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Abstract: Though COVID-19 vaccines have shown high efficacy, real-world effectiveness at the
population level remains unclear. Based on the longitudinal data on vaccination coverage and daily
infection cases from fifty states in the United States from March to May 2021, causal analyses were
conducted using structural nested mean models to estimate the population-level effectiveness of
the COVID-19 vaccination program against infection with the original strain. We found that in the
US, every 1% increase of vaccination coverage rate reduced the weekly growth rate of COVID-19
confirmed cases by 1.02% (95% CI: 0.26%, 1.69%), and the estimated population-level effectiveness
of the COVID-19 program was 63.9% (95% CI: 18.0%, 87.5%). In comparison to a no-vaccination
scenario, the COVID-19 vaccination campaign averted 8.05 million infections through the study
period. Scenario analyses show that a vaccination program with doubled vaccination speed or with
more rapid vaccination speed at the early stages of the campaign would avert more infections and
increase vaccine effectiveness. The COVID-19 vaccination program demonstrated a high population-
level effectiveness and significantly reduced the disease burden in the US. Accelerating vaccine
rollout, especially at an early stage of the campaign, is crucial for reducing COVID-19 infections.

Keywords: COVID-19; vaccines; causal inference; effectiveness; structural nested mean models

1. Introduction

Since December 2019, the coronavirus disease 2019 (COVID-19) pandemic has rapidly
spread and caused severe disease burden globally [1]. Countries worldwide have strived to
boost COVID-19 vaccine coverage to contain the spread of the virus and reduce the burden
of severe disease [2]. In the United States (US), three COVID-19 vaccines, developed by
Pfizer-BioNTech, Moderna, and Johnson & Johnson, were distributed for public use, and
the coverage rate of at least one dose of the COVID-19 vaccine rapidly increased from 1.3%
on 1 January 2021 to 64.0% on 1 October 2021 among the general population of the United
States [3].

Despite randomized clinical trials showing high efficacy of COVID-19 vaccines against
infection (ranging from 66.9–95%) [4–6], the real-world effectiveness of the vaccines at the
population level remains unclear. The vaccine direct effectiveness, which is a measure of the
direct effect of the vaccine on vaccinated individuals, has been evaluated at the individual
level using cohort studies (from the same population) [7–10] or case-control studies [11], and
their results showed a lower risk of infection among vaccinated individuals compared with
those unvaccinated. However, these designs are limited in capturing herd immunity (indirect
effect) and population-level effectiveness (overall effect of a vaccination program in the
population) [12–14]. Furthermore, these designs were unable to examine the population-level
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outcomes of mass vaccination (e.g., the growth rate of infection cases [15–18], the number of
cases averted [19]), which have important public health implications and provide evidence
for policymaking. Some methods have been adopted to study the population-level effect
(overall effect) of the COVID-19 vaccines, most of which are mathematical models. For
example, compartment models and agent-based models are built to simulate how cases could
evolve under different COVID-19 vaccination strategies [20–24]. However, these models rely
on estimated parameters unconnected to the actual epidemic and vaccination data.

The challenges in evaluating the population-level effectiveness of the COVID-19 vac-
cines are the utilization and integration of real-world data on the epidemic and vaccination
that evolved dramatically over time. The relationship between epidemic outcome (e.g.,
growth rate of new cases) and vaccinated population is complex and dynamic because vari-
ous factors influenced vaccine uptake, such as perceptions of vaccination [25], severity of
the epidemic, and intensity of non-pharmaceutical interventions [26,27]. The time-varying
characteristics of these factors may confound the relationship between the vaccinated
population at the present stage and the growth rate of infection cases in the subsequent
period, and they may also be impacted by the vaccinated population (treatment) and the
growth rate of new infection cases (outcome) at the previous stage. In the past, there
were studies that used longitudinal data at the population level as statistical models to
assess the effectiveness of other vaccines, such as influenza vaccine, meningococcal B
vaccine, and BCG vaccine. However, no such studies were conducted regarding COVID-19
vaccination, to the best of our knowledge. Furthermore, in the context of COVID-19 vac-
cination, these methods are unable to handle the rapidly evolving relationship between
time-varying treatments, outcomes, and confounders. For example, generalized estimating
equations [28] or fixed-effects models [29] will generate biased estimates when there exist
time-varying confounders that are impacted by previous independent variables [30–33].
The Suspectible-Infected-Recovered (SIR) model cannot handle confounders, either. As a
result, these methods only give predictions based on the associations in observed data and
lack causal interpretation due to the failure to adjust for confounders. Synthetic control [34]
or interrupted time series [35] can only evaluate binary treatment.

In this paper, we studied the relationship between the vaccinated population and
epidemic outcomes at population level. Structural nested mean models (SNMMs) were
used to deal with time-varying confounders [36]. SNMMs can easily handle continuous
treatments [36–38]. Moreover, as defined in the potential outcome framework [39,40],
SNMMs have the advantage of providing a causal interpretation of the estimates and
results. Based on the longitudinal data on COVID-19 vaccination coverage and weekly
confirmed infection cases in the United States, we estimated the effect of the vaccinated
population on the growth rate of confirmed new cases using SNMMs. We then calculated
the population-level effectiveness of the COVID-19 vaccination program against the original
COVID-19 virus strain and the disease burden averted during the study period, compared
with a no-vaccination scenario. This study identified that every 1% increase in vaccine
coverage would reduce the weekly growth rate of COVID-19 cases by 1.02% (95% CI: 0.26%,
1.69%), and stressed the significance of intensive vaccine rollout, especially at early stages,
in averting infections and increasing vaccine effectiveness.

