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Abstract: This paper presents an alternative vaccination platform that provides long-term cellular
immune protection mediated by cytotoxic T-cells. The immune response via cellular immunity creates
superior resistance to viral mutations, which are currently the greatest threat to the global vaccina-
tion campaign. Furthermore, we also propose a safer, more facile, and physiologically appropriate
immunization method using either intranasal or oral administration. The underlying technology
is an adaptation of synthetic long peptides (SLPs) previously used in cancer immunotherapy. The
overall quality of the SLP constructs was validated using in silico methods. SLPs comprising HLA
class I and class II epitopes were designed to stimulate antigen cross-presentation and canonical
class II presentation by dendritic cells. The desired effect is a cytotoxic T cell-mediated prompt
and specific immune response against the virus-infected epithelia and a rapid and robust virus
clearance. Epitopes isolated from COVID-19 convalescent patients were screened for HLA class I
and class II binding (NetMHCpan and NetMHCIIpan) and highest HLA population coverage (IEDB
Population Coverage). 15 class I and 4 class II epitopes were identified and used for this SLP design.
The constructs were characterized based on their toxicity (ToxinPred), allergenicity (AllerCatPro),
immunogenicity (VaxiJen 2.0), and physico-chemical parameters (ProtParam). Based on in silico
predictions, out of 60 possible SLPs, 36 candidate structures presented a high probability to be
immunogenic, non-allergenic, non-toxic, and stable. 3D peptide folding followed by 3D structure val-
idation (PROCHECK) and molecular docking studies (HADDOCK 2.4) with Toll-like receptors 2 and
4 provided positive results, suggestive for favorable antigen presentation and immune stimulation.

Keywords: SARS-CoV-2 T-Cell vaccine; epitopes; cytotoxic T lymphocytes; long term immunity;
acquired immunity; molecular docking; in silico; protein folding; immunoinformatics; synthetic
long peptide

1. Introduction

SARS-CoV-2 is an RNA virus responsible for the current COVID-19 pandemic. COVID-
19 clinical features depend on the genetic variants of both the patient and the virus, in-
oculum size, and the presence of comorbidities [1]. The main transmission routes are
respiratory and oral [2], suggesting the importance of mucosal immunity in disease onset.
Even though several bioactive molecules undergoing clinical trials show positive results,
they mainly work in the replicative phase of SARS-CoV-2 infection [3,4]. Hence, prevention
via vaccination remains the cornerstone for ending the current viral pandemic.

Results from previous studies related to previous endemic outbreaks involving SARS-
CoV and MERS-CoV suggested that coronaviruses trigger T cell and antibody immune
responses in infected patients. However, antibody levels seem to become undetectable
2–3 years after recovery [5], while SARS-CoV-specific memory T-cells were identified after
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more than a decade post-infection. In 2016, Ng et al. isolated memory T cells 11 years
after the infection [6]. In addition, le Bert et al. in 2020 discovered a viral-specific cellular
immune response that lasted more than 17 years after SARS-CoV infection [1].

Analysis of the cellular and immune response from COVID-19 convalescent patients re-
vealed mild COVID-19 subjects presented a vigorous T-cell mediated response months after
SARS-CoV-2 infection and a low to undetectable titer of antibodies [7]. In contrast, severe
COVID-19 presented an early phase lymphocytopenia followed by intense macrophage
cytokine release [8] and high antibody titers due to poor viral clearance [9]. In the study
performed by Sekine et al., 28% of healthy individuals presented cross-reactive memory
T-cells against SARS-CoV-2 [7].

These findings confirm the bipolar role of T cells in COVID-19 pathogenesis—a higher
number of lymphocytes during the initial phase of infection assures a rapid and efficient
antiviral response, whereas an early lymphocytopenia followed by a subsequent immune
hyperactivation leads to a poorer prognosis [8,10].

Lymphocytopenia is one of the most decisive factors in the evolution of COVID-19.
Resolved lymphocytopenia predicts a favorable outcome, while unresolved low lympho-
cyte count leads to a poor prognosis. T lymphocytes were shown to hamper the innate
immune response and prevent immune hyperactivation [9]. Thus, lymphocyte priming is a
desirable event in the context of vaccination.

Mucosal immunity stimulation represents a promising alternative to traditional vacci-
nation due to its simplicity, acceptance rate (less unpleasant than injections), and reduced
postvaccinal complications. By targeting the pathogen right at the entry site, the viral
replication decreases substantially, and the risk of evolution to more severe disease forms
is mitigated [11,12]. At present, vaccination platforms range from live attenuated formulas
to the newly introduced mRNA and viral vector-based platforms.

