studies and was followed by the MYC and CHEK1
genes, since EGFR is a highly mutant/altered gene for lung cancer and NSCLC as well [79].
The alteration/mutation frequency revealed that the EGFR showed the highest alteration
frequency relative to others, including the mutation, where CHEK1 represented mutation
and deletion across the studies (Supplementary Figure S1), which may be a concern of
investigation in future research.

The DEGs and hub-DEGs regulatory network analysis commonly revealed four tran-
scription factors (FOXC1, GATA2, YY1, and NFIC) and five miRNAs (miR-335-5p, miR-
26b-5p, miR-92a-3p, miR-155-5p, and miR-16-5p) as the key transcriptional and post-
transcriptional regulators of DEGs as well as hub-DEGs. A study reported that various
tumor-associated genes are regulated by FOXC1 and maintain several cancer-related path-
ways [80]. The GATA2 is treated as a therapeutic target in NSCLC treatment development
and it also related to breast and kidney cancer [81,82]. The higher expression pattern of YY1
transcription factor triggered the patients having larger tumor size, differentiation, higher
TNM stage, and lymph node metastasis [83]. The reported TFs are also involved in other
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cancer diseases [58–63]. In various types of cancer tissues, the miR-26b-5p acts as a tumor
suppressor [84]. Currently, as one of the diagnostic tools for lung cancer identification,
the miR-92a-3p expression measurement is being used [85,86]. The miR-155-5p is signifi-
cantly associated with a higher risk for progression in adenocarcinoma patients [87,88] and
miR-16-5p showed higher expression pattern in NSCLC cells [86].

The prognostic power of the reported biomolecules in discriminating the high- and low-
risk conditions were exhibited by using the multivariate survival probability curves and box
plots (Figure 8). The survival curves clearly demonstrated that the reported biomolecules
played a significant role in patient survival. The box plot of the gene expression data of the
molecular candidate also showed clear differences between the high- and low-risk groups
(Figure 8B).

Finally, we selected the top-ranked five hub-DEGs-guided candidate drugs from the
Connectivity Map (CMap) database (Table 3). Out of the selected drugs, we validated
FDA approved six launched drugs (Dinaciclib, Afatinib, Icotinib, Bosutinib, Dasatinib, and
TWS-119) by molecular docking simulation with the top-ranked five hub-DEGs-mediated
target proteins for the treatment against NSCLC. The drug-target binding affinity scores
(less than −7.0 Kcal/mol) suggested that the aforementioned six FDA approved launched
drugs might be effective for the treatment against NSCLC. Thus, the findings of this study
might be useful resources in prevention and early detection of NSCLC.

5. Conclusions

The current study focused on identifying the significant biomolecules along with their
molecular mechanisms through integrative bioinformatics analysis. Among 1943 DEGs,
11 DEGs (CDK1, EGFR, FYN, UBC, MYC, CCNB1, FOS, RHOB, CDC6, CDC20, and CHEK1)
were reported as the hub-DEGs/proteins that may play the key roles in NSCLC progres-
sion. The DEGs set enrichment analysis with the gene ontology (GO) database showed
that DEGs are significantly involved with the cell adhesion, cell division, inflammatory
response, signal transduction, protein binding, and plasma membrane extracellular re-
gion. The enrichment analysis with the KEGG pathway database showed that DEGs are
significantly associated with the metabolic pathways, cell cycle, ECM-receptor interac-
tion, and pathways in cancer. The inevitable regulatory TFs (FOXC1, GATA2, YY1, and
FOXL1) and miRNA (miR-335-5p, miR-26b-5p, miR-92a-3p, miR-155-5pm and miR-16-5p)
were identified as potential regulatory biomarkers for both DEGs and hub-DEGs. The
strong prognostic performance of the reported biomolecules was observed between the
high- and low-risk groups through the survival curves and box plots. The top-ranked
hub-DEG-guided repurposable drug analysis revealed that the Dinaciclib, Afatinib, Icotinib,
Bosutinib, Dasatiniband, and TWS-119 might be suggested as novel putative drugs for
NSCLC treatment. The molecular docking analysis between the drug-target hub proteins
and the repurposed drugs were conducted to investigate their molecular interaction mech-
anism. Thus, the findings of this study might be useful resources for NSCLC diagnosis,
prognosis, and therapies, including gene-based DNA-vaccine development.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/vaccines10050771/s1, Figure S1: The genomic alteration of the proposed 11
hub-DEGs among the NSCLC.
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