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Abstract: Drug abuse is a common comorbidity in people infected with HIV. HIV-infected individuals
who abuse drugs are a key population who frequently experience suboptimal outcomes along the
HIV continuum of care. A modest proportion of HIV-infected individuals develop HIV-associated
neurocognitive issues, the severity of which further increases with drug abuse. Moreover, the ten-
dency of the virus to go into latency in certain cellular reservoirs again complicates the elimination of
HIV and HIV-associated illnesses. Antiretroviral therapy (ART) successfully decreased the overall
viral load in infected people, yet it does not effectively eliminate the virus from all latent reservoirs.
Although ART increased the life expectancy of infected individuals, it showed inconsistent improve-
ment in CNS functioning, thus decreasing the quality of life. Research efforts have been dedicated to
identifying common mechanisms through which HIV and drug abuse lead to neurotoxicity and CNS
dysfunction. Therefore, in order to develop an effective treatment regimen to treat neurocognitive
and related symptoms in HIV-infected patients, it is crucial to understand the involved mechanisms
of neurotoxicity. Eventually, those mechanisms could lead the way to design and develop novel
therapeutic strategies addressing both CNS HIV reservoir and illicit drug use by HIV patients.

Keywords: neuroAIDS; HIV latency; drug abuse; antiretroviral therapy

1. Introduction

If not treated, the human immunodeficiency virus (HIV) infection can result in the
development of acquired immune deficiency syndrome (AIDS). HIV infection is still consid-
ered a global epidemic by WHO. As of 2018, approximately 37.9 million people are infected
with HIV, and 770,000 people have died of HIV-associated comorbidity that year alone [1].
HIV is a retrovirus that selectively targets and kills the cells of the immune system that
express CD4+ receptors, primarily T helper cells. Infection of HIV results in the severe
deterioration of the immune system, which disposes the body to opportunistic infections
and/or cancers. Moreover, in a small subset of infected cells, HIV enters a latent or silent
state. The latent HIV reservoirs can persist undetected forever in infected persons as the
complete reactivation of all the latent HIV in the system has never been achieved and seems
impossible at this juncture. Hence, the main obstacle in the effort to achieve complete
viral eradication is the existence of latent HIV proviruses. Extensive research has been
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performed to investigate the molecular mechanisms controlling HIV persistence and the
establishment of HIV latency [2–7]. However, complete HIV eradication is not yet possible.

Fortunately, with the introduction of antiretroviral therapy (ART), the death rate due
to HIV has reduced drastically. However, certain anatomical barriers allow the establish-
ment of secluded HIV proliferation by hindering the optimal impact of ART regimens.
Consequently, HIV sanctuaries are prevalent in certain anatomical sites, such as the central
nervous system (CNS), lymphoid tissue, adipose tissue, and the gut-associated lymphoid
tissue (GALT) [8]. Hence, besides purging the latent HIV pool, elimination of the HIV
sanctuaries is also imperative for curing HIV infection. Fortunately, new ART regimens are
quite efficient in eliminating HIV sanctuaries; however, the latent pool remains invincible.
Recent evidence has shown that unintegrated HIV can also produce viral proteins, which
exacerbate the host immune response and lead to excessive toxicity and cell death [9].
Hence, to make ART more effective, research efforts have been diverted to identify the
mechanisms through which latent HIV can be reactivated before being targeted by an-
tiretrovirals [9–13]. Latency reversal agents such as romidepsin, JQ-1, and panobinostat
have effectively reactivated the peripheral latent viral reservoir. However, when evaluated
in the CNS, agents such as bryostatin-1 and JQ-1 have been shown to contribute to the
accumulation of amyloid-beta (Aβ) in astrocytes and cause neurocognitive impairment [14].

Neurocognitive impairment is an unresolved complication of HIV infection. HIV-
associated neurocognitive disorder (HAND) manifests as either asymptomatic, mild, or
severe neurocognitive impairment [15]. The most serious form of HAND is HIV-associated
dementia (HAD), which manifests as severe dementia, concentration deficit, motor prob-
lems, and fluctuating behavioral alterations. Mild forms of HAND cause mild disruption
of day-to-day activities. Assistance from family can greatly diminish any discomfort associ-
ated with this kind of HAND. Asymptomatic neurocognitive impairment (ANI) is the most
common form of HAND, with mild cognitive impairment that does not interfere with daily
activities but presents as a problem, nonetheless [16]. By virtue of effective suppression of
viral replication, ART-taking individuals rarely acquire HAD. However, HAND is quite
common among HIV patients, even those who are taking anti-HIV drugs religiously and
keeping HIV levels below the detection limit [17]. Notably, there are some conflicting
claims pertaining to the effects of antiretrovirals on CNS functioning, as a few studies also
reported improvement following discontinuation of ART, possibly indicating neurotoxicity
of the antiretrovirals [17–19]. The use of specific ART regimens or the physiology of selected
individuals in those studies could be the reason behind this controversy. Nevertheless,
the prevalence of mild neuropathies, such as HAND, is quite common even in regular
ART-taking individuals.

Antiretroviral neurotoxicity, HIV persistence, transient HIV replication in the CNS,
inflammation, mitochondrial dysfunction, and autophagy all contribute to the pathology
of HAND [20,21]. Naturally occurring or acquired comorbid diseases and conditions
cause further complications. Drug abuse is intimately linked with HIV infection and
HAND. Many drugs of abuse cause neurotoxicity and increase the susceptibility of the
CNS cells to HIV infection by upregulating genes or proteins necessary for HIV tran-
scription/replication [22–25]. Drug abuse in the context of HIV infection is extremely
complicated, with many unknown variables. The main objective of this review is to explore
the mechanisms through which HIV infection and various drugs of abuse contribute to
neurotoxicity that manifests as HAND. We will also discuss the possible outcome of certain
ART regimens in contributing to HAND, especially in those HIV-infected people who use
drugs (PWUDs).

