
Supplementary Material S1.: A Simulation Study on COVID-19 
Vaccination Based on an SIR Model 

In this section, we modified an SIR model and proposed a sensitivity analysis method 
to adjust contact rate under different scenarios to predict the case under each scenario and 
make comparisons with the results of SNMM. Supplementary material 1 is organized as 
follows: 
 In the first section, we explain the longitudinal structural and time-varying con-

founding problem in detail.  
 In the second section, we explain how the time-varying confounders could have an 

impact on the prediction of SIR under different scenarios. 
 In the third section, we develop a sensitivity analysis method for the SIR model to 

adjust for the time-varying confounding problem. Our results show that under cer-
tain settings, the prediction of the SIR model is similar to the prediction of SNMM. 

1. The Longitudinal Structure and Time-Varying Confounding Problem 
To understand how time-varying confounders could have an impact on the SIR 

model, in this section we revisit the longitudinal structure and time-varying confounding 
problem. The time-varying confounding problem could be illustrated using a directed 
acyclic graph (DAG, Figure S1) [1]: 

 
Figure S1. Directed Acyclic Graph (DAG): This DAG shows the longitudinal structure of observed 
data. 𝐴  represents the treatment (i.e. the number of people (per 10,000) who got their first dose) at 
week 𝑡. 𝑌  represents the growth rate of new COVID-19 cases for week 𝑡. 𝐿  represents the con-
founders we observed at time 𝑡, including the baseline confounders and time-varying confounders. 

The notations are consistent with those in the manuscript. The subscript 𝑡 refers to 
the time (week). Treatment (denoted as 𝐴 ) represents the number of people (per 10,000) 
who got their first dose at week 𝑡. The outcome variable 𝑌  represents the growth rate of 
new COVID-19 cases for each week. 𝐿  represents the confounders we observed at time 
𝑡, including the baseline confounders and time-varying confounders. As shown in the 
DAG, the vaccination and confounders (e.g., the government response index, GDP) could 
have impacts on the outcome variables (growth rate of new cases) of the subsequent peri-
ods. 

To address the time-varying confounding problem, we adjust three kinds of time-
varying confounders in our SNMM based on the literature on vaccine hesitancy and im-
pact factors on vaccine uptake [2]: the government response index (which represents the 
behavior of government), the vaccination coverage (which represents the behavior of res-
idents) and the growth rate of new cases from the previous period (which represents the 
severity of pandemic). Those time-varying confounders are also called treatment-induced 
confounders since they are descendants of treatment variables, so they can also be written 
as potential outcomes. For example, 𝐿  is descendant of (𝐴 , 𝐴 ), so if we set (𝐴 , 𝐴 ) =

(𝑎 , 𝑎 ), the potential outcome we would have observed should be 𝐿 (𝑎 , 𝑎 ). The SNMM 
with g-estimation could properly adjust the time-varying confounding problem, which is 



an advantage over traditional regression-based models (i.e. GEE and fixed effects models) 
as we mentioned in the manuscript. 

2. The Impact of Time-Varying Confounders on the SIR Model 
In this section, we describe the impact of the time-varying confounding problem on 

the SIR model. 
To the best of our knowledge, the existing SIR models and their variants can’t be 

incorporated into the causal framework since they cannot handle confounders (including 
baseline confounders and time-varying confounders). As a result, the simulation of SIR 
models only gives predictions based on the association in observed data and lacks causal 
interpretation due to the failure of adjusting confounders. The SIR model estimated using 
real data can only represent the data generating mechanism under the status quo rather 
than the data generating mechanism under counterfactual scenarios. Hence, we would 
produce biased estimates if we use the SIR model estimated using real data to predict the 
cases in counterfactual scenarios. Here are the reasons: 
 As we stated in the first section, the time-varying confounders can be written as the 

potential outcome of past treatments 𝑎  (i.e. the vaccinated population at each week, 
or we called the vaccination speed in the manuscript): 𝐿 (𝑎 ). 