Peptide-based vaccination provides a promising alternative due to its high specificity,
biological activity, tissue penetration, and low production costs [13,14]. Compared to single
epitopes or protein subunits, SLPs (synthetic long peptides) present several advantages
such as reduced CTL (cytotoxic T lymphocyte) tolerance, higher stability, T helper cell
involvement, and enhanced peptide repertoire recognition.

Single class I-restricted epitopes diffuse systemically upon administration, bind ran-
domly to CD8 molecules expressed on cytotoxic T cells, and consequently bypass the
classical antigen-presenting pathway involving dendritic cells. As a result, a degree of
CD8 anergy is achieved that might explain the disappointing results of single epitope
vaccines [14,15]. In contrast, expanding the CD8+ T-cell epitope with a class II-restricted
peptide sequence will force the resulting amino acid chain to be internalized and processed
by the antigen-presenting cells. A proportion of peptides will be processed in the endoso-
mal pathway and expressed with the HLA class II molecule, while others enter the vacuolar
pathway to be cross-presented with the HLA class I molecule [15].

In terms of stability, single CD8+ T-cell epitopes bound to the MHC class I molecule
are expressed for a short amount of time, leading to a weak and transient immune re-
sponse. On the other hand, SLP-derived class I epitopes expressed higher stability when
cross-presented. By including a class II-restricted epitope, T helper cell stimulation is
produced with the subsequent cytokine release and immune response augmentation [14].
SLPs also have the advantage of combining peptide sequences located at distant sites
inside the same protein or amino acid chains originating from different proteins. As a
result, the immunogenic peptide repertoire is increased, providing a more specific immune
response [15].

By expanding the peptide repertoire, SLPs can also function as immune response en-
hancers. Coppola et al. showed that administration of synthetic long peptides derived from
Mycobacterium tuberculosis Latency Antigen Rv1733c, a protein expressed in dormant
bacteria, led to an improved bacterial clearance in HLA-DR3 transgenic mice [16].

Due to their high data processing and analysis capacities, in silico methods can be a
useful tool for characterizing diverse immunological events and speeding up the process of



Vaccines 2022, 10, 218 3 of 14

vaccine design. Immunoinformatic and computational biology approaches were already
used for designing vaccines against infectious agents such as Helicobacter pylori [17], Vibrio
cholerae [18], Plasmodium species [19], or yellow fever virus [20].

For COVID-19, research groups designed multi-epitope subunit protein vaccines [21,22],
but this vaccine landscape lacks an SLP-based vaccine design.

Starting from the article published by Ng et al., who identified an anti-SARS-CoV
cellular immune response even after 11 years post-infection [6] and based on our prior
experience in personalized immunotherapy in cancer, on 15 January 2020, our group
began working on a vaccine model that stimulated mainly the long-lasting T-cell-based
immunity. As a result, the OncoGen research group finished its first in silico prediction of a
T-cell-based vaccine adapted to Romanian phenotypic characteristics on 25 January 2020.
The results were published on our website (https://oncogen.ro/ro/decode-project/) on
28 January 2020 and PrePrints on 6 February 2020 [23]. Following the previous study, the
current technology uses a hybrid approach based on immunoinformatic methods described
in the previous article, as well as data collected from databases containing epitopes from
COVID-19 convalescent patients.

2. Materials and Methods

The study workflow for designing SARS-CoV-2-specific synthetic long peptides can
be visualized in Figure 1.
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2.1. Epitope Screening

Class I and class II-restricted epitopes were extracted from a peptide pool comprising
1209 peptide sequences identified from 852 patients who recovered from COVID-19 [24].
The peptide pool database can be accessed here: https://www.mckayspcb.com/SARS2
TcellEpitopes/ (accessed on 31 August 2021). Peptide screening was based on the following
criteria:

• Degree of conservation (so that mutations identified in various SARS-CoV-2 will not
influence the antigen processing and presentation significantly);

• Cross-specificity—multiple HLA allele coverage.

The most selective step in the antigen-presentation pathway is the interaction between
peptides and HLA molecules. To screen the peptides with the highest binding potential for
a certain HLA molecule, several machine-learning-based frameworks were used.

NetMHCpan and NetMHCIIpan are two artificial neural network-based methods
trained on binding affinity and mass spectrometry peptidome data obtained from experi-

https://oncogen.ro/ro/decode-project/
https://www.mckayspcb.com/SARS2TcellEpitopes/
https://www.mckayspcb.com/SARS2TcellEpitopes/
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mental results and deposited in IEDB (Immune Epitope Database) [25]. Both are available
as online webservers and allow user input for epitope sequences, allele datasets, and HLA
alleles in FASTA format. The output is provided as a percentile rank reflecting the likeli-
hood that a given peptide will generate an immune response for a given HLA molecule.
The percentile rank is obtained by comparing the results of the query epitope with results
calculated for a pool of random peptides. In the case of NetMHCpan, strong binders are
characterized by a percentile rank below 0.5%, while weak binders present a percentile
rank below 2%. Alternatively, in NetMHCIIpan, strong binders have a percentile rank
below 2%, while weak binders are considered below 10%.