2. HIV Epidemic among People Who Abuse Drugs

The impact of drug abuse on HIV progression is an ongoing investigation. There
is increasing evidence that suggests the majority of HIV transmission in drug users oc-
curs through sharing equipment used for injecting drugs, most often needles. Increasing
numbers of outbreaks of HIV infection were reported in communities worldwide where



Vaccines 2022, 10, 202 3 of 30

injection is the primary route of drug administration [26–29]. A global systematic study
identified that approximately 15.6 million people worldwide injected drugs as of 2015,
and 17.8% of people who inject drugs (PWID) (~2.8 million people) are estimated to have
been infected with HIV. While HIV prevalence among PWID varied substantially across
geographical regions, eastern Europe and Latin America are reported to have the largest
numbers of PWID living with HIV [30]. According to the CDC, approximately 11% of new
HIV diagnoses in the United States occur among people with a history of injection drug
abuse [31]. The introduction of needle and syringe programs that provide people with
sterile needles has dramatically decreased the incidence of HIV among PWID [32]. Despite
these efforts to treat HIV, reports of recent HIV outbreaks warrant the need for expanded
efforts to prevent HIV transmission among PWID.

While risky sexual behavior is the major contributor to the HIV epidemic, non-sexual
methods such as smoking, sniffing, or snorting of commonly abused drugs also contribute
to the post-exposure spread of HIV [33,34]. Studies that focused on the different types of
drugs abused by people positive for HIV found that crack-cocaine, in particular, increased
the risk of HIV infection progressing to AIDS [35]. A study by Siddiqui et al. showed a
rapid decline of CD4+ cell count in people who used cocaine when compared with those
who did not [36]. Although inhalation and insufflation were traditionally the main routes of
cocaine administration, injection of cocaine is becoming a popular route of administration,
leading to recent outbreaks of HIV infection in cities such as Luxembourg [37].

3. Current Perspectives on HIV Infection in PWUDs

It is well known that drug use is widespread among people infected with HIV. The
preferred drug of abuse among infected individuals was surprisingly dependent on the
abuser’s region of residence [38–40]. Additionally, the differences in the type of substance
abused, the method of administration, and the fact that a majority of HIV-infected in-
dividuals can, at any time, test positive for more than one drug of abuse complicates
our understanding of how substance abuse and HIV infection potentiate neurologic de-
cline [41,42]. To strategize disease prevention, understanding important factors such as
drug and HIV pathology, neurodegenerative disease diagnostic biomarkers, as well as drug
use demographics is critical.

The commonly abused drugs worldwide are opioids, cannabinoids, cocaine, metham-
phetamine, and alcohol. Public data files from the National Survey on Drug Use and
Health (NSDUH) collected from 377,787 individuals (548 individuals infected with HIV)
with diverse ethnicities, and socio-economic backgrounds were used to investigate the
association between drug abuse and HIV infection. This cohort represents a nationally
representative sample of adults in the United States. Approximately 80% of people infected
with HIV reported drug abuse. Among the participants infected with HIV, 76.7% reported
marijuana (cannabinoid) use, 57.6% reported cocaine use, and 11.4% reported heroin (opi-
oid) use [43]. In the near future, an increase in marijuana abuse is a likely outcome in many
communities in the United States due to the lobbying efforts to legalize it. To investigate
the prevalence of drug abuse in a larger population, a cohort of 10,652 adults infected with
HIV were evaluated and identified that 31% of the infected individuals abused marijuana,
19% abused alcohol, 13% abused methamphetamine, 11% abused cocaine, 4% abused
opioids, and roughly 20% of the participants abused more than one drug [44]. A recent
meta-analysis that analyzed 25 studies with more than 25,000 participants from various
developed and developing countries showed that the pooled prevalence of alcohol use
disorder among PLWHA (men and women) was 29.8%, with a higher prevalence in devel-
oped countries and men [45]. It is clear from these statistics that the prevalence of drug
abuse in HIV communities is increasing every day. Massive research efforts are being
attempted to understand the contribution of drug abuse to HIV disease progression as well
as the role of ART amidst drug use and HIV progression. These topics are discussed in the
subsequent sections.
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4. The Role of ART on CNS (Dys)Function

Antiretroviral therapy (ART) has had a major impact on all aspects of HIV-1 infection,
particularly on the CNS function. In the pre-ART era, CNS diseases were among the highest-
ranked comorbidities associated with HIV infection. While ART has effectively reduced
the HIV viral load and related comorbidities, the magnitude of its effect is variable and
inconsistent [46]. Antiretroviral drugs commonly belong to four drug classes: nucleoside
reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors
(NNRTIs), protease inhibitors (PIs), and integrase inhibitors (IIs). The most common ART
regimen used today consists of two NRTIs and an integrase inhibitor [47]. NRTIs and
NNRTIs are primarily reverse transcriptase inhibitors. NRTIs, however, cause off-target
inhibition of mitochondrial DNA polymerase resulting in mitochondrial toxicity, energy
depletion, and subsequent oxidative stress [48]. NRTIs are also known to induce ER stress
and activate the UPR pathways in astrocytes in vitro [49]. This evidence suggests that
NRTI-induced mitochondrial toxicity can indirectly cause neurotoxicity and contribute
to HAND [50]. Efavirenz is the most notable NNRTI to be associated with CNS toxicity.
Efavirenz has been considered as the most neurotoxic NNRTI demonstrating ER stress,
mitochondrial toxicity, and decreased neuronal viability [51,52]. Protease inhibitors inhibit
the protease enzymes required to cleave and release the mature viral proteins. Protease
inhibitors exhibit a high degree of drug interactions and off-target effects that limit their
use in ART [53]. Several studies attempted to investigate neurotoxic effects of PIs, albeit
with mixed results; there is little evidence in support of PIs being neurotoxic [47]. Integrase
inhibitors are the most effective antiretrovirals and are well-tolerated. They have fewer
side effects associated with them, most of which are systemic [54]. However, a common
neuropsychiatric side effect, insomnia, was often reported in II clinical trials [55]. Several
in vitro studies have investigated and failed to identify underlying mechanisms for neu-
rotoxicity suggesting other than a few neuropsychiatric symptoms, IIs are not associated
with significant neurotoxicity [47]. Although some antiretroviral drugs are associated with
neurotoxicity, several newer drugs are being evaluated for safety in ongoing clinical trials.
Despite the efficacy of ART, neurocognitive symptoms persist in HIV patients suggesting a
complex multifactorial association between antiretrovirals, HIV, and any other drug the
patient might use.

5. Mechanisms of HIV-Dependent Neurodegeneration

HIV rapidly spreads into the CNS following infection and instigates the process of
neuronal damage, eventually leading to HAND, even in the presence of effective ART.
A significant association was established between severe neuropathies and AIDS-related
death in the absence of effective ART [56]. The introduction of ART drastically decreased
the plasma viral load and controlled peripheral viral replication but failed to protect from
mild cognitive impairments associated with HAND [57].