2. Materials and Methods
2.1. Data

We collected state-level daily COVID-19 cases and vaccine coverage data from 1 March
to 30 May 2021 in the U.S. from Johns Hopkins Coronavirus Resource Center and the
Centers for Disease Control and Prevention (CDC) [1,3]. We also collected state baseline
characteristics, including GDP, population, health resource (number of physicians), political
position (red or blue states in the 2016 election), proportion of people aged 65 or above, race
composition, education level (proportion of people with advanced degrees), unemployment
rate, and sex ratio. Their sources can be found in Appendix A Table A1. Overall government
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response index was collected from the Oxford COVID-19 Government Response Tracker
dataset [41].

Data from 49 states and Washington, DC, in the U.S. were included in the analyses,
excluding New Hampshire due to errors in the vaccinated population data. The study
aimed to evaluate the population-level effectiveness of COVID-19 vaccination program
against the original strain. Therefore, the period after June 2021 was excluded because the
proportion of SARS-CoV-2 variants changed radically since then, making the Delta variant
gradually predominate as the main variant of transmission. The periods before March 2021
were also excluded due to missing data on vaccination coverage. The data were aggregated
at the weekly level to avoid the collection and report patterns of the confirmed case data,
resulting in the study period of 13 weeks at 50 states (including DC) for analysis (first week:
1 March to 7 March; 13th week: 24 May to 30 May).

2.2. Treatment and Outcome Variable

Treatment (denoted as Ai,t) represents the number of people (per 10,000) who received
their first dose in state i at week t. The key outcome variable, the growth rate of new
COVID-19 cases for each week [15–18], is calculated as

Yi,t = log(Ci,t+1)− log(Ci,t), (1)

where Ci,t is the number of new cases reported in state i at week t, and Yi,t represents the
growth rate of new cases in state i at week t. We omitted index i when there was no ambiguity.

2.3. Causal Parameters of Interest

To define our causal parameters of interest, we formalized our ideas in a poten-
tial outcome framework, which was proposed by Donald Rubin [40] and extended to
longitudinal settings by James Robins [42]. For each state, our data are of the form
{L1, Y1, A1, . . . , L13, Y13, A13, Y14}, where Lt denotes covariates, including time-varying co-
variates and baseline covariates (we mention which confounders we included in analysis
in the next section). Assume at week t, first Lt was observed, then Yt was observed, and At
was the last to be observed.

Let Xt be an arbitrary variable. We use Xt to denote the history of Xt, that is to say,
Xt = (X1, . . . ., Xt). Then, At = (A1, . . . , At) represents the vaccinated population (per
10,000 people) each week prior to t; we refer at as vaccination speed because it represents
the first-order difference in vaccination coverage each week. The potential outcome can be
written as Yt+1(at), which is the outcome that would have been observed if the vaccination
population had been set to At = at. Moreover, we use Yt+1(as, 0) for abbreviation of
Yt+1(as, 0, . . . , 0), which is the potential outcome under intervention which takes the value
as at the first s periods and takes value 0 for the remaining periods. The potential outcomes
and observed outcomes are linked by the consistency assumption [33], which means that if
a region’s observed vaccination speed at stage t + 1 is at, then Yt+1 = Yt+1(at).

Our first causal parameter of interest is the average treatment effect [31]:

E
[
Yt+1

(
at
(1)
)
−Yt+1

(
a(2)t

)]
. (2)

This is the contrast of the mean difference of outcome under different vaccination
speeds at

(1) and at
(2), representing the effect of vaccination speed (vaccine population per

10,000 people) before t + 1 on the growth rate.
Moreover, how many new cases we would have observed each week in the United

States if a certain vaccination speed a∗i, 13 had been accomplished is also of interest to us,
and is

50

∑
i=1

Ci,t+1
(
a∗i,t
)
. (3)
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Here Ci,t+1

(
a∗i,t
)

is the potential outcome of new cases at state i and week t, and a∗i,t is
the segment of first t components of a∗i, 13.

Lastly, define the population-level vaccine effectiveness (PVE) of vaccination speed
a∗i, 13 as

1−
∑13

t=1 ∑50
i=1 Ci,t+1

(
a∗i,t
)

∑13
t=1 ∑50

i=1 Ci,t+1(0)
. (4)

This population-level vaccine effectiveness is one minus the ratio of new cases under
different vaccination speeds, similar to the definition of the usual vaccine effectiveness
estimand [43]. This value can be interpreted as the proportion of new cases prevented by
the vaccination speed a∗i, 13 compared to the no-vaccination scenario.

2.4. Confounders

A sufficient set of confounders was adjusted to yield causal interpretation of our
results. We adjusted the baseline cumulative number of cases and vaccination coverage.
Based on the vaccine hesitancy framework and impact factors on vaccine uptake [27],
we adjusted three types of confounders. The first type of confounder was related to
people’s perception of risk and severity of COVID-19 pandemic; thus, we adjusted the
lagged growth rate of new cases as an indicator of severity of the COVID-19 pandemic.
It is a time-varying confounder. The second type of confounder was related to social
influence from government and surrounding people. We used the overall government
response index as an indicator of government behavior. We used vaccination coverage and
vaccinated population (per 10,000) in the last week as indicators of surrounding people’s
behavior. The confounders of the second type are also time-varying ones. For the third
type of confounder, demographic and socio-economic factors at the state level were taken
into consideration, including GDP, population, health resources (number of physicians),
political position (red or blue states in the 2016 election), proportion of people aged 65 or
above, racial composition, education level (proportion of people with advanced degrees),
unemployment rate, and sex ratio.