2.2. Population Coverage Analysis

The peptide sets were screened using the IEDB population coverage tool, an algorithm
that calculates the percentage of a population of interest that will be covered by a user-
defined peptide-HLA dataset [26]. Further selection was performed so that the peptide
pool would cover the maximum percentage of the population with the minimum number
of class I and class II-restricted peptides.

2.3. Synthetic Long Peptide Construction

As previously described by Rabu et al., the synthetic long peptide construct with a
higher probability to be presented and cross-presented to T cells by the dendritic cells
comprises an HLA class II-restricted epitope at the N-terminus, a 6-mer cathepsin-sensitive
linker sequence (LLSVGG), and an HLA class I-restricted epitope. The choice for this SLP
construct was based on the following:

1. The HLA class II molecule is much more permissive in terms of epitope sequence
length compared to the HLA class I molecule.

2. Class I-restricted epitope could undergo further cleavage by ERAP (endoplasmic retic-
ulum aminopeptidase) in the presence of HLA class I molecule inside the endoplasmic
reticulum, cleaving the remaining amino acids originating from the linker. As a result,
peptides with 9-11 amino acids can fit perfectly to the HLA class I binding groove, as
stated by the “molecular ruler” hypothesis [27].

The linker (LLSVGG) was designed by Rabu et al. to be cleaved by at least one of
the main antigen-presenting cell endosomal cathepsins (L, D, and S). Experimental data
performed on SLPs derived from tumor antigens showed a 100-fold increase in antigen
presentation by using the LLSVGG linker compared to other linkers (GGGG, LVGS, LLSV,
etc.) [15].

All possible combinations for the SLP constructs were generated based on class I and
class-II restricted epitopes. All SLP candidates underwent a screening process based on
predicted allergenicity, toxicity, physico-chemical properties, and immunogenicity.

2.4. Allergenicity Screening

Peptides may potentially elicit an IgE-mediated type I hypersensitivity reaction, es-
pecially in the case of mucosal contact. The allergic immune recognition of the peptide
structures depends mainly on the amino acid sequence and three-dimensional structure. To
rule out possible unpleasant reactions, allergenicity testing was performed using AllerCat-
Pro, a web server that compares a query structure with FASTA sequences and 3D structures
from an extensive allergen database of 4180 unique protein sequences. In this manner, both
linear and discontinuous allergenic epitopes are detected. Similarity with gluten-derived
allergens is analyzed using a gluten-like repeat pattern recognition algorithm [28].

2.5. Toxicity Screening

Toxicity was assessed using ToxinPred webserver (http://crdd.osdd.net/raghava/
toxinpred/, accessed on 31 October 2021), a support vector machine algorithm that sep-
arates non-toxic peptides from the toxic peptides based on a training dataset containing
peptides with less than 35 amino-acids extracted from various databases such as Swis-

http://crdd.osdd.net/raghava/toxinpred/
http://crdd.osdd.net/raghava/toxinpred/
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sProt and TrEMBL. The SVM-based algorithm depends upon amino acid or dipeptide
composition of a given peptide, as well as motif identification [13].

2.6. Physico-Chemical Properties and Antigenicity

Peptide combinations with the most favorable physico-chemical properties were
selected using the ProtParam library for BioPython. The instability index was calculated to
assess the stability of a certain synthetic long peptide.

Based on the statistical analysis performed by Guruprasad et al., certain dipeptides
occur more frequently in unstable proteins compared to stable ones [29]. By observing the
stability of the 400 possible dipeptide combinations in the lab, the authors assigned for each
molecule a weighted score. The instability index (II) is defined by the following formula:

I I =
10
n

n−1

∑
i=1

DIWV(xixi+1)

where n—number of amino acids in the sequence; DIWV (xixi+1)—the instability weight
value for the dipeptide starting in the position i; A value below 40 is considered stable,
whereas an II above 40 is considered unstable.