Upon reaching the brain, HIV primarily targets resident macrophages, such as perivas-
cular macrophages and microglia [58]. The frontal cortex, substantia nigra, and cerebellum
are the primary targets of HIV, where extensive neurological damage can be seen upon
infection [59–61]. Decreased synaptic and dendritic density and the presence of giant mult-
inucleated cells as identified in postmortem brain tissues of HIV-infected people are the
hallmark features of HAND. Current diagnostic markers indicating the presence of HAND
include increased numbers of microglia with elevated tumor necrosis factor (TNF)-α mRNA
and the presence of excitatory neurotoxins in CSF and serum [62].

5.1. CNS as HIV Reservoir

Purging HIV from all cells is the first step toward its eradication. However, a reservoir
encases the virus and prevents its escape, thus posing as a barrier for eradication. According
to Eisele and Siliciano, a true cellular reservoir should satisfy the following three criteria: (i)
viral DNA must be integrated into the host cell genome; (ii) should be capable of harboring
the virus in a dormant and non-infectious state for a long period; and (iii) possess the
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ability to produce fully activated virions upon stimulation [63]. HIV is capable of infecting
and integrating into various CNS cell types (macrophages, microglia, and astrocytes). The
long life span of these cells, the limited accessibility to ART, and the ability to harbor
integrating viruses make them potential reservoirs, as they satisfy at least two out of
the three criteria required to be considered as potential reservoirs [64]. However, it is
challenging to determine if these cells can release replication-competent viruses as they
reside in deep tissues that are inaccessible in living subjects. Evidence in support of CNS
cells as HIV reservoirs comes from autopsied brains and in vitro studies that reported the
presence of HIV in several CNS cell types [65–67], often evolving into a distinct genetic
clade in these cells over time, even when the patients were on ART prior to death [68–70].
The viral persistence in these cells may be responsible for causing neurocognitive deficits
and HAND.

5.2. General Mechanisms of HIV-Mediated Neurotoxicity

While neurodegeneration is a hallmark feature of HAND, the virus does not infect
the neurons per se. Two general hypotheses can explain the initiation of neuronal dam-
age by HIV. One of the mechanisms is the “direct injury,” where various viral proteins
initiate neuronal injury and death. There is strong evidence in support of direct injury
through viral envelope protein gp120 (the envelop glycoprotein) and Tat (transactivator
of transcription), both of which show toxicity in CNS cells in vitro [71–73]. These proteins
are well characterized, and a large amount of literature has been published describing the
mechanisms through which different viral proteins mediate neurotoxicity [74] (Figure 1).
On the other hand, the host macrophages and microglia are activated upon the detection
of HIV and release various factors, either through interaction with viral proteins or by im-
mune stimulation, that contribute to neurodegeneration. Some of the common mechanisms
through which activated microglia trigger neuronal apoptosis involves Ca2+ overload;
activation of p38 MAPK and p53; activation of cell cycle proteins and caspases; free radical
formation; lipid release and peroxidation; and chromatin condensation [75–79] (Figure 1).
This “indirect effect” is thought to be the predominant mechanism through which neuronal
damage occurs [80,81].
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5.3. Neurotoxicity of Viral Proteins gp120 and Tat
5.3.1. Gp120

Gp120 is shown to be toxic in cultured dopamine neurons, causing a decrease in the
size of the dendritic tree as well as the ability to transport dopamine [82]. Subsequent
research on gp120 revealed multiple mechanisms of neurotoxicity. In vitro and in vivo
administration of gp120 has been shown to induce apoptosis [83,84]. Several studies
showed that gp120 disrupts the integrity of the mitochondrial membrane leading to the
release of cytochrome c and activation of caspases, resulting in apoptosis [74]. A fair
proportion of toxins released by gp120 from infected macrophages seem to target the
ionotropic glutamate NMDAR (N-methyl-d-aspartate-type receptors) in the brain [85].
Indeed, in vitro, NMDAR antagonists have been shown to prevent HIV-associated neuronal
cell death [86,87]. Under normal physiological conditions, activation of these receptors
plays an important role in neurocognitive function. However, sustained activation of
these receptors leads to excitotoxicity mediated by elevated intracellular calcium concen-
tration, which subsequently leads to mitochondrial injury and dysregulation of cellular
metabolism, resulting in the production of toxic free radicals [80,88]. In HIV infection, the
activation of NMDAR receptors is sustained but mild, this state is indicative of neuronal
dysfunction, and the neurons eventually undergo apoptosis [89]. Gp120 is also known to
activate the hypothalamic-pituitary-adrenal (HPA) axis and increase the release of stress
hormones, not only through NMDAR stimulation but also through the nitric oxide syn-
thesis (NOS) pathway [90]. Gp120 strongly induced neuronal apoptosis by regulating the
cellular sphingomyelin levels through the CXCR4-NADPH oxidase-superoxide-neutral
sphingomyelinase-ceramide pathway [91].

5.3.2. Tat

Tat is a viral regulatory protein, 86–101 amino acids in length, secreted by HIV-infected
cells. The primary role of Tat is to recognize the 5′ TAR element in the HIV-1 RNA and
recruit the host elongation factor p-TEFb (positive transcription elongation factor b) to HIV
LTR promoter [92–95]. Tat also directly interacts with the histone acetyltransferase p300
and with the closely related CREB-binding protein (CBP) both in vitro and in vivo, and it
targets these proteins to the integrated LTR promoter [96,97]. In a recent review, we have
outlined the various mechanisms through which viral proteins modulate HIV latency in
CNS cells [9]. CNS tissue damage and neuroinflammation in the presence of Tat may lead
to the development of HAND [98].

The first report demonstrating the neurotoxicity of Tat identified Tat 31–61 as the
reactive epitope that elevated intracellular calcium levels via activation of NMDAR and
caused a dose-dependent increase in cytotoxicity in cultured human fetal brain cells [99].
While it has been shown that Tat mediates excitotoxicity via activating the NMDAR [100],
further investigation revealed that Tat produced by HIV-1 subtype B and subtype C can
directly bind to NMDAR, but Tat from subtype B was more neurotoxic. This underscores
the importance of differences in HIV-1 subtypes and is consistent with the observation
that HIV-1-associated neurocognitive impairment is more severe in regions where HIV-1-
subtype B is prevalent [101].