2.5. Data Analysis
2.5.1. Structural Nested Mean Model

Our analysis was mainly based on the structural nested mean model. The structural
nested mean model parameterized the conditional average treatment effect:

E
[
Yt+1(as, 0)−Yt+1(as−1, 0)

∣∣∣Ls = ls, Ys = ys, As = as

]
, (5)

where t = 1, . . . , 13, and s ≤ t. Following previous literature [15–18], we specified a linear
model for the growth rate as

E
[
Yt+1(as, 0)−Yt+1(as−1, 0)

∣∣∣Ls = ls, Ys = ys, As = as

]
= ψas. (6)

This SNMM specification was commonly used in past epidemiology literature [44,45].
Our SNMM could imply a marginal structural model (MSM) [46]:

E[Yt+1(at)] = E[Yt+1(0)] + ψ
t

∑
k=1

ak. (7)

Then, our causal parameter of interest could be represented as

E[Yt+1(at)−Yt+1(a∗t )] = ψ
t

∑
k=1

(ak − a∗k ). (8)
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In our dataset, ak represents the number of people out of every 10,000 people who were
vaccinated for the first dose; then, ∑t

k=1 ak is the number of people who were vaccinated for
the first dose since week 1. The parameter 100 ∗ ψ can be interpreted as the percentage of
growth rate that decreases for every percent increase in the vaccinated population, starting
from the first week.

To estimate ψ, we also specified a propensity score model (i.e., models for vaccinated
population per 10,000 people) and an outcome model in each week to adjust for confounders.
We utilized Poisson regression models for propensity scores and linear regression models
for outcomes (Appendix B). ψ can be estimated using g-estimation (Appendix B) [36–38].
The standard error and 95% confidence interval were bootstrapped [47]. The estimation
is doubly robust in the sense that the estimation for ψ is unbiased if either the propensity
score models or the outcome models are correctly specified [38].

2.5.2. Generalized Estimating Equation Models and Fixed Effects Models

We also fitted two generalized estimating equation (GEE) models [48,49] and two fixed
effects models for comparison.

Two GEE models were fitted. The first GEE model regressed growth rate on the
vaccinated population since week 1, adjusting baseline covariates. The second one regressed
growth rate on the vaccinated population since week 1, adjusting baseline covariates, time-
varying covariates, and time trend. We utilized the independent working correlation
structure in our GEE analysis.

Two fixed effects models were also fitted. The first fixed effects model included state
fixed effects, week fixed effects and vaccinated population since week 1. The second one
included state fixed effects, week fixed effects, time-varying covariates, and vaccinated
population since week 1. A detailed model specification of the GEE models and fixed
effects models can be found in Appendix C.

2.5.3. Scenarios Analysis

We also used the estimate from SNMM and g-estimation to predict the number of new
cases each week in the United States under different vaccination speeds. For each state
i, we utilized the following relationship to predict the counterfactual growth rate under
vaccination speed a∗i,13:

Yi,t+1
(
a∗i,t
)
= Yi,t+1 + ψ

t

∑
k=1

(
a∗i,k − a†

i,k

)
. (9)

Here, a∗i,k is the k-th component of a∗13, and a†
i,k refers to the observed vaccinated

population in state i, week k. We predicted the counterfactual growth rate under the
following hypothetical scenarios. In each scenario, we set a different vaccination speed.

• No-vaccination scenario: No people are vaccinated since week 1, which means
a∗i,13 = 013.

• Twice speed scenario: The number of people vaccinated for the first time each week is

twice the actual number in each state, which means a∗i,13 =
(

2a†
i,1, 2a†

i,2, . . . , 2a†
i,13

)
.

• Half speed scenario: The number of people vaccinated for the first time each week is

half of the actual number in each state, which means a∗i, 13 =

(
a†

i,1
2 ,

a†
i,2
2 , . . . ,

a†
i,13
2

)
.

• 1% constant speed scenario: 1% of the population receive their first dose in each week
in each state, which means a∗i, 13 = (100, 100, . . . , 100).

• 4% constant speed scenario: 4% of the population receive their first dose each week in
each state, which means a∗i, 13 = (400, 400, . . . , 400).

• Speed up scenario: For the first six weeks, 1% of the population receive their first dose
in each week in each state, while for the remaining seven weeks, 4% of the population
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receive their first dose in each week in each state, which means
a∗i, 13 = (100, 100, . . . , 100, 400, . . . , 400).

• Speed down scenario: For the first seven weeks, 4% of the population receive their
first dose in each week in each state, while for the remaining six weeks, 1% of
the population receive their first dose in each week in each state, which means
a∗i, 13 = (400, 400, . . . , 400, 100, . . . , 100).

Under each counterfactual scenario, we utilized the relationship between growth
rate and new cases to predict the number of new cases in each week, then calculated the
population-level vaccine effectiveness.

2.5.4. Additional Analysis and Extension

To demonstrate the validity of the method adopted, we conducted additional analyses
and extended our statistical models to two new datasets. Firstly, we predicted the new
cases in each scenario during the same study period with a modified Suspected–Infected–
Recovered (SIR) model. Secondly, we used the SNMM, GEE models and fixed effects
models described above to estimate the effect of vaccination on weekly growth rate based
on the dataset from September 2021 to December 2021 in the United States when the delta
variant dominated the epidemic. See Supplementary Material for more details.