 The key parameter 𝛽  of the SIR model, the contact rate, is a function of those time-
varying confounders (which represent the behavior of government and residents) [3]. 
Therefore, 𝛽  can also be written as the potential outcome of past treat-
ments: 𝛽 (𝑎 ). 

 The purpose of the scenario analyses was to estimate how the number of cases would 
change under various counterfactual vaccination scenarios. Therefore, in each sce-
nario, we need to set different 𝑎  as hypothetic interventions. Since 𝛽 (𝑎 ) can 
also be written as the potential outcome of past treatments, it will be different under 
different scenarios. For example, in the no vaccination scenario, the 𝑎  is set as 
(0,0, . . . ,0), which is different from the vaccination speed under the status quo. There-
fore, the parameter 𝛽  under no vaccination scenario (we can denote as 𝛽 (0 )) 
could be different from the parameter 𝛽   under status quo (we can denote it as 
𝛽 (𝑎⟊), here 𝑎⟊ represents the vaccination speed under status quo, which is observ-
able). 

 To sum up, under each counterfactual scenario, we could have different 𝛽  for the 
SIR models. And when the vaccination speed is set as 𝑎 , theoretically, we should 
simulate the cases using the SIR model with parameters 𝛽 (𝑎 ). However, since the 
functional form of 𝛽 (𝑎 ) is unknown, we can only use the 𝛽  estimated from 
the real data to simulate the cases under counterfactual scenarios in previous ver-
sions of our simulations. The difference between 𝛽 (𝑎⟊) and 𝛽 (𝑎 ) could ex-
plain why the curves in Figure S2 are quite different than the corresponding ones in 
Figure 2: The difference in estimated cases between SNMM and SIR may be due to 
the failure of adjusting time-varying confounders in the SIR model, which will lead 
to a wrong 𝛽  under counterfactual scenarios. 



 
Figure S2. Simulating the SIR model with σ = 0. Panel A shows the predicted number of new cases 
in each week under different scenarios using SIR model: (a) shows the comparison of predicted 
number of new cases under no vaccination scenario and status quo. (b) shows the comparison of 
predicted number of new cases under half speed scenario and twice speed scenario. (c) shows the 
comparison of predicted number of new cases under 1% constant speed scenario and 4% constant 
speed scenario. (d) shows the comparison of predicted number of new cases under speed up 



scenario and speed down scenario. Panel B shows the comparison between SIR model and SNMM. 
The green area is the 95% CI of SNMM. 

3. A Modified SIR Model and Sensitivity Analysis 
To alleviate the bias of SIR model caused by the time-varying confounders, we mod-

ified an SIR model under the status quo and proposed a sensitivity analysis method to 
adjust for 𝛽 (𝑎 ) under different scenarios in this section. Our results show that, after 
adjusting for the 𝛽 (𝑎 ) under different counterfactual scenarios, the predictions of the 
SIR model under different scenarios can be similar to the predictions of SNMM.  

3.1. The SIR Model under Status Quo 
The modified SIR model is one of the state-space compartment models consisting of 

S (susceptible) for those who are susceptible to SARS-CoV-2, I (infected) for those who are 
infected and contagious, and R (removed) for those who have recovered or died from the 
disease or those who have developed immunity with SARS-CoV-2 (e.g., vaccinated peo-
ple). For convenience, we assume all the infections will be confirmed by official institutes. 
The dynamic equation can be expressed by a group of ordinary differential equations as 
Equation (S.1). 

d𝑆

d𝑡
= −𝛽(𝑡)

𝑆(𝑡)

𝑁
𝐼(𝑡) − 𝑉(𝑡),

d𝐼

d𝑡
=  𝛽(𝑡)

𝑆(𝑡)