Tat can cross the blood-brain barrier (BBB) and can be transported within the CNS,
suggesting that sites of neuronal injury can vary distinctly from the site of actual viral
infection [102]. The uptake of Tat by uninfected cells results in deleterious events, including
abnormal cytokine secretion, altered gene transcription, NMDAR activation, and the
initiation of apoptotic cascades [103,104]. It is well established that glutamate receptors are
involved in the process of Tat-mediated neuronal cell death [99]. Further, NMDAR function
may be modulated by dopamine D1-like receptors, and indeed D1-mediated pathways
have been implicated in the mechanism of Tat-induced neurotoxicity [105–107]. Recent
research showed that HIV-1 Tat-inhibited dopamine uptake and dopamine-transporter-
specific ligand binding in vitro [108,109]. Inhibition of dopamine reuptake via Tat exposure
in presynaptic dopaminergic neurons can influence the D1/NMDAR interaction in the



Vaccines 2022, 10, 202 7 of 30

postsynaptic neuron and subsequently trigger the NMDA receptor-controlled apoptotic
cascade. Alternatively, pro-apoptotic D1-controlled signaling may be facilitated with
the activation of NMDA receptors in a D1-expressing neuron when exposed to Tat [107].
This suggests that the mechanisms of HIV-1-associated neurodegeneration are similar
to those involved in other neurodegenerative diseases and involve the dysregulation
of glutamatergic and dopaminergic signaling pathways and excitotoxicity [107]. Other
mechanisms for Tat neurotoxicity include increased oxidative stress [110], altered calcium
homeostasis [111,112], stimulation of TNF-α and NF-κB [113], and activation of nitric oxide
synthase and stimulation of nitric oxide production [114].

6. Neurotoxic Mechanisms of Drugs of Abuse

Drug abuse causes substantial neurotoxicity that arises primarily due to the dysreg-
ulation of major neurotransmitter systems, mainly the dopaminergic and glutamatergic
systems (Figure 2). Several drug-related, individual-related, and environmental factors
influence the severity of drug-induced neurotoxicity [115]. The investigation led by several
research teams identified key molecular mechanisms mediating drug-related neurotoxicity
(Figure 2), which are expanded in the succeeding sections.
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created using BioRender software.

6.1. Inflammation

The innate and adaptive immune systems are major regulators of inflammatory re-
sponses. These systems are activated upon receiving damaged signals via pathogen-
associated molecular patterns (PAMPs) and endogenous, danger-associated molecular
patterns (DAMPs) that are detected by pattern recognition receptors (PRR) [116]. The
response to signals initiated by PAMPs and DAMPs in the brain is generated by tissue-
specific macrophages such as microglia and, more recently, astrocytes [117,118]. Upon
recognition of these signals, PRRs release several cytokines having both pro-and anti-
inflammatory properties. A balance between pro-and anti-inflammatory components is
essential to maintain cellular homeostasis. Prolonged inflammation caused by the presence
of elevated proinflammatory cytokines can lead to tissue damage and result in neuropsychi-
atric diseases [119]. Although less is known about the dysregulation of the neuroimmune
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system in substance abuse disorders, inflammatory changes are known to affect dopamine
and glutamatergic systems, which are the key neurotransmitter systems involved in drug
addiction and relapse [120,121].

6.2. Oxidative Stress

An imbalance between the ability of the cell to produce reactive oxygen species (ROS)
and its capability to detoxify the reactive metabolites results in the building up of oxidative
stress, which eventually leads to substantial cellular damage [122]. Overproduction of
ROS, such as peroxides and free radicals, alters the normal redox state of the cell and can
have devastating consequences. Their toxicity can affect many components of the cell,
including proteins, lipids, and even nucleic acids [123]. Moreover, certain ROS are known
to induce the expression of genes involved in signal transduction, and a few others function
as cellular messengers in redox signaling. Alteration in their levels can disrupt normal
cellular signaling [124].

The majority of drugs of abuse target the dopaminergic system and result in the accu-
mulation of dopamine at the synapse, either by competing with the dopamine transporter
(DAT) or by decreasing the reuptake of dopamine into the presynaptic neurons [125]. Early
studies have established the toxicity of dopamine using both in vitro and in vivo exper-
imental models [126]. Enzymatic and non-enzymatic metabolism of dopamine and/or
related substances may result in the production of free radicals; drugs of abuse that act
via the dopaminergic system, such as amphetamine, amphetamine derivatives, cocaine,
3,4-methylenedioxymethamphetamine (MDMA), and opioids, have all been reported to
generate oxidative stress through similar mechanisms [127,128]. In addition to directly in-
voking oxidative stress through the generation of superoxide free radicals by the inhibition
of catalase activity, cocaine also contributes to oxidative stress indirectly by decreasing
the level of antioxidants such as glutathione and tocopherol (Vitamin E) [129–131]. In
contrast, reports from mouse studies have shown that opioid derivatives target the an-
tioxidant defense system, comprising the enzymes superoxide dismutase (SOD), catalase,
and glutathione peroxidase (GPx) [132]. Heroin abuse exclusively caused an increase
in DA oxidative metabolism, which resulted in DNA damage, protein oxidation, and
lipid peroxidation [133].

6.3. Apoptosis

Apoptosis or programmed cell death is a highly regulated and controlled process
that involves the genetically determined elimination of cells. Before undergoing apoptosis,
cells exhibit several energy-dependent biochemical changes: the cytoskeleton collapses,
the nuclear envelope disassembles, and the chromatin condenses and gets fragmented.
The altered cell displays signals that are received by the neighboring macrophages, which
rapidly phagocytose the cell and its contents [134]. Apoptosis is initiated through intrinsic
or extrinsic pathways; the intrinsic pathway is activated when the cell recognizes internal
stress and the extrinsic pathway invokes cell death through the recognition of signals
exposed by surrounding cells [135]. In both cases, mitochondrial membranes of the cells
are compromised, resulting in the activation of death receptors that in turn trigger the
activation of caspases (proteolytic enzymes) [136]. Caspases are inherently present in
the cell as inactive precursors (or procaspases) that are activated by adaptor proteins.
Once activated, caspases initiate a proteolytic cascade where activated caspases cleave and
activate other procaspases, which ultimately leads to proteolysis and cell death [135,136].