3. Results
3.1. Baseline Characteristics

From 1 March to 30 May 2021, 4.55 million confirmed cases were reported in the US.
The coverage rate of at least one dose among the general population reached 50.0% from
15.2% (Figure 1). The average weekly vaccination speed in the United States was 2.7%.
Table 1 shows the descriptive statistics of the baseline covariates of 50 states.

Figure 1. Vaccination coverage and new cases (in thousands) in the United States.
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Table 1. Descriptive statistics of baseline covariates.

Variables Mean SD

Number of physicians (per capita) 475.2 192.6
GDP (millions of chained 2012 dollars) 375,880 490,590

Population 6,551,748 7,415,328
Race composition (proportion of black people) 0.132 0.109

Proportion of old people (aged 65 or above) 0.164 0.020
Red or Blue state in 2016 election (Red = 1) 0.6 0.495

Unemployment Rate (in March, 2021) 5.56 1.72
Proportion of people with advanced degrees 0.126 0.042

Sex ratio 0.977 0.033
Cumulative cases at baseline 569,301 664,218

Vaccination coverage at baseline (per 10,000 people) 1572 238

3.2. Impact of COVD-I9 Vaccine Program on Weekly Growth Rate of COVID-19 New Cases

Table 2 shows the impact of the COVD-19 vaccination program on the weekly growth
rate of new COVID-19 cases at the state level in the US. The result, based on the structural
nested mean model (SNMM) with g-estimation, showed that for every 1% of the population
becoming vaccinated, the growth rate of new COVID-19 infection cases reduced by 1.02%
(95% CI: 1.69%, 0.26%). In contrast, the first GEE analysis with baseline covariates adjusted
showed that every 1% increase in the COVID-19 vaccination coverage rate reduced the
growth rate of new cases by 0.754% (95% CI: 0.974%, 0.533%), which was smaller than that
of the g-estimation by approximately one standard error. The second GEE analysis, which
adjusted the time trend and all covariates, estimated that every 1% increase in vaccination
rate reduced the growth rate of new cases by 1.74% (95% CI: 2.42%, 1.05%), which was
bigger than that of the g-estimation by approximately two standard errors. Results from the
fixed-effects model showed similar patterns. The two-way fixed effects model showed that
every 1% increase in the COVID-19 vaccination coverage rate reduced the growth rate of
new cases by 1.52% (95% CI: 2.09%, 0.96%), which was bigger than that of the g-estimation
by approximately 1.5 standard error. After adjusting for time-varying confounders, the two-
way fixed effects model estimated that every 1% increase in the vaccination rate reduced
the growth rate of new cases by 1.87% (95% CI: 2.43%, 1.30%) which was bigger than that
of the g-estimation by approximately two standard errors.

Table 2. Impact of the COVD-19 vaccine program on the weekly growth rate of new COVID-19 cases.

Decline of Growth Rate

Estimate SE 95% CI

Main analysis
SNMM with g-estimation 1.02% 0.0037 (1.69%, 0.26%)

GEE analysis
GEE (adjust baseline covariates) 0.754% 0.00076 (0.974%, 0.533%)

GEE (adjust baseline and time-varying covariates) 1.74% 0.0035 (2.42%, 1.05%)
Fixed effects model

Two-way fixed effects model 1.52% 0.0029 (2.09%, 0.96%)
Two-way fixed effects model (adjust time-varying

covariates) 1.87% 0.0029 (2.43%, 1.30%)

3.3. Population-Level Effectiveness of COVID-19 Vaccination and Averted Disease Burden

Table 3 shows the population-level effectiveness of COVID-19 vaccination and averted
disease burden in total. Based on the causal analyses, if the COVID-19 vaccination had
been suspended after the first week, the total infection cases during the study period
would have reached 12.60 million (95% CI: 5.55, 36.51) in the US over the 13 weeks. By
contrast, there were 4.55 million new cases under the status quo. At the present vaccination
speed, the population-level effectiveness of COVID-19 vaccination was estimated as 63.9%
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(95% CI: 18.0%, 87.5%), and the COVID-19 vaccination program averted about 8 million
cases. Figure 2a presents the comparison of cumulative cases over time between the status
quo and the ‘no-vaccination’ scenario.

Table 3. Results of the base case and scenario analyses.

Scenarios
Cumulated New Cases (Million) Vaccination Effectiveness

Estimate (95% CI) Difference (%) a Estimate (95% CI) Difference (%) b

Base case
Status quo 4.55 c / 63.9% (18.0%, 87.5%) /

Scenario analysis
No-Vaccination 12.60 (5.55, 36.51) 8.05 (177%) 0% −63.9%

vaccination speed: two times the
status-quo speed 2.84 (2.34, 3.93) −1.71 (−37.6%) 77.5% (29.2%, 93.6%) 13.6%

vaccination speed: half of the
status-quo speed 7.10 (5.03, 10.88) 2.55 (56%) 43.7% (9.34%, 70.2%) −20.2%

vaccination speed: 4% population
per week 3.99 (3.71, 4.40) −0.56 (−12.3%) 68.4% (20.7%, 89.8%) 4.5%

vaccination speed: 1% population
per week 8.66 (5.21, 16.06) 4.11 (90.3%) 31.3% (6.07%, 56.02%) −32.6%

Speed-down: 4% for first 7 weeks
and 1% for last 6 weeks 4.13 (3.91, 4.44) −0.42 (−9.2%) 67.3% (19.9%, 89.3%) 3.4%

Speed-up: 1% for first 6 weeks and
4% for last 7 weeks 7.52 (5.10, 11.47) 2.97 (65.3%) 40.3% (8.10%, 68.6%) −23.6%

a. The difference is the estimate of cases under each scenario minus the cases under the status quo. The percentage
in the bracket is the ratio of difference over cases under the status quo. b. The difference refers to estimates of
vaccine effectiveness in each scenario minus the effectiveness under the status quo. c. The observed cases under
the status quo.