𝑁
𝐼(𝑡) − 𝛾(𝑡)𝐼(𝑡),

d𝑅

d𝑡
= 𝛾(𝑡)𝐼(𝑡) + 𝑉(𝑡),

                                   (S. 1) 

where 𝛽(𝑡) is the product of the effective contact number per head and the transmission 
probability of each effective contact, representing the transmission rate of the SARS-CoV-
2, 𝛾(𝑡) is the reciprocal of the average time from infection to recovery or death, 𝑁 is the 
overall population of the US, and 𝑉(𝑡) is the added size in population immunity for day 
𝑡, where we approximate it with the number of daily vaccinated people for the first dose 
during the previous week [4]. The approximation of 𝑉(𝑡) is supported by evidence that 
the vaccinated people will get immuned after 7 days [5]. For simplification, we let 𝛽(𝑡) 
be constant every two weeks, denoted as 𝛽( ) to  𝛽( ), while 𝛾(𝑡) be constant 𝛾(𝑡) from 
week 2 to week 13. 

For the estimation of unknown parameters, we utilize the observed number of 
weekly confirmed cases and estimate the parameters 𝛽 and 𝛾 with maximum likelihood 
estimation (MLE). For the t-th week, the conditional mean of the confirmed case should 
be ∫ 𝛽  𝑑𝑘, denoted as 𝐶  (Here we use X(t) denote daily level value of variable X, 
𝑋  denote the weekly level value of variable X). The observed number of confirmed cases 
for the 𝑡-th week 𝐶  approximately follows a Poisson distribution with mean as 𝐶 . 
The likelihood can be denoted by ∏ 𝑃𝑜(𝐶 |𝐶  ) and we estimate the parameters by 
maximizing the logarithm of likelihood. We use the weekly confirmed cases from Mar 8, 
2021, to May 30, 2021 to fit the model [6]. The initial value for the dynamic equations is set 
to be the epidemic status on Mar 7, 2021. The initial value for 𝐼(𝑡), denoted as 𝐼(0), is the 
observed cases currently infected on Mar 7, 2021 retrieved from Worldometers [7]. The 
initial value for 𝑅(𝑡), denoted as 𝑅(0), is imputed by the cumulative recovery and deaths 
plus the overall vaccinations for at least one dose up to Mar 7, 2021. The initial value for 
𝑆(𝑡) is computed as 𝑁 − 𝐼(0) − 𝑅(0). In our study, the initial value (𝑆(0), 𝐼(0),  𝑅(0)) is 
set as (249,999,014,   7,505,438,   70,082,950). We optimize the log-likelihood with New-
ton-Raphson method. 

We then simulate the epidemic curve under different scenarios of vaccination based 
on estimated parameters with random perturbation. We induce the stochasticity to our 
modified SIR model by using a multinomial distribution as perturbation, i.e., consider the 
dynamic number of day 𝑡 + 1 computed by Equation (S.1) as 𝑆(𝑡 + 1), 𝐼(𝑡 + 1), 𝑅(𝑡 +

1) , and we randomly sample the epidemic for day 𝑡 + 1 from (𝑆(𝑡 + 1), 𝐼(𝑡 + 1), 𝑅(𝑡 +



1)) ∼ Mult 𝑁, 𝑆(𝑡 + 1), 𝐼(𝑡 + 1), 𝑅(𝑡 + 1) /𝑁  [8]. We repeat the simulation 1,000 times 
for each vaccination scenario and obtain the sample mean as the estimation for the time-
varying epidemic. The lower and upper bounds for its 95% confidence interval (CI) are 
derived from the 2.5% quantile and 97.5% quantile of the sampling distribution respec-
tively. 