Apoptosis is necessary to ensure normal cell turnover and proper development as
well as the functioning of the immune system. While cells normally undergo apoptosis
when they are no longer needed, exposure to certain drugs of abuse can also initiate the
apoptotic pathway. Amphetamines are known to stimulate mitochondrial pathways and
induce apoptosis through several mechanisms involving p53, caspase activation, and the
release of cytochrome c, leading to increased Bax/Bcl2 ratios [137]. Cocaine exposure
activates the internal machinery involved in the apoptotic cascade without affecting the
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morphological characteristics of apoptotic cells [138,139]. Moreover, the oxidative stress
generated by cocaine initiates apoptosis in neuronal progenitor cells [140]. Opioids and
their derivatives also cause caspase activation and cytochrome c release from mitochondria,
leading to apoptosis in animal and human models [141,142].

6.4. Excitotoxicity

Excessive stimulation of brain receptors by excitatory amino acids can induce neuronal
death through the mechanism of excitotoxicity [143]. Excitotoxicity is a complex process
associated with several pathologic and neuropsychiatric conditions. Presynaptic terminals
in the CNS release neurotransmitters into the synaptic cleft, which bind and activate postsy-
naptic receptors of the target cell [144]. Upon activation by the neurotransmitter, ionotropic
receptors facilitate the transport of ions, and if the ion favored is a cation, the receptor is clas-
sified as an excitatory receptor [145]. Calcium has an important role in maintaining multiple
metabolic pathways. Increased intracellular calcium ion concentration causes activation
of metabolic pathways; hence, their intracellular concentrations are maintained through
ATP-coupled membrane transporters in the mitochondria and endoplasmic reticulum [146].
The excessive influx of calcium ions causes the activation of proteases, phospholipases, and
endonucleases, all of which alter normal cellular functioning [147]. Excitatory amino acids
such as glutamate were shown to release calcium following receptor depolarization [148].
The hyperstimulation of neuronal receptors by glutamate exacerbates the already high
intracellular concentration and potentiates its harmful effects [143]. Disruption of the
glutamate transport system or low energy production in the cells can cause glutamate to
exert its excitotoxic potential [149].

Many drugs of abuse, including methamphetamine, cocaine, and opioids, cause
excitotoxicity through excessive stimulation of NMDA receptors [128,150–153]. Alcohol
abuse increases the activity of voltage-activated calcium channel and NMDA receptor
activation and decreases GABA receptor activation, resulting in severe excitotoxicity. The
stimulation of NMDA receptors by ethanol also results in the deficiency of thiamine, a
vitamin important for several enzymatic reactions. The involvement of NMDA receptors
in the pathogenesis of thiamine deficiency can probably explain why the symptoms of
thiamine deficiency are similar to excitotoxicity [154].

6.5. Epigenetic Mechanisms

The non-genetic environmental factors that influence drug-related neurotoxicity sug-
gest an important role for epigenetic mechanisms, which are a series of biological processes
that cause permanent changes in gene expression without altering the DNA sequence. Epi-
genetics thus acts as a medium through which the environment interacts with the genome
and influences health and disease [155]. While many epigenetic modifications are transient
and temporary, some are stable. Random developmental events or behavioral experiences
can cause permanent epigenetic changes in brain function. Such events can account for a
person’s transition from a recreational drug user to a compulsive drug abuser [25,156,157].
A drug can directly bind to its specific molecular target and modulate downstream signal-
ing cascades to alter gene expression and epigenetic mechanisms. Alternatively, a drug can
indirectly cause epigenetic changes and alter gene expression by targeting the mesolimbic
dopaminergic signaling pathway and downstream signaling cascades [156].

The majority of drugs of abuse target the dopaminergic pathway, which regulates
the reinforcing activities important for survival [158,159]. Histone acetylation is a well-
characterized epigenetic modification of the mesolimbic dopamine circuitry and is thought
to be responsible for the reinforcing activity in response to psychostimulant exposure.
Histone acetylation is witnessed in both acute and chronic exposure to psychostimu-
lants [160,161]. Acute psychostimulant exposure causes the acetylation of histone 4 within
the promoters of genes encoding transcriptional factors such as c-Fos and FosB, which are
rapidly expressed in response to drug consumption [162].
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Since virtually any pharmacological or genetic tool/intervention can cause epigenetic
changes, it is worth questioning which epigenetic modification is responsible for or con-
tributes to addiction in certain individuals. Epigenetic editing (or epigenome engineering)
enables both precise manipulation of chromatin and studying the effects of such manipula-
tion on gene expression and cell function. This novel technology has allowed targeted and
specific rewriting of the epigenome [163]. Studies have used epigenetic editing in the brain
to demonstrate that a single epigenetic modification at a single gene promoter can alter the
expression levels of that gene [164]. An elegant study that served as a proof of concept of
this new technology identified epigenetic modification at FosB and Cdk5 loci as the causal
molecular changes that drive the pathogenesis of addictive behaviors in individuals who
abuse cocaine [164,165].

6.6. Other Biochemical Mechanisms

Several other biochemical pathways contribute to neurodegeneration by drugs of
abuse. These mechanisms are not as widely associated as the mechanisms. Hyperthermia
is one such mechanism through which methamphetamine demonstrates neurotoxicity both
in human and rodent models [166,167]. Biochemical changes, especially in the brain, are
sensitive to temperature changes. Hyperthermia potentiates the depletion of dopamine
and tyrosine hydroxylase by increasing oxidative stress [168]. Another mechanism as-
sociated with drug-related neurodegeneration is ER stress. ER stress is the first step
in methamphetamine-mediated neurotoxicity, ultimately leading the cells to apoptosis.
Methamphetamine-induced apoptosis involves the crosstalk between ER and mitochondria,
which triggers both caspase-dependent and -independent death pathways [169]. Increased
level of serotonin in neuronal synapses is also associated with drug-induced neurotoxicity.
Accordingly, it was found that cocaine-induced serotonin accumulation compromises the
BBB and induces hyperthermia in cocaine-using individuals [170–173].

7. Effect of Major Drugs of Abuse on HIV-Dependent Neurodegeneration

Opioids, cannabinoids (marijuana), cocaine, methamphetamine, and alcohol (ethanol)
are among the most commonly abused drugs. Here we describe the effect of these major
drugs of abuse on HIV-dependent neurodegeneration. Table 1 summarizes the key sim-
ilarities and differences between the mechanisms of neurotoxicity of these major drugs
of abuse.

7.1. Opioids

Approximately 2 million people in the United States abuse opioids in the form of
heroin and/or prescription opioids [174]. Addiction to prescription opioids often leads
to risky behaviors such as injection drug use: in fact, approximately 36% of new HIV
cases in the United States are seen among people who inject opioids [175–177]. Similarly,
20–50% of people suffering from HIV are prescribed opioids and hence are more likely to
develop opioid addiction [178]. In addition, people with HIV have an increased risk of
death from long-term opioid abuse [179]. It is thus essential to identify the role of opioids
in contributing to HIV infection and associated comorbidities.
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Table 1. Summary of similarities and differences between the mechanisms of neurotoxicity of major drugs of abuse.