3.4. Scenarios Analysis

Table 3 and Figure 2b–d show the scenario analyses of the population-level effective-
ness of COVID-19 vaccination and predicted disease burden of infection cases by different
vaccination speeds.

In comparison to the status quo, doubling vaccination speed would have increased the
vaccine effectiveness to 77.5% (95% CI: 29.2%, 93.6%), averting an additional 1.71 million
cases. By contrast, if the vaccination program had been implemented at half the current
speed, vaccination effectiveness would have declined to 43.7% (95% CI: 9.34%, 70.2%) with
2.55 million more infection cases. (Figure 2b).

As shown in Figure 2c, we predicted the results of the two scenarios where the vacci-
nation programs were conducted at a constant speed of 1% or 4% of the general population
per week. In the scenario with the speed of 1% of the population vaccinated per week, there
would be 8.66 million cases (95% CI: 5.21, 16.06) with an estimated effectiveness of 31.3%
(95% CI: 6.07%, 56.02%). In the scenario with the speed of 4% of the population vaccinated
per week, there would be 3.99 million cases (95% CI: 3.71, 4.40) with an effectiveness of
68.4% (95% CI: 20.7%, 89.8%).

In the last set of comparisons (Figure 2d), we compared the results of ‘speed-up‘ and
’speed-down‘ scenarios, keeping the total amount of vaccination during the 13 weeks
basically the same as that of the status quo (34.8%). In the ’speed-down‘ scenario, where the
vaccination speed was 4% of the population per week for the first seven weeks and 1% for
the last six weeks, vaccination speed changed from fast to slow. There would be 4.13 million
cases (95% CI: 3.91, 4.44) with the vaccine effectiveness being approximately 67.3% (95% CI:
19.9%, 89.3%). However, if the vaccination speed had been 1% of the population per week
for the first six weeks and 4% for the last seven weeks, vaccination speed changed from
slow to fast. The total cases would have reached 7.52 million cases (95% CI: 5.10, 11.47), and
the estimated vaccine effectiveness would have declined to 40.3% (95% CI: 8.10%, 68.6%).
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Figure 2. Predicted number of new cases in each week under different scenarios. (a) shows the com-
parison of predicted number of new cases under no vaccination scenario and status quo. (b) shows
the comparison of predicted number of new cases under half speed scenario and twice speed scenario.
(c) shows the comparison of predicted number of new cases under 1% constant speed scenario and
4% constant speed scenario. (d) shows the comparison of predicted number of new cases under speed
up scenario and speed down scenario.

4. Discussion

The structural nested mean model examined the causal relationship between COVID-
19 vaccination coverage and the growth rate of new infection cases at the population level.
From 1 March to 30 May 2021, for every 1% of the population becoming vaccinated, the
growth rate of new COVID-19 infection cases was reduced by 1.02% (95% CI: 0.26%, 1.69%)
in the US. In comparison to a no-vaccination scenario, the current COVID-19 vaccination
program averted 8 million infection cases, with an estimated vaccine effectiveness of 63.9%
(95% CI: 18.0%, 87.5%). Our results show that intensive vaccination rollout, especially at
the early stages of the vaccination campaign, is crucial for reducing infections.

The real-world vaccine effectiveness at the individual level has been studied, which
typically focuses on the vaccine’s direct effectiveness [14]. For example, the vaccine ef-
fectiveness of BNT162b2 or mRNA-1273 COVID-19 vaccines in preventing SARS-CoV-2
infection was 90% for full immunization and 80% for partial immunization in the US [8].
The case-control study in England estimated the effectiveness of BNT162b2 to be 70% in
10 to 13 days after the first dose and 89% in 14 days after the second dose [11]. The cohort
study in Sweden showed that the estimated effectiveness of BNT162b2 in preventing infec-
tion >7 days after the second dose was 86%, but only 42% for >14 days after a single dose [7].
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Our estimate at the population level was smaller than that at the individual level for the
following reasons. First, it should be noted that vaccine effectiveness at the population level
demonstrated the effect of the general vaccine program, which is conceptually different
from that at the individual level [14]. The population-level effectiveness was estimated
by comparing the effect of vaccination programs, at different vaccination speeds and in
different states, on the infection. In comparison, the individual-level effectiveness was
estimated by comparing the risks of vaccinated and non-vaccinated individuals. Secondly,
the population-level effectiveness would be influenced by the change in population vac-
cination coverage at a given period of time. The increment of vaccination coverage was
approximately 35% in our study period. The population-level effectiveness might be larger
if a longer period were examined.