3.2. A Sensitivity Analysis Method for the SIR Model 
In this section, we proposed a sensitivity analysis method for the SIR model to adjust 

the 𝛽 (𝑎 ) under different counterfactual scenarios. Our idea is motivated by the sensi-
tivity analysis methods proposed by Robins [9] and Brumback et.al [10]. We specified a 
marginal structural model [11] for 𝛽 (𝑎 ): 

𝛽 (𝑎 ) = 𝛽 (𝑎⟊)𝑒𝑥𝑝 𝜎 𝑎⟊ − 𝑎 , (S. 2) 

where 𝜎 is an unknown parameter quantifying the effect size of the hypothetical incre-
ment of vaccination coverage on the contact rate. Note that it’s a model for the potential 
outcome. Equation (S. 2) gives the relationship between the vaccination speed 𝑎  and 
the potential outcome 𝛽 (𝑎 ). This model specification is common for a positive variable 
[11]. Note that 𝑎⟊  is observable (the vaccination speed under status quo). 𝛽 (𝑎⟊), the 
contact rate under status quo, can be estimated using MLE as described in section 3.1.1.  

To predict the cases under other scenarios, we  
 set the parameter 𝜎 to a certain value; 
 plug the MLE of 𝛽 (𝑎⟊), the observed vaccination speed 𝑎⟊  and the hypothetic 

vaccination speed under each scenario 𝑎  into (S. 2), get estimates of 𝛽 (𝑎 ), the 
adjustment of 𝛽 (𝑎⟊) is on the daily level; 

 plug the estimates of 𝛽 (𝑎 ) into SIR model (S. 1), then simulate the SIR model to 
predict the cases under each scenario. 

4. Results 
The maximum likelihood estimates for 𝛽( )  to 𝛽( )  are 0.069, 0.092, 0.114, 0.104, 

0.084, 0.060 respectively. The estimate for 𝛾 is 0.072. 
Figure S2 to Figure S7 show the prediction by SIR models and the comparisons with 

SNMM by setting 𝜎 to 0, 0.05, 0.15, 0.25, 0.35, 0.45 respectively. 
In Figure S2, we choose 𝜎 = 0, which means we don’t adjust for 𝛽 (𝑎 ). In panel A 

of Figure S2, although the estimates of the SIR model are covered by the 95% CI of SNMM, 
the point estimates are relatively different, especially for the no vaccination scenario. The 
estimates under the ‘speed up’ scenario and the ‘speed down’ scenario are quite close. 

From Figure S3 to Figure S7, we further adjust the estimates of 𝛽  using equation 
(S.2) by setting σ = 0.05, 0.15, 0.25, 0.35, 0.45 respectively. We found that the prediction 
of the SIR model and SNMM get closer. We also found that when 𝜎 = 0.35, almost all 
predictions from SIR are similar to that from SNMM. In Figure S6, we show the results 
when 𝜎 = 0.35. In panel A of Figure S6, the results are pretty similar to the results shown 
in Figure 2 in the manuscript. For example, the comparison between the status quo and 
the no-vaccination scenario shows that the vaccination during the study period has effec-
tively reduced the disease burden. We found that compared to 1% constant vaccination 
speed, 4% constant vaccination speed reduced more cases. Similarly, we found that com-
pared to half vaccination speed, twice vaccination speed reduces more cases. The compar-
ison between ‘Speed up’ and ‘Speed down’ scenarios shows the importance of accelerat-
ing vaccine rollout in the early stage. In panel B of Figure S6, we showed the similarity 
between the estimates from SIR models and SNMM: almost all the estimates from SIR are 
covered by SNMM, and the estimates from SIR are also quantitively similar to the esti-
mates from SNMM.  



 
Figure S3. Simulating the SIR model with σ = 0.05. Panel A shows the predicted number of new 
cases in each week under different scenarios using SIR model: (a) shows the comparison of predicted 
number of new cases under no vaccination scenario and status quo. (b) shows the comparison of 
predicted number of new cases under half speed scenario and twice speed scenario. (c) shows the 
comparison of predicted number of new cases under 1% constant speed scenario and 4% constant 
speed scenario. (d) shows the comparison of predicted number of new cases under speed up sce-
nario and speed down scenario. Panel B shows the comparison between SIR model and SNMM. The 
green area is the 95% CI of SNMM. 