VaxiJen webserver was used to identify which SLPs might elicit an immune response.
VaxiJen is an alignment-independent immunogenicity prediction algorithm that uses auto-
cross-covariance (ACC) transformation of protein sequences into vectors with equal lengths.
The ACC algorithm is based on the principal component analysis (PCA) of the main 29
physico-chemical properties of amino acids represented by the z descriptors: z1 describing
hydrophilicity, z2 molecular size, and z3 ionization status. The VaxiJen webserver (http:
//www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html, accessed on 30 November 2021)
inputs a query sequence in FASTA format and outputs the probability that a certain protein
is immunogenic. The main detected antigens can originate from bacteria, viruses, or tumors.
For viral-derived antigens, the threshold score is 0.4—a value over 0.4 suggests probable
antigenicity [30].

2.7. Three-Dimensional Structure Prediction

Rosetta ab initio was used to predict the three-dimensional conformations for each
synthetic long peptide.

One of the main strategies for solving ab initio structures is using fragment libraries.
A fragment library includes all favorable conformations that a specific 3-mer/9-mer can
adopt, based on already solved structures uploaded on PDB (Protein Data Bank).

For each query peptide/protein, Rosetta ab initio approximates its secondary and
tertiary structure by using libraries of 3-mer and 9-mer secondary structures. Generation
of 3-mer and 9-mer libraries is performed using Robetta by searching the most probable
3-mer and 9-mer conformations in already solved structures.

Fragment library generation was performed using the Robetta webserver (http://
old.robetta.org/fragmentsubmit.jsp, accessed on 30 November 2021). The user inputs the
polypeptide FASTA sequence as a query for multiple sequence alignment algorithms with
proteins from PDB. Fragment prediction is conducted using a hierarchical screening proce-
dure that uses BLAST, PSI-BLAST, FFAS03, and 3D-Jury to detect homologous sequences,
including distant evolutionary structures [31].

The 3-mer and 9-mer libraries are then used for ab initio protein folding by generating
three-dimensional models consisting of fragments extracted from generated libraries so
that physical interactions between the residues are favorable and the Rosetta score reaches
its minimum value.

Rosetta score is calculated using the Rosetta scoring function, ref2015, which includes
physics-based terms, such as electrostatic and van der Waals’ interactions, as well as
statistical terms—the probabilities that a certain residue will adopt a specific conformation
based on geometrical parameters [32].

http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://old.robetta.org/fragmentsubmit.jsp
http://old.robetta.org/fragmentsubmit.jsp
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Fragment assembly is done using knowledge-based potentials, which reflect the
probability that backbone phi and psi angle values are conserved throughout evolution.
The output is a low-resolution model that undergoes physics-based atomic refinement
based on physical interactions between side chains [33].

2.8. Three-Dimensional Structure Validation

3D structure validation was performed to assess whether the 3D structure prediction
provided stable, good-quality models. For this step, we used PROCHECK [34], and their
corresponding Ramachandran plots were drawn. 3D structure visualization was performed
using PyMol.

2.9. Molecular Docking Studies

To investigate how likely the SLPs are to be internalized by the antigen-presenting
cells, molecular docking studies were performed using HADDOCK 2.4 [35,36]. The antivi-
ral innate immune receptors TLR2 and TLR4 (Toll-like receptor) were used for this assay.
By binding to Toll-like receptors 2 and 4, the subsequent cytokine release can trigger the in-
ternalization of the SLPs. Toll-like receptor three-dimensional structures were downloaded
from the PDB database with the PDB ids 6NIG [37] and 3FXI [38], respectively.

The initial step for HADDOCK 2.4 molecular docking is that both the ligand and the
receptor are treated as rigid objects in the tridimensional space. The algorithm searches for
the most geometrically favorable surface for the ligand to bind to the receptor. The second
step (it1) is a flexible docking protocol in which the torsion angles from the active residues
of both the ligand and the receptor are modified to produce strong physical intermolecular
bonds (hydrogen bonds, ionic interactions, etc.). The last step (itw) explores the capacity
of the ligand to displace the water molecules surrounding the active site once bound to
the receptor. This refining process adjusts the torsion angles so that the SASA (solvent-
accessible surface area) is minimized. Scoring and ranking are performed during each
docking stage, based on the HADDOCK score.

HADDOCK outputs several variables to describe the protein-ligand interaction: van
der Waals energy, electrostatic energy, desolvation energy, restraints violation energy, and
buried surface area. Based on these descriptors, the HADDOCK score is calculated as
follows:

HADDOCK score = 1.0EvdW + 0.2Eelec + 1.0Edesol + 0.1EAIR

where: EvdW—van der Waals’ energy; Eelec—electrostatic energy; Edesol—desolvation energy;
EAIR—restraints violation energy.

A negative HADDOCK score suggests a favorable interaction between the two docking
partners.