So far, a few studies have examined the population-level effectiveness of COVID-19
vaccines using an agent-based model. Moghadas et al. [20] used an agent-based model and
found that compared to the no-vaccination scenario, a vaccination campaign achieving 40%
coverage of the entire population within 284 days would reduce cases by 50% [20]. Their
increment of vaccination coverage was close to that of our study period (approximately
35%) and their result was also close to our estimated 63.9% effectiveness. Their agent-based
model depicted the whole disease dynamics, which required strong modeling assumptions
about how individuals transit between different states. The simulations relied heavily on
pre-estimated model parameters. Our causal approach, on the other hand, focused more on
the relationship between independent and outcome variables and retrospectively utilized
real data during the study period, including vaccination coverage data, epidemic data and
other covariates.

When handling longitudinal data to estimate the population-level effectiveness of
the COVID-19 vaccines, it is essential to address the issue of potential time-varying con-
founders, which may be impacted by the treatment (vaccinated population) at the prior
period. The use of SNMM helped to address the issue correctly. In comparison, the GEE
model adjusting baseline covariates and the two-way fixed effects models could produce
biased estimates because they did not adjust the time-varying confounders. Therefore, we
found that their results differed from the estimate of SNMM by at least one standard error.
The GEE model adjusting baseline and time-varying confounders and the two-way fixed
effects models adjusting time-varying confounders could produce biased estimates because
they adjusted time-varying confounders by directly conditioning on those confounders,
which would produce collider bias [30,31,33,50]. This bias may explain why their results
differed from the estimate of SNMM by two standard errors. Similarly, SIR models did not
adjust any confounders, which may account for the difference between the prediction by
SNMM and the prediction by the SIR model. Moreover, based on the potential outcome
framework, our analyses allowed us to clearly define causal estimands without ambiguity
and thus enable a causal interpretation. The causal framework is advocated in evaluating
vaccine performance, including efficacy and effectiveness [51]. Unlike other causal meth-
ods for assessing vaccine effectiveness, such as the synthetic control method and the fixed
effects model, our model could study the causal effect of the continuous treatments under
a quickly evolving and dynamic context, especially in the current COVID-19 pandemic.

One key assumption for causal interpretation is sequential ignorability [36,46]. To
make this assumption hold, all confounders between treatments and outcomes in each
stage must be observable and properly adjusted. The literature on vaccine hesitancy helped
in determining the set of confounders that needed to be adjusted [27]. We included a
sufficiently large set of variables based on the vaccine hesitancy framework to ensure that
confounders were adequately adjusted in this context. Another key assumption for causal
interpretation is consistency [36,46], which implicated no hidden versions of treatments [52].
A possible violation of this assumption may be due to the different types of COVID-19
vaccines used for the vaccination campaign, because their efficacy varies [4–6], but this
problem is negligible because the Johnson and Johnson vaccine was only used by a small
proportion of the population (approximately 6%) [3]. The two widely-used types of vaccines
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(Pfizer-BioNTech and Moderna) showed similar efficacy in randomized clinical trials (94.1%
vs. 95%) [4,5].

This study quantified the impact of vaccination speed on vaccine effectiveness and dis-
ease burden averted. Compared with the status quo, an additional 1.71 million cases could
be averted if the vaccination program were launched at twice the actual vaccination speed;
an additional 0.56 million cases could be averted if the vaccination program were launched
at a constant speed of 4% of the population for each week. Simulations from mathematical
models also yielded similar results. A study found that cumulative mortality would be 442,
241, and 50 (per 100,000) for daily vaccination rates of 0.1%, 0.3%, and 1% respectively [24].
Another study found that accelerating vaccine delivery would substantially reduce severe
health outcomes [53].

Many countries around the world have made plans to achieve a specific vaccine
coverage rate at a specific time point. For example, the U.S. government planned to achieve
a goal of 70 percent vaccine coverage by 4 July 2021 [54]. The South Korean government
planned to achieve a goal of 70 percent vaccine coverage by the end of the third quarter
of September [55]. However, there have not been suggestions regarding targeting vaccine
coverage rates at each stage over the course of the vaccination campaign. The simulated
scenarios, especially the ‘speed up’ and ‘speed down’ scenarios, help to demonstrate the
importance of accelerating the vaccination rollout in the early stages. First, the comparison
between the ‘speed up’ scenario and ‘speed down’ scenario shows that even if the total
increment of the vaccine coverage is the same over a period of the campaign, the rate of
vaccination at each stage (e.g., week) of the period can still have a significant impact on the
population-wide effectiveness of the vaccine. If the vaccination coverage increment over the
13 weeks is the same (approximately 35%) as the status quo, the ‘speed up’ scenario, which
has a lower vaccination speed at the early stage, would cause 3.13 million additional cases
compared to the ‘speed down’ scenario. Second, we found that the ‘speed up’ scenario
was significantly worse than the ‘status quo’, as the 95% confidence interval of cases under
‘speed up’ (5.10 million to 11.47 million) does not cover the cases under the status quo
(4.55 million). Third, we found that the ‘speed down’ scenario was significantly better
than the ‘status quo’ because the 95% confidence interval of cases under ‘speed down’
(3.91 million to 4.44 million) did not cover the cases under the status quo (4.55 million)
either. In addition, from a scale perspective, the ‘speed down’ scenario could reduce
cases by an additional 0.42 million, which equals 10% of the status quo cases during the
period. In fact, the status quo was similar to the ‘speed down’ where vaccination speed
declined gradually over time, because the average speed of vaccination under the status
quo was higher for the first seven weeks than for the last six weeks, which means reality
also followed the pattern that the vaccination speed was faster in the early stage. This fact
explains why the ‘speed down’ curve in Figure 2 is closer to status quo.