 
Figure S4. Simulating the SIR model with σ = 0.15. Panel A shows the predicted number of new 
cases in each week under different scenarios using SIR model: (a) shows the comparison of predicted 
number of new cases under no vaccination scenario and status quo. (b) shows the comparison of 
predicted number of new cases under half speed scenario and twice speed scenario. (c) shows the 
comparison of predicted number of new cases under 1% constant speed scenario and 4% constant 
speed scenario. (d) shows the comparison of predicted number of new cases under speed up sce-
nario and speed down scenario. Panel B shows the comparison between SIR model and SNMM. The 
green area is the 95% CI of SNMM. 



 
Figure S5. Simulating the SIR model with σ = 0.25. Panel A shows the predicted number of new 
cases in each week under different scenarios using SIR model: (a) shows the comparison of predicted 
number of new cases under no vaccination scenario and status quo. (b) shows the comparison of 
predicted number of new cases under half speed scenario and twice speed scenario. (c) shows the 
comparison of predicted number of new cases under 1% constant speed scenario and 4% constant 
speed scenario. (d) shows the comparison of predicted number of new cases under speed up sce-
nario and speed down scenario. Panel B shows the comparison between SIR model and SNMM. The 
green area is the 95% CI of SNMM. 



 
Figure S6. Simulating the SIR model with σ = 0.35. Panel A shows the predicted number of new 
cases in each week under different scenarios using SIR model: (a) shows the comparison of predicted 
number of new cases under no vaccination scenario and status quo. (b) shows the comparison of 
predicted number of new cases under half speed scenario and twice speed scenario. (c) shows the 
comparison of predicted number of new cases under 1% constant speed scenario and 4% constant 
speed scenario. (d) shows the comparison of predicted number of new cases under speed up sce-
nario and speed down scenario. Panel B shows the comparison between SIR model and SNMM. The 
green area is the 95% CI of SNMM. 



 
Figure S7. Simulating the SIR model with σ = 0.45. Panel A shows the predicted number of new 
cases in each week under different scenarios using SIR model: (a) shows the comparison of predicted 
number of new cases under no vaccination scenario and status quo. (b) shows the comparison of 
predicted number of new cases under half speed scenario and twice speed scenario. (c) shows the 
comparison of predicted number of new cases under 1% constant speed scenario and 4% constant 
speed scenario. (d) shows the comparison of predicted number of new cases under speed up sce-
nario and speed down scenario. Panel B shows the comparison between SIR model and SNMM. The 
green area is the 95% CI of SNMM. 

  



5. Conclusions 
In conclusion, the difference between the prediction from SNMM and the prediction 

of the SIR model may stem from the failure of adjusting time-varying confounders by the 
SIR model. To solve this problem, we proposed a sensitivity analysis method to adjust for 
𝛽  in the SIR model. Our sensitivity analysis shows that after adjusting for 𝛽 (𝑎 ) un-
der model specification (S.2) and certain parameter settings, the prediction from the SIR 
model can be similar to the prediction from SNMM.  
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Supplementary Material S2. 
In this section, we applied the statistical methods (e.g. SNMM, GEE, fixed effects 

model) to estimate the effect of vaccination on weekly growth rate based on the dataset 
from September 2021 to December 2021 in the United States when the delta variant dom-
inated the epidemic.  

1. Methods 
We collected state-level daily COVID-19 cases and vaccine coverage data from Sep-

tember 5 to December 4, 2021 in the US from Johns Hopkins Coronavirus Resource Center 
and Centers for Disease Control and Prevention (CDC) [1,2]. The baseline covariates and 
time-varying covariates we used were described in the main text. 