In the it0 phase, 1000 models are generated, but only the top 200 models proceed to
further docking steps. Each HADDOCK simulation generates 200 models for TLR2/4-SLP
complex that are ranked, scored, and clustered based on structural similarity. The most
reliable cluster has the lowest HADDOCK score and Z-score. The Z-score for a given model
cluster indicates the number of standard deviations from the average cluster, suggesting
that the best cluster has the most negative Z-score.

Further structure refinement was performed using HADDOCK 2.4 to reduce the
RMSD, restraints violation energy, and to improve the HADDOCK score. Gibbs free
energies and dissociation constants were calculated using the PRODIGY web server [39,40].

3. Results
3.1. 19 Peptides from Convalescent Patients Express High Degree of Conservation,
Cross-Specificity and Bind Strongly to HLA Molecules

COVID-19 convalescent patient database contains 1209 peptide sequences and 843 dis-
tinct epitope-HLA pairs. Mean epitope conservation was 0.97. 87.2% of epitopes were
recognized by a single HLA allele, and 12.8% by more than one allele.



Vaccines 2022, 10, 218 7 of 14

Nineteen peptides were identified based on the degree of conservation >0.85, low
percentile rank on NetMHCpan and NetMHCIIpan, and cross-specificity: 15 HLA class
I-restricted and 4 class II-restricted. Most epitopes originated from the S protein (13/19,
68.42%) and M protein (4/19, 21.05%), probably due to their position on the viral surface
membrane facilitating antigen recognition. (Table 1) Interestingly, peptides originating
from the inner core, such as ORF1a or N were also identified in COVID-19-convalescent
patients. By including them in the peptide pool, the expanded T-cell epitope repertoire can
recognize viral targets presented by SARS-CoV-2-infected cells via the HLA class I pathway.
Consequently, viral-infected cells will undergo lysis with subsequent viral clearance.

Table 1. Selected HLA class I and class II-restricted epitopes based on their conservation and the
number of allele hits.

Peptide Sequence HLA Class Start End HLA Alleles Protein Conservation

WTAGAAAYY I 258 266 A *01:01, A *26:01, A *29:02, B *35:01 S 0.948138
LTDEMIAQY I 865 873 A *01:01, A *29:02, B *35:01, C *07:02 S 0.99844
ATSRTLSYY I 171 179 A *11:01, A *01:01, B *57:01 M 0.998295

LPPAYTNSF I 24 32 B *53:01, B *35:01, B *07:02 S 0.969828
LSYFIASFR I 93 101 A *11:01, A *31:01, A *68:01 M 0.998614

NSFTRGVYY I 30 38 A *68:01, A *26:01, A *29:02 S 0.995425
TSNQVAVLY I 604 612 B *57:01, A *26:01, B *35:01 S 0.999212
KTFPPTEPK I 361 369 A *11:01, A *03:01, A *68:01 N 0.973513
VASQSIIAY I 687 695 B *35:01, B *15:01, A *29:02 S 0.993504

CVADYSVLY I 361 369 A *29:02, B *15:01, A *26:01 S 0.994539
GVYFASTEK I 89 97 A *68:01, A *11:01, A *03:01 S 0.957055
RLFRKSNLK I 454 462 A *31:01, A *03:01, A *11:01 S 0.995434
TISLAGSYK I 1504 1512 A *68:01, A *11:01, A *03:01 ORF1a 0.987915

LPFNDGVYF I 84 92 B *35:01, B *51:01, B *07:02 S 0.98813
AEIRASANL I 1016 1024 B *40:01, B *44:02, B *44:03 S 0.99695

PINLVRDLPQGFSAL II 209 223 DRB1 *03:01, DRB3 *01:01 S 0.878983
SRTLSYYKLGASQRV II 173 187 DRB5 *01:01, DRB5 *01:02 M 0.997732

SYYKLGASQRVAGDS
ITRFQTLLALHRSYL

II 177 191 DQA1 *05:01, DQB1 *03:01
DRB1 *01:01, DRB1 *07:01 M 0.998787

II 235 249 DRB1 *01:01 S 0.983345

On artificial neural network testing with NetMHCpan and NetMHCIIpan, 81.5%
of class I epitope-allele hits, and 85.7% class II epitope-allele hits are considered strong
binders, whereas 18.5% of class I and 14.3% of class II epitope-allele pairs are weak binders.
(Supplementary Tables S1 and S2) These findings support the use of this peptide set for
further synthetic long peptide design.