Our results have several important policy implications. First, increasing vaccination
coverage is critical for reducing infections. By the end of May, the proportion of people
vaccinated reached 50% in the United States, and the incidence of COVID-19 continued to
decline. In many other countries and regions, however, the vaccination coverage rate is still
low. For example, by the end of May, only 2 doses of COVID-19 vaccines were administered
per 100 people in Africa (in comparison, the United States had administered 93 doses per
100 people), and Africa was facing a fast-surging third wave of the COVID-19 pandemic at
the same time [56]. Second, accelerating the vaccination speed at the early stage is crucial
for reducing infections. Therefore, interventions should be conducted from the beginning
of vaccination campaigns to increase the vaccination speed, including approaches such
as scaling up manufacturing, promoting effective deployment and avoiding unnecessary
waste, and health education to eliminate vaccine hesitancy. These measures are also critical
for the current period, given the spread of new COVID-19 variants and the need for booster
shots in the US and other countries.

Our paper has several limitations. First, our structural nested mean model assumes
a constant effect of vaccinated population on subsequent growth rate during the study
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period for the convenience of explaining the parameter. Although this model specification
has also been widely adopted in other research based on longitudinal causal inference
methods [44,46], non-constant treatment effect may occur with changes in vaccination
coverage. Second, due to different epidemic patterns of the delta variant, the present
results only report the vaccine effectiveness against the original variants based on data from
March to May. Future studies could extend the structural nested mean models (SNMMs) to
examine the effect of COVID-19 vaccination programs against other variants.

5. Conclusions

The COVID-19 vaccination program demonstrated a high level of effectiveness at the
population level and significantly reduced the disease burden in the United States. We
quantified the impact of vaccination speed on the effectiveness of the COVID-19 vaccination
program and the disease burden averted. Intensive vaccination rollout, especially at the
early stages of the vaccination campaign, is crucial for reducing COVID-19 infections.
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Appendix A

Table A1. Data sources.

Variables Value Ranges Source, Period of Data Collection

Number of physicians (per capita) Not Applicable

https://www.fsmb.org/siteassets/advocacy/
publications/2018census.pdf

2018
Accessed on 6 June 2021

GDP (millions of chained 2012 dollars) Not Applicable

https://apps.bea.gov/regional/histdata/
releases/0720gdpstate/index.cfm

2019
Accessed on 6 June 2021

Population Not Applicable

https://apps.bea.gov/regional/histdata/
releases/0320sqpi/index.cfm

Fourth Quarter 2019
Accessed on 6 June 2021

https://www.mdpi.com/article/10.3390/vaccines10050726/s1
https://www.mdpi.com/article/10.3390/vaccines10050726/s1
https://github.com/wangrui24/COVID_Vaccine_paper
https://www.fsmb.org/siteassets/advocacy/publications/2018census.pdf
https://www.fsmb.org/siteassets/advocacy/publications/2018census.pdf
https://apps.bea.gov/regional/histdata/releases/0720gdpstate/index.cfm
https://apps.bea.gov/regional/histdata/releases/0720gdpstate/index.cfm
https://apps.bea.gov/regional/histdata/releases/0320sqpi/index.cfm
https://apps.bea.gov/regional/histdata/releases/0320sqpi/index.cfm
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Table A1. Cont.

Variables Value Ranges Source, Period of Data Collection

Racial composition (proportion of black people) 0–1

http:
//www.census.gov/library/visualizations/
interactive/race-and-ethnicity-in-the-united-

state-2010-and-2020-census.html
2019

Accessed on 6 June 2021

Proportion of old people (aged 65 or above) 0–1

https://acl.gov/sites/default/files/Aging%
20and%20Disability%20in%20America/2019

ProfileOlderAmericans508.pdf
2019

Accessed on 6 June 2021

Red or Blue state in 2016 election (Red = 1) 0 and 1

https://www.fec.gov/resources/cms-
content/documents/federalelections2016.pdf

2016
Accessed on 6 June 2021

Unemployment Rate Not Applicable

https://www.ncsl.org/research/labor-and-
employment/state-unemployment-update.

aspx/
March, 2021

Accessed on 10 Novermber 2021

Proportion of people with advanced degrees 0–1

https://acl.gov/sites/default/files/Aging%
20and%20Disability%20in%20America/2019

ProfileOlderAmericans508.pdf
2019

Accessed on 10 Novermber 2021

Sex ratio Not Applicable

https://worldpopulationreview.com/state-
rankings/male-to-female-ratio-by-state

2021
Accessed on 10 Novermber 2021

Appendix B. Details about the Estimation of SNMM

In this paper, we adopted the estimation procedure proposed by Vansteelandt [47].
The estimation procedure is described in the following steps:

Step 1: We fit a pooled Poisson regression model for vaccination population (per
10,000 people) in each week:

E
[
Ai,t
∣∣Ai,t−1, Li,t, Yi,t

]
= exp

(
α0 + α1t + α1t2 + α3 physicansi + α4electioni + α5GDPi + α6racei

+α7oldi + α8 populatiini + α9cumcasei0i + α10basvaci + α11educationi

+α12sexratioi + α13unemploymenti + α14Yit + α15
t−1
∑

k=1
Aik + α16 Ai,t−1

+α17govermentit)

Ait is the independent variable, the vaccinated population (per 10,000 people) in state
i at week t.