Data in 44 states and Washington DC in the US were included in the analyses (We 
excluded Illinois, Kentucky, Michigan, New Mexico, Washington, Pennsylvania because 
of errors in their vaccination coverage data). The period since December 4, 2021 was ex-
cluded because the Omicron variant swiftly dominated the transmission since mid-De-
cember [3]. The period before September 5, 2021 was also excluded because the proportion 
of delta variant was still increasing steadily. The data were aggregated at weekly level to 
avoid the collection and report patterns of the confirmed cases data, resulting in the study 
period of 13 weeks at 45 states for analysis (first week: September 5 to September 11; the 
13th week: November 28, 2021, to December 4, 2021). We estimated the effect of vaccina-
tion on growth rate of new cases using SNMM, fixed-effects models and GEE models as 
described in the main text. 

Since the increment of vaccination coverage is about 9% from September to Decem-
ber 2021, we predicted the counterfactual growth rate under the following hypothetical 
scenarios. In each scenario, we set a different vaccination speed (denoted as 𝑎 ,

∗ ). 
• No-vaccination scenario: No people get vaccination since week 1, which means 

𝑎 ,
∗

= 0 . 
• Twice speed scenario: The number of people vaccinated for the first time each week 

is twice of the actual number in each state, which means 𝑎 ,
∗

= 2𝑎 ,
⟊ , 2𝑎 ,

⟊ , … ,2𝑎 ,
⟊ . 

• Half speed scenario: The number of people vaccinated for the first time each week is 

half of the actual number in each state, which means 𝑎 ,
∗

= ,
⟊

, ,
⟊

, . . . , ,
⟊

. 
• 0.3% constant speed scenario: 0.3% population get their first dose in each week in 

each state, which means 𝑎 ,
∗

= (30, 30, … , 30). 
• 1% constant speed scenario: 1% population get their first dose each week in each 

state, which means 𝑎 ,
∗

= (100, 100, … ,100). 
• Speed up scenario: For the first 6 weeks, 0.3% population get their first dose in each 

week in each state, while for the rest 7 weeks, 1% population get their first dose in 
each week in each state, which means 𝑎 ,

∗
= (30, 30, … , 30, 100, . . . . ,100).  

• Speed down scenario: For the first 7 weeks, 1% population get their first dose in each 
week in each state, while for the rest 6 weeks, 0.3% population get their first dose in 
each week in each state, which means 𝑎 ,

∗
= (100, 100, … , 100, 30, . . . . ,30). 

2. Results 
From September 5 to December 4, the vaccination coverage rate has increased from 

61% to 70% in the states we included in our analysis, and 7.33 million confirmed cases 
were reported in the US. We plot the vaccine coverage rate and the number of new cases 
in each week in Figure S8.  



 
Figure S8. The vaccination coverage and new cases (in thousands) in the United States (from Sep-
tember 5, 2021 to December 4, 2021). 

To explore the effect of vaccination on growth rate of new cases during this period, 
we performed the same analysis as we described in the main text and the estimated effects 
of vaccination on growth rate of new cases during the 13 weeks (Table S1). The estimated 
effects of vaccination on growth rate of new cases during the 13 weeks are shown in Table 
S1. The results from SNMM, GEE (adjust baseline and time-varying covariates), two-way 
fixed effects model and two-way fixed effects model (adjust time-varying covariates) give 
similar patterns. During the period from September 2021 to December 2021, the SNMM 
estimates the effect of 1% increase in vaccination coverage on growth rate of new cases of 
-0.71% (95% CI: -2.94%, 36.9%). Besides, the effect of 1% increase in vaccination coverage 
on growth rate of new cases is estimated as -1.59% (95% CI: -3.37%, 0.56%), -0.39% (95% 
CI: -2.26%, 1.47%), 0.17% (95% CI: -1.59%, 1.94%), respectively, by GEE (adjust baseline 
and time-varying covariates), two-way fixed effects model and two-way fixed effects 
model (adjust time-varying covariates). The results of scenario analysis are shown in Fig-
ure S9 and Table S.2. The sampling distribution of parameter in SNMM from bootstrap is 
concentrated around zero but with a right-skewed tail, which leads to the asymmetric 
confidence interval and wide confidence interval for estimated cases under different sce-
narios. 