Class I and class II-restricted epitopes can be visualized inside the spike (S) protein
using PyMol (Figure 2).
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3.2. 90% Probability That 2 Peptides Will Be Recognized by Any Individual

Population coverage analysis showed that the class I coverage was 85.94%, class II
coverage 75.42%, and combined coverage 96.54%. The average number of epitope hits/HLA
combinations recognized by the population was 4.49 for class I, 1.27 for class II, and 5.76
for the combined set. PC90 for the combined set was 1.81, which roughly translates to a
probability of 90% that a minimum number of 2 peptides be recognized by any individual
of the population (Table 2).

Table 2. Population coverage analysis for the combined peptide set.

Coverage Average Hit PC90

Class I 85.94% 4.49 0.71
Class II 75.42% 1.27 0.41

Combined 96.54% 5.76 1.81

3.3. SLP Constructs Express High In Silico Immunogenicity and Are Stable under Laboratory
Conditions

The SLP construct comprises an HLA class II and an HLA class I-restricted epitope
joined by a cathepsin-sensitive linker (LLSVGG). The choice for this linker was made based
on the experimental data of Rabu et al. on in vitro and in vivo antigen presentation assays.

Out of the 60 (15 × 4) possible combinations of synthetic long peptides, only 36 pre-
sented an instability index below 40 and a VaxiJen score above 0.4 (the threshold for viral
antigens). VaxiJen score mean was 0.51, and the standard deviation was 0.07. The minimum
value was 0.406, suggesting that all 36 constructs are, in theory, immunogenic. The mean
instability index was 24.14, standard deviation 6.3, and the maximum value 35.92. An
instability index below 40 suggests that the selected synthetic long peptides are highly
likely to be stable under laboratory conditions (Supplementary Table S3).

3.4. Peptide Constructs Did Not Express Allergenicity nor Toxicity

One of the major problems in peptide-based therapeutics is the potential risk for toxic-
ity or allergenicity. To exclude such inconveniences, we performed in silico toxicity analysis
using ToxinPred webserver and allergenicity analysis using AllerCatPro webserver. Toxic-
ity screening output revealed that all 36 constructs had a negative SVM score (mean = −1.3,
standard deviation = 0.18), suggesting that the probability for SLPs to be toxic is unlikely.
On allergenicity prediction, none of the SLPs expressed significant similarity with known
allergens (Supplementary Table S4).
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3.5. SLP Three-Dimensional Structure Prediction and Validation

For each synthetic long peptide structure, we predicted 200 three-dimensional models,
which were clustered based on structural similarity and ranked based on the Rosetta score.
The model with the best score was selected for further analysis (Supplementary Table S5).

Analysis of the Ramachandran plots revealed that the percentage of residues in the
most favorable regions is above 90% for each three-dimensional peptide structure, sug-
gesting good quality model predictions. The mean percentage of residues in the most
favorable regions was 96.4%, while for the residues located in the additional allowed
regions was 3.6%. None of the residues adopted unfavorable conformations. All Rosetta
scores were negative, suggestive for theoretical thermodynamical stability. (Figure 3b and
Supplementary Table S5) Structure visualization was performed with PyMol (Figure 3a).
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Figure 3. (a) 3D structure visualization of one synthetic long peptide, PINLVRDLPQGFSALLLSVG-
GWTAGAAAYY, using PyMol; (b) Ramachandran plot for the corresponding SLP. The dots represent-
ing the amino acids are mainly located in the most favorable regions (red) or the additional allowed
regions (yellow). Most amino acids are located in the beta-sheet and alpha-helix regions.

3.6. Syntethic Long Peptides Present Favourable Interaction with Toll-Like Receptors 2 and 4

After we have identified that the selected peptides can elicit a cytotoxic T lymphocyte-
mediated immune response, we wanted to investigate the capacity of synthetic long peptide
constructs to initiate an innate immune response mediated by Toll-like receptors. Toll-like
receptors 2 and 4 are membrane-bound proteins that recognize motifs belonging to viral
structural and non-structural proteins. Therefore, by activating Toll-like receptors, synthetic
long peptides might elicit an antiviral cytokine release aiding in viral clearance and antigen
presentation.

To investigate the interaction between candidate SLPs and TLR2/4, molecular docking
studies were performed using HADDOCK 2.4. For each SLP-TLR2/4 interaction, 200 mod-
els were generated after the itw stage. These models were grouped into clusters based on
their structural similarity (RMSD < 2Å). The best cluster was chosen based on the most
negative Z and HADDOCK scores. From the best cluster, the top model was chosen for
further structure refinement (Supplementary Tables S6 and S7) and free energy calculation.