Yit is the outcome variable, the growth rate of new cases in state i at week t. Lit denotes
other confounders in state i at week t.

physicansi is number of physicians (per capita) in state i.
electioni = 1 denotes state i is red state in 2016 president election.
GDPi is the GDP (millions of chained 2012 dollars) in state i.
racei is the racial composition (proportion of black people) in state i.
oldi is the proportion of old people (aged 65 or above) in state i.
popi is the population in state i.

http://www.census.gov/library/visualizations/interactive/race-and-ethnicity-in-the-united-state-2010-and-2020-census.html
http://www.census.gov/library/visualizations/interactive/race-and-ethnicity-in-the-united-state-2010-and-2020-census.html
http://www.census.gov/library/visualizations/interactive/race-and-ethnicity-in-the-united-state-2010-and-2020-census.html
http://www.census.gov/library/visualizations/interactive/race-and-ethnicity-in-the-united-state-2010-and-2020-census.html
https://acl.gov/sites/default/files/Aging%20and%20Disability%20in%20America/2019ProfileOlderAmericans508.pdf
https://acl.gov/sites/default/files/Aging%20and%20Disability%20in%20America/2019ProfileOlderAmericans508.pdf
https://acl.gov/sites/default/files/Aging%20and%20Disability%20in%20America/2019ProfileOlderAmericans508.pdf
https://www.fec.gov/resources/cms-content/documents/federalelections2016.pdf
https://www.fec.gov/resources/cms-content/documents/federalelections2016.pdf
https://www.ncsl.org/research/labor-and-employment/state-unemployment-update.aspx/
https://www.ncsl.org/research/labor-and-employment/state-unemployment-update.aspx/
https://www.ncsl.org/research/labor-and-employment/state-unemployment-update.aspx/
https://acl.gov/sites/default/files/Aging%20and%20Disability%20in%20America/2019ProfileOlderAmericans508.pdf
https://acl.gov/sites/default/files/Aging%20and%20Disability%20in%20America/2019ProfileOlderAmericans508.pdf
https://acl.gov/sites/default/files/Aging%20and%20Disability%20in%20America/2019ProfileOlderAmericans508.pdf
https://worldpopulationreview.com/state-rankings/male-to-female-ratio-by-state
https://worldpopulationreview.com/state-rankings/male-to-female-ratio-by-state
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cumcase0i is the cumulated confirmed cases at baseline in state i.
basvaci is the vaccinated population at baseline in state i.
educationi is the education level (Proportion of people with advanced degrees) in state i.
sexratioi is the sex ratio in state i.
unemploymenti is the unemployment rate in state i.
governmentit is the government response index at week t in state i.
Step 2: Predict the fitted value of Ait, denote it as pit.
Step 3: Fit the following linear regression:

E
[
Yi,t+1

∣∣Ai,t, Li,t, Yi,t
]

= β0 + β1t + β1t2 + β3 physicansi + β4electioni + β5GDPi
+β6racei + β7oldi + β8 populationi + β9cumcase0i + β10basvaci
+β11educationi + β12sexratioi + β13unemploymenti + β14Yis

+β15
t−1
∑

k=1
Ak + β16 Ai,t−1 + β17governmentit + β18 pit + ψAit

We can obtain a preliminary estimate of ψ, denoted ψ ˆ0, through this regression.
Step 4: Predict the potential outcome:
Let

Hi,t+1,s+1 = Yi,t+1 − ψ̂0
t

∑
k=s+1

Aik

where s ranges from 1 to t − 1, and Hi,t+1,s+1 can be viewed as a mimic of
Yi,t+1(A1, . . . , As, 0, . . . , 0).

Step 5: Fit the following linear regression:
We can obtain an updated estimate of ψ, denoted ψ̂1, through this regression.

E
[
Hi,t+1,s+1

∣∣Ai,s, Li,s, Yi,s
]

= β0 + β1s + β2s2 + β3 physicansi + β4electioni + β5GDPi
+β6racei + β7oldi + β8 populationi + β9cumcase0i + β10basvaci
+β11educationi + β12sexratioi + β13unemploymenti + β14Yis

+β15
s−1
∑

k=1
Ak + β16 Ai,s−1 + β17governmentis + β18 pis + ψAis

Step 6: Using the updated estimate of ψ to repeat Step 4 to Step 5 several times [47],
we can obtain a final estimate of ψ.

Appendix C. Specification of GEE Models and Fixed Effects Models

GEE (adjust baseline covariates):

E
[
Yi,t+1

∣∣Ai,t, Li,t, Yi,t
]

= γ0 + γ3 physicansi + γ4electioni + γ5GDPi + γ6racei
+γ7oldi + γ8 populationi + γ9cumcase0i + γ10basvaci
+γ11educationi + γ12sexratioi + γ13unemploymenti

+δ
t

∑
k=1

Aik

GEE (adjust baseline covariates and time-varying covariates):

E
[
Yi,t+1

∣∣Ai,t, Li,t, Yi,t
]

= γ0 + γ1t + γ2t2 + γ3 physicansi + γ4electioni + γ5GDPi
+γ6racei + γ7oldi + γ8 populationi + γ9cumcase0i
+γ10basvaci + γ11educationi + γ12sexratioi
+γ13unemploymenti + γ14Yit + γ17governmentit

+δ
t

∑
k=1

Aik
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Two-way fixed effects model:

Yit = µi + θt + δ
t

∑
k=1

Aik + εit

where µi is the state fixed effect, θt is the week fixed effect, εit is the error term.
Two-way fixed effects model (adjust time-varying covariates):

Yit = µi + θt + γ12Yit + γ13governmentit + δ
t

∑
k=1

Aik + εit

In Table 2, we reported the estimate of δ.
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