Table S1. Impact of COVD-I9 vaccine program on weekly growth rate of COVID-19 new cases. 

 
Effects on Growth Rate 

Estimate SE 95% CI 
Main analysis    

SNMM with g-estimation -0.71% 0.107 (-2.94%, 36.9%) 
GEE analysis    

GEE (adjust baseline covariates) 0.99% 0.0036 (0.29%, 1.69%) 
GEE (adjust baseline and time-varying covariates) -1.59% 0.0110 (-3.37%, 0.56%) 

Fixed effect model    
Two way fixed effect model -0.39% 0.0095 (-2.26%, 1.47%) 

Two way fixed effect model (adjust time-varying covariates) 0.17% 0.0090 (-1.59%, 1.94%) 



 
Figure S9. Predicted Number of new cases in each week under different scenarios (2021.9-2021.12): 
(a) shows the comparison of predicted number of new cases under no vaccination scenario and 
status quo. (b) shows the comparison of predicted number of new cases under half speed scenario 
and twice speed scenario. (c) shows the comparison of predicted number of new cases under 0.03% 
constant speed scenario and 1% constant speed scenario. (d) shows the comparison of predicted 
number of new cases under speed up scenario and speed down scenario. 

Table S2. Results of the base case and scenarios analyses (2021.9-2021.12). 

Scenarios 
Cumulated New Cases (Million)  Vaccination Effectiveness 
Estimate 95% CI  Estimate 95% CI 

Base case      
Status quo 7.33 /  10.0% (-230%, 42%) 

Scenarios analysis      
No-Vaccination 8.14 (2.22, 12.56)  0% / 

vaccination speed: two times the status-quo speed 6.70 (5.36, 1.80 × 10 )  17.7% (−8.13 × 10 , 57.3%) 
vaccination speed: half of the status-quo speed 7.72 (3.07, 9.34)  5.2% (-38.4%, 25.7%) 

vaccination speed: 1% population per week 6.84 (5.76, 6.24 × 10 )  16.0% (−2.82 × 10 , 54%) 
vaccination speed: 0.3% population per week 7.70 (3.11, 9.29)  5.4% (-40.2%, 26.0%) 

Speed-down: 1% for first 7 weeks and 0.3% for last 6 weeks 6.92 (5.95, 1.7 × 10 )  15% (-7.26× 10 , 52%) 
Speed-up: 0.3% for first 6 weeks and 1% for last 7 weeks 7.55 (5.21, 8.85)  7.3% (-206%, 33.1%) 

3. Discussion 
The estimate from SNMM is still negative but insignificant because the 95% confi-

dence interval is very wide and 0 is included in this interval. Therefore, we can’t conclude 
that the vaccination during the study period effectively reduced the growth rate of new 
cases. However, this result based on the causal model should be interpreted carefully. 
Note that the treatment here is the vaccination population from September 5 and 



December 4, which means we only found that the vaccination during the period (Septem-
ber 5, 2021 to December 4, 2021) didn’t reduce the growth rate of new cases and this causal 
interpretation is only valid for the period we studied.  

There may be multiple reasons for the insignificant result. First, other studies based 
on individual-level real-world data have shown that the efficacy of the COVID-19 vac-
cines against the delta strain has declined compared to that against the original strain [4]. 
Therefore, it is plausible that the vaccination effectiveness against the delta strain at the 
population level also declined compared to that against the original strain. Second, it 
should be noted that during this period, the increment of vaccination coverage was only 
9%. Given the base vaccine coverage of about 61% before September 5, it’s possible that 
the additional vaccination during the study period has minor effect against the delta 
strain. The vaccination before September 5 may have significantly impacted the transmis-
sion of the delta strain. However, it’s hard to model this effect between June 2021 and 
September 2021 since the proportion of variants changed radically during this period. The 
effect of the vaccination on growth rate could depend on the proportion of the variants.  
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