Drug Receptor Involved in Mediating
Neurotoxicity

Neurotransmitter
System Disrupted

Effect on Viral Proteins/HIV
Replication Mechanism of Neurotoxicity Interaction with ART

Opioids

MOR: Mu (µ) opioid receptor
KOR: Kappa (κ) opioid

receptor
DOR: Delta (δ) opioid

receptor

Dopaminergic system

Potentiates viral replication
through:

Increased expression of galectin 1
Inhibition of interferon

Increased expression of CCR5

Disrupt the integrity of BBB
Oxidative stress

Neuroinflammation through
cytokine secretion

Compete with antiretrovirals
for cytochrome P450 enzymes
(CYP3A4, CYP2D6, CYP2C19,

CYP2C9, and CYP2D67)

Cannabinoids
CB1 receptor
CB2 receptor

NMDA receptor

Endocannabinoid system
Glutamatergic system

Gp120 increases the expression of
FAAH, the enzyme that

metabolizes the neuroprotective
endocannabinoid, anandamide

Apoptosis
Neuroinflammation

Compete with antiretrovirals
for cytochrome P450 enzymes

(CYP3A4 and CYP2C19)

Cocaine
Dopamine
(Serotonin)

(Norepinephrine)
Dopaminergic system

The combination of GP120 and
cocaine increases the production

of ROS and iNOS expression
Cocaine augments Tat-mediated

mitochondrial depolarization
and production of ROS

Oxidative stress
Epigenetic modifications

Apoptosis

Compete with antiretrovirals
for cytochrome P450 enzymes

(CYP3A4 and CYP3A5)

Methamphetamine

Dopamine
Serotonin

Norepinephrine
NMDA receptor

Dopaminergic system
Glutamatergic system

Methamphetamine and Tat
synergistically decrease

dopamine reserves by binding to
VMAT and DAT

Disrupt the integrity of BBB
Impairing glial signaling

Excitotoxicity

Compete with antiretrovirals
for cytochrome P450 enzymes

(CYP2D6 and CYP3A4)

Ethanol NMDA receptor
GABA receptor

Glutamatergic system
GABAergic system

Stimulates HIV transcription
through TNF secretion

The combination of ethanol and
Tat increases cytokine production

Apoptosis
Ethanol exerts direct

neurotoxicity

Compete with antiretrovirals
for cytochrome P450 enzymes

(CYP2E1 and CYP3A4)
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Altered signal transduction via classical opioid receptors, µ (Mu; MOR), κ (Kappa;
KOR), and δ (Delta; DOR), contribute to HIV-induced CNS damage. These receptors
are expressed on the microglial, macrophage, and astrocytic cell types, all of which are
capable of harboring HIV [180]. In vitro experiments demonstrate that several mechanisms
mediate opioid-induced viral replication, such as microRNAs that target the degradation
of HIV genes [181], increased expression of galectin-1 [182], inhibition of interferon, and
increased expression of CCR5 [183]. Crosstalk between chemokine and opioid receptors
enhances the neuropathogenesis caused by HIV. Opioid exposure to astrocytes infected
with HIV exacerbated Tat-induced neuronal damage through the activation of CCR5
receptors. Interestingly, through pharmacological inhibition of CCR5 by the HIV entry
inhibitor, maraviroc, morphine exerted a neuroprotective effect in response to Tat [184].
Opioid exposure to astrocytes decreased the expression of glutamate transporters such
as GLT-1 and GLAST, and this disruption was further potentiated in the presence of HIV
proteins [185,186]. The role of specialized potassium channels was recently discovered
in opioid-induced glutamate released from astrocytes, possibly mediating through Gαi-
coupled GPCR activity [187].

Opioids also tamper with the integrity of the BBB by increasing P-glycoprotein con-
centration in the brain, thus facilitating the entry of monocytes across the BBB [188,189].
Dopamine is a key player in opioid-induced euphoric effects. Circulating monocytes prefer
to aggregate in brain regions with increased dopamine concentrations [190]. These mono-
cytes express surface receptors that bind to dopamine, and upon binding, dopamine signal-
ing is increased, probably due to the activity of ADAM17, a metalloproteinase [190,191].
Dopamine, in turn, increases viral entry into these monocytes and monocyte-derived
macrophages, resulting in increased viral replication, indicating that dopamine release in re-
sponse to opioids can cause an increase in HIV infection through circulating monocytes [192,193].

Opioid exposure is closely associated with increased oxidative stress. While acute
morphine exposure to murine macrophages decreased nitric oxide production, chronic
exposure increased the production of ROS through miRNA activation [181,194]. In vivo
morphine administration in mice is also seen to increase ROS. In addition, Tat synergistically
increases ROS with acute morphine exposure in murine microglia [195]. This evidence
indicates that opioids contribute to HIV disease progression through oxidative stress in
cells harboring HIV. Opioids also induce cytokine secretion that fuels neuroinflammation.
A total of 24 h exposure of morphine to murine microglia upregulated the secretion of
proinflammatory IL6, MCP-1, and TNFα, but this did not replicate in a human microglial
model [195]. Further in vitro and in vivo studies are required to determine the effect of
opioids on cytokine secretion in other CNS cell types infected with HIV.

Increased expression of regulatory T cells (Tregs) is seen in people addicted to opioids
when compared to healthy controls [196]. Chronic opioid abuse is characterized by altered
functions of MOR, KOR, and DOR in T cells, contributing to systemic immunosuppression
and increased susceptibility to infection [197–199]. While in CD4+T cells, opioid receptor
stimulation failed to reactivate the virus in latently infected cells, activity at the KOR and
DOR was shown to inhibit HIV production [197,198]. The role of opioid exposure to T-cell
activity during HIV infection in CNS cells is not clear.