3D structure visualization was performed using PyMol (Figure 4).
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The mean HADDOCK score was −107.41 for TL2/SLP and −110.064 for TLR4/SLP,
while the minimum value was −141.3 for TLR2/SLP and −144.2 for TLR4/SLP. These find-
ings suggest a favorable interaction between the two docking partners with the potential to
trigger an innate immune response. In all SLP models, the main interactions responsible for
Toll-like receptor binding are electrostatic. Statistical analysis has shown that electrostatic
energies contribution is significantly higher than the van der Waals interactions (p < 0.001).
When comparing the differences in van der Waals energies between SLPs and the two TLRs,
we observed no significant difference between the two groups (p = 0.247). However, we
found significant differences in the electrostatic energies between the two docking groups
(p < 0.001). In the case of TLR2 docking, the desolvation change in energy had a small
contribution to the overall HADDOCK score and was mainly negative, implying that water
dissociates freely from the binding sites, allowing ligand-receptor binding. Compared to
TLR2, TLR4 desolvation changes in energy were more negative, thus allowing water to
rapidly dissociate from the docking interfaces and allowing ligand-receptor interaction.
The mean restraints violation energy is 0.67 (TLR2) and 1.3 (TLR4), suggestive for good
quality docking simulations.

∆G and Kd values calculated using PRODIGY webserver predict a favorable interac-
tion between the SLP set and the Toll-like receptors 2 and 4. The mean ∆G value for TLR2
was −11.475 kcal/mol, while for TL4 was −10.317 kcal/mol. The interaction between the
SLPs and TLR2 was stronger than TLR4 interaction in terms of Gibbs’ free energy (p < 0.001)
and dissociation constants (p < 0.001) (Supplementary Table S8). These findings could
suggest that besides the specific immunity, SARS-CoV-2-specific synthetic long peptides
also stimulate innate immunity. Theoretically, cytokine release triggered by TLR-binding
would aid in antigen presentation and T-cell activation.

4. Discussion

Despite the growing number of vaccine technologies, the COVID-19 pandemic is not
over yet. By using the cancer-derived SLP technology, a new vaccine platform might be
implemented against infectious diseases, including COVID-19. SLPs function as a robust
immune response trigger, but they can also enhance the efficacy of the already available
vaccines by providing additional T cell epitope sets. Based on experimental observations
by Rabu et al., the present study proposes an in silico model that might be used in the near
future as a potential vaccination strategy for emerging infections.

This report shows how a synthetic long peptide-based vaccine can be produced using
in silico tools. Compared to other studies, the presented workflow exploits a hybrid
approach by processing data collected from COVID-19 convalescent patients.

A nineteen (15 class I and 4 class II) peptide pool was constructed using the data
from a meta-analysis involving 852 COVID-19 patients worldwide, based on the degree of
conservation and cross-specificity. Peptides were tested for HLA binding using the artificial
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neural networks NetMHCPan and NetMHCIIPan, where 81.5% (class I) and 85.7% (class
II) of allele-epitope hits were identified as strong binders. Population coverage analysis
identified a 90% probability that any individual who carries an HLA allele contained in the
IEDB database can recognize at least 2 peptides. Class I coverage was 85.94%, while class II
coverage was 75.42%, and combined coverage was 96.54%. Not all populations are equally
represented, leading to data being biased to certain favored populations. To overcome
this problem, further clinical studies are required to fully characterize the worldwide HLA
haplotype occurrence and the recognized peptide repertoire.

Designed synthetic long peptides comprised a class II-restricted epitope, a cathepsin-
sensitive linker, and a class I-restricted epitope. This design assures a bidirectional stimula-
tion of both cellular and humoral immune responses with higher viral clearance.

36 out of 60 possible synthetic long peptide constructs expressed an instability index
below 40 and a VaxiJen score below the viral threshold (0.4). These findings suggest that, in
theory, the 36 SLP pool contains stable molecules with immunogenic potential.

Due to their low molecular weight, size, and degradation of vaccine components in the
mucosal environment, peptides present lower immunogenicity compared to the traditional
vaccine formulae. Therefore, adjuvants are needed as immune response enhancers to
increase delivery to antigen-presenting cells. Subsequently, antibody titers, cytokine, and
co-stimulatory molecule expression increase while the antigen dose decreases [41]. Vaccine
components, when administered intranasally or orally with TLR agonists, such as poly(I:C),
CpG-ODN, or PS-cGAMP exerted mucosal as well as systemic antigen-specific immune
responses [12].

One of the major problems in peptide-based platforms involves potential allergenicity
and toxicity. In silico studies provide a rapid, cost-effective method to screen for molecules
with high allergenic or toxic potential. When performing toxicity analysis with ToxinPred,
all 36 SLP constructs presented a negative SVM score, making them unlikely to exert any
toxic effect. Allergenicity analysis using AllerCatPro revealed that none of the peptide
constructs would elicit allergic reactions. However, in vitro and in vivo validation studies
are necessary to screen for such potential unwanted effects [13,28,42].