Initiation of ART can further complicate neuropathogenesis. Most opioid drugs are
metabolized by the cytochrome P family enzymes such as CYP3A4, CYP2D6, CYP2C19,
CYP2C9, and CYP2D67 [200]. Many ART drugs inhibit cytochrome P enzymes and thereby
increase the efficacy of opioids such as oxycodone [201]. On the other hand, certain
antiretroviral drugs can also decrease the effects of opioids such as hydrocodone and cause
symptoms of opioid withdrawal [202]. Future studies should thus aim to evaluate the
combinatorial effect of opioid abuse, HIV infection, and ART on neuroinflammation in
macrophages and microglia. This might unravel the molecular mechanisms through which
these cells accelerate neurodegeneration in opioid abusers who are HIV-positive.
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7.2. Cannabinoids

Cannabinoids rank third among the drugs abused in the United States, falling only
behind alcohol and nicotine (tobacco) [203]. Cannabinoid consumption is a common prac-
tice among people living with HIV, who consume them for palliative and/or recreational
purposes. Cannabis use disorder (CUD) is currently on the rise, and it is imperative to
address the extent of its neurotoxicity in HIV-infected individuals in the context of finding
a proper treatment regimen. The effects of marijuana, the major cannabinoid used and
abused, are attributed to δ-9-tetrahydrocannabinol (THC), the main psychoactive ingre-
dient in the cannabis plant. THC binds to cannabinoid CB1 receptors in the brain and
modulates various neurological changes, including cognition [204]. A study conducted on
282 HIV-infected individuals who used marijuana showed a significant correlation between
the consumption of marijuana during advanced stages of HIV infection and memory loss,
but this correlation was absent in the uninfected or individuals in early stages of HIV
infection, indicating synergy between the extent of HIV infection and marijuana use [205].
Excessive use of cannabinoids in HIV-infected individuals is associated with modified in-
flammatory and neurotoxic processes. The HIV envelop protein gp120 is known to degrade
the synaptic network of hippocampal neurons through the activation of signal cascade via
CXCR4 and release of IL-1β [206,207]. IL-1β further potentiates this synapse loss, which
triggers the activation of NMDA receptors that control synaptic plasticity. This synapse
loss is prevented by WIN55212-2, a full agonist of the cannabinoid receptors, through its
action on CB2 receptors; however, in the presence of HIV Tat, WIN55212-2 does not affect
synapse loss [206].

Endogenous compounds known as endocannabinoids act at the brain’s cannabinoid
receptors, CB1 and CB2. Endocannabinoids have a neuroprotective effect in several neu-
rodegenerative disorders and are being increasingly explored as immune modulators.
Endocannabinoids are primarily anti-inflammatory mediators that suppress inflammation
by inhibiting the release of inflammatory mediators [208]. Owing to their neuroprotective
effects, it is important to document the changes in endocannabinoid signaling in response
to HIV infection to devise strategies to enhance or suppress signaling by targeting the
components of the endocannabinoid system.

CB1 and CB2 receptors are the most extensively studied and well-characterized com-
ponents of the endocannabinoid system. Several reports indicate changes in CB1 and CB2
cannabinoid receptors during SIV and HIV infection. An increase in CB2 receptor expres-
sion is seen in peripheral microglial cells of rhesus macaques with SIV-induced encephalitis
(SIVE) [209]. Upregulation of CB1 and CB2 receptors was seen in macrophage and mi-
croglia tissue isolated from patients with HIV encephalitis [210]. CB2 receptor activation by
selective agonists is known to trigger an anti-inflammatory response [211]. AM1241, a full
CB2 agonist, is shown to increase neurogenesis, as opposed to astrogenesis and gliogenesis,
in the hippocampus of the GFAP/Gp120 transgenic mouse model [212]. Although CB1
receptors mediate neuroprotective functions [213,214], their involvement with HIV viral
proteins is still under investigation. An increase in the enzyme fatty acid amide hydrolase
(FAAH), which is responsible for the breakdown of endocannabinoids, is also seen in the as-
trocytes of SIV-infected macaques [209]. Increased FAAH levels indicate a direct association
of FAAH in the anti-inflammatory response against SIV, and it is hypothesized that FAAH
counteracts the overexpression of eicosanoids and TNF-α induced by the SIV-infected
monocytes in SIVE [215,216]. Through the activation of FAAH, the HIV envelop protein
gp120 decreases the levels of the endocannabinoid anandamide, which is a full agonist at
the CB1 receptors and induces neuronal apoptosis of rat brain neocortex [217].

While CB2 receptors are considered to play a role in mitigating HAND and related
neurodegenerative diseases, CB1 receptor activation mediates the psychoactive properties
of exogenous cannabinoids that can become a serious adverse effect when used for the
prolonged therapeutic benefit [218]. Cannabinoid-induced cognitive decline cannot be
ignored, especially when implicated in the treatment of HAND [219]. Finally, the addic-
tive properties of prolonged cannabinoid use or abuse limit its use to treat HAND [220].
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Marijuana is a potent inducer of the CYP1A2 enzyme, and it does so through aromatic
hydrocarbon receptor activation [221]. Both δ-9-tetrahydrocannabinol (THC) (a potent CB1
agonist) and cannabidiol (a potent CB2 agonist) are metabolized by various cytochrome P
enzymes (CYP3A4 and CYP2C19), which also metabolize multiple ART drugs [222]. The
competition between these two drug classes can increase the plasma concentration of ART,
causing a heavy renal/hepatic demand and potentially proving to be toxic.

7.3. Cocaine

Cocaine is one of the most abused drugs that modulate CNS functions. Cocaine is
a monoamine reuptake inhibitor that binds to monoamine transporters and inhibits the
reuptake of extracellular dopamine, and to some extent, of serotonin and norepinephrine.
All three neurotransmitters mediate reinforcing activities in the CNS, and by elevating
their extracellular concentrations, cocaine thereby acts as a powerful psychostimulant [223].
Clinical evidence suggests decreased brain metabolic function with significant neuropsycho-
logical, behavioral, and neurocognitive disorders in HIV-infected patients who also abuse
cocaine [224]. Recent studies have linked the effects of cocaine abuse and/or HIV infection
with several intracellular molecules and signaling cascades within the cells of the CNS.
Cocaine-induced neurotoxicity is also attributed to the modulation of CNS macrophages
and astroglia functioning [225,226].