Three-dimensional structure prediction provided good quality models, supported by
the percentage of residues located in the thermodynamically most favorable regions.

Toll-like receptors are pattern-recognition receptors (PRRs) involved in innate immune
system antigen recognition. TLRs are horseshoe-shaped transmembrane proteins with
various locations such as the plasmalemma (recognizing extracellular pathogens) or the cy-
toplasm attached to vesicles (recognizing intracellular microorganisms). TLR dimerization
assures a higher recognition repertoire comprising fungal, bacterial, or viral proteins. Re-
cent studies demonstrated the involvement of TLR1, 2, and 6 in COVID-19-related cytokine
storms by targeting the envelope protein. [43] Additionally, TLR4 was shown to be involved
in an anti-bacterial-like early immune response by interacting with the SARS-CoV-2 spike
protein [44].

Molecular docking studies performed with HADDOCK 2.4 identified high-affinity
interactions between TLR2/4 and the predicted synthetic long peptide pool, which suggest
a high likelihood for the SLPs to trigger an immune response with subsequent internaliza-
tion and antigen processing inside the dendritic cells. When comparing the electrostatic
with the van der Waals energies, we found that electrostatic energies contribute the most
to the SLP-TLR2/4 interaction. There were no significant differences between the van
der Waals energies of the TLR2-SLP group and the TLR4 one, but in the TLR2 group, the
electrostatic energies were stronger and consequently improved the HADDOCK score,
∆G and dissociation constants. High similarities between the Gibbs free energies and
dissociation constants inside the TLR2/4-SLP groups result in an even distribution of the
SLPs at the administration site and quasi-equal binding probability to TLRs. Even though
the presented in silico studies provide positive results, experimental validation is required
to fully characterize the synthetic long peptide set in terms of immunogenicity, allergenicity,
and toxicity. The 36 synthetic long peptide pool presents a considerable degree of redun-
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dancy which might be useful when performing experimental validation so that the initial
class I and class II-restricted epitopes will not be lost.

This vaccine design relies on intranasal administration via droplets. This formula is
preferred because of its simplicity (can be administered by any individual, therefore reduc-
ing the number of medical professionals required for vaccination), tolerability (compared
to traditional vaccination, which some individuals find unpleasant or painful), and reduced
number of complications. Additionally, intranasal vaccination provides mucosal immunity
that targets viral particles right at the entry site [45,46].

SARS-CoV-2 infection is associated with lymphocytopenia and an inversely pro-
portional innate immune cell count and cytokine concentrations with potentially life-
threatening effects [43]. Therefore, immune priming with subsequent lymphocyte stimula-
tion may be beneficial for preventing the evolution to severe COVID-19 [47]. In addition, it
was shown that active T cells mitigate the overly active innate immune response in mice,
providing an additional benefit for T cell stimulation [44].

In this in silico study, we presented an alternative vaccine design firstly described and
tested on cancer immunotherapy. HLA class I and class II-restricted epitopes originating
from COVID-19-convalescent patients were used for constructing synthetic long peptides
that underwent further computational analysis. Based on our promising results on in
silico models, in vitro, followed by in vivo studies are needed to validate our findings and
investigate the immunogenic potential of our proposed design.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vaccines10020218/s1, Table S1. Predictions for class I-restricted
epitopes using NetMHCpan. For each peptide-HLA allele combination, the EL (eluting ligand) and
BA (binding affinity) percentile rankings are given. A percentile ranking below 0.5% is considered a
strong binder, while a percentile ranking below 2% is considered a weak binder. Table S2. Predictions
for class II-restricted epitopes using NetMHCIIpan. For each peptide-HLA allele combination,
the percentile rankings are given. A percentile ranking below 2% is considered a strong binder,
while a percentile ranking below 10% is considered a weak binder. Table S3. Candidate synthetic
long peptides and their corresponding VaxiJen score, instability index (II) and molecular weight
(Mol wt). Table S4. Predicted synthetic long peptide (SLPs) sequences, toxicity and allergenicity
prediction. Toxicity prediction was performed using ToxinPred webserver, while allergenicity was
predicted using AllerCatPro. Table S5. Synthetic long peptide sequences and their best Rosetta score.
MFR—most favourable regions; AAR—additional allowed regions. Table S6. HADDOCK results
for TLR2-SLP molecular docking (after refinement). Table S7. HADDOCK results for TLR4-SLP
molecular docking (after refinement). Table S8. Predicted ∆G and Kd for the TLR2/4-SLP interactions
using PRODIGY.
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