The stimulatory effect of cocaine has been shown to enhance HIV gene expression
and replication, with an eventual impact on HIV-associated pathogenicity in the CNS cells,
both in vitro and in vivo [227–231]. The biological interaction between cocaine and HIV
interaction was studied in a severe combined immunodeficiency (SCID) mouse model
with implanted human peripheral blood mononuclear cells and infected with an HIV
reporter virus (huPBL-SCID). Cocaine administration in these models increased the expres-
sion of CCR5 and CXCR4 coreceptors, which are required for HIV entry and subsequent
replication, via a sigma-1 receptor (σ-1R)-mediated mechanism. The implication of σ-1R
in cocaine-mediated HIV pathogenicity was further confirmed when a σ-1R antagonist
abolished the effects of cocaine on HIV-1 replication [232]. In dendritic cells, cocaine up-
regulated another HIV coreceptor, DC-SIGN (dendritic cell-specific intercellular adhesion
molecule-3-grabbing non-integrin) through dysregulation of mitogen-activated protein
kinases (MAPKs) [233].

Our group demonstrated the underlying molecular mechanism through which cocaine
enhances HIV gene expression and subsequently its replication. We discovered that cocaine
mobilizes NF-κB and p-TEFb by stimulating kinases such as ribosomal S6 kinase 1 (RSK1)
and mitogen- and stress-activated kinase 1 (MSK1). Acute and chronic cocaine exposure to
monocytic cell lines (THP1 and U937) as well as primary monocyte-derived macrophages
(MDMs) increased the nuclear translocation of NF-κB and potentiated its ability to interact
with histone acyltransferases (HATs). We showed that RSK1-induced NF-κB activation
lasts longer in the presence of cocaine and contributes to the lingering stimulatory effects
of cocaine [25,157]. The functional activity of NF-κB is determined as a measure of its
interactions with HATs. Activation of MSK-1 phosphorylates the p65 subunit of NF-κB at
serine 276 and histone H3 at serine 10. This epigenetic modification enhances the interaction
of NF-kB with HATs, specifically P300, resulting in enhanced HIV transcriptional initiation.
However, increased phosphorylation of histone H3 at serine 10 promotes the recruitment
of positive transcription factor b (p-TEFb) to the HIV-1 LTR. p-TEFb is required for the
elongation phase of HIV-1 transcription. Thus, cocaine promotes both HIV transcriptional
initiation via NF-kB and transcriptional elongation through p-TEFb [23].

Cocaine is known to amplify the neurotoxic responses of HIV proteins Tat and gp120
in vitro by augmenting the oxidative stress caused by these proteins [234–237]. A combi-
nation of cocaine and gp120 in rat primary neurons demonstrated a synergistic increase
in cell toxicity through the production of ROS and expression of the proapoptotic protein
Bax [238]. Similarly, cocaine augmented Tat-mediated mitochondrial depolarization and
production of ROS, leading to oxidative stress and neurotoxicity in primary rat hippocam-
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pal cultures [239]. Using a specific D1 dopamine receptor antagonist, it was shown that
D1 dopamine receptors were involved in cocaine-mediated neurotoxicity in HIV-infected
cells, as the toxicity of Tat was minimized upon blocking this receptor in hippocampal
neuronal culture [108].

A recent investigation revealed that cocaine use by HIV-infected individuals induces
epigenetic modifications, in the form of DNA methylation and hydroxymethylation, in
the mitochondrial DNA of the brain. This causes mitochondrial dysfunction that gives
rise to neuropathies, including HAND [240]. In addition, somatodendritic injury is often
associated with neurologic impairment in patients with HAND. Consistent with this, expo-
sure of primary hippocampal neurons to cocaine as well as gp120 resulted in the enhanced
loss of neuronal dendrites, thus suggesting a possible mechanism for cocaine-mediated
neurotoxicity [241]. Combined administration of intraperitoneal cocaine and intracerebral
recombinant gp120 to wild-type Wistar rats resulted in increased iNOS expression and
neuronal apoptosis in the neocortex, corroborating the evidence for cocaine-mediated
neurotoxicity in HAND [242].

With the advent of NGS (next-generation sequencing), new pathways and molecular
mechanisms underlying rare and known neurodegenerative pathologies are being discov-
ered. RNA sequencing analysis in rat hippocampal neurons identified that several key
genes involved in lipid and cholesterol metabolism such as sterol O-acyltransferase 1/acetyl-
coenzyme A acyltransferase 1 (SOAT1/ACAT1), sortilin-related receptor L1 (SORL1),
and low-density lipoprotein receptor-related protein 12 (LRP12) were disrupted when
exposed to Tat and cocaine. These genes are implicated in the pathology of Alzheimer’s
disease, thus opening up novel molecular targets involved in HIV- and cocaine-mediated
neuronal dysfunction [243].

Cocaine is metabolized differently in males and females. Women can metabolize
cocaine faster and hence can be more sensitive toward its effects [244]. The enzymes
CYP3A4 and CYP3A5 partially metabolize cocaine and interfere with ART metabolism
and bioavailability [245].

7.4. Methamphetamine

Methamphetamine is abused by more than 33 million people worldwide, and the
numbers are still steadily rising [246]. A recent article in The Lancet emphasized the possible
occurrence of the second wave of methamphetamine abuse, owing to the allocation of
resources and government funds toward the stringent regulation of opioid abuse [247].
The effect of methamphetamine abuse on brain pathology has been well characterized by
several studies. MDMA, or 3, 4 methylenedioxymethamphetamine (ecstasy), a derivative
of methamphetamine, is a popular club drug often used in conjunction with metham-
phetamine and has a more profound effect on the brain than methamphetamine alone.
These psychostimulants are known to increase risky sexual behavior among users and
contribute to increased HIV transmission rates [248]. Hence, in the context of metham-
phetamine abuse in HIV-infected individuals, it is important to understand the neurotoxic-
ity mechanisms of methamphetamine and its interaction with HIV proteins.

It is well established that methamphetamine can induce substantial neuronal dam-
age to the CNS by disrupting the function of neurons and glia [249–251]. Metham-
phetamine targets the neurons directly, as well as indirectly, by disrupting the BBB or
impairing glial signaling. Dopaminergic, serotonergic, and noradrenergic neurons are
targeted by methamphetamine, with dopaminergic neurons being the most suscepti-
ble in the HIV-infected population [237,252]. The mechanisms through which metham-
phetamine exerts neurotoxicity have been well documented [253–255]. Briefly, metham-
phetamine exerts a destructive positive feedback cycle by inhibiting the function of vesic-
ular monoamine transporter 2 (VMAT2) and the dopamine transporter (DAT), which
cumulatively increase the production of dopamine and oxidative byproducts that lead
to neuronal damage [249,256]. Exposure to methamphetamine can increase the levels of
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extracellular glutamate, which can cause excitotoxic neuronal injury, and over-activation
can lead to the death of NMDA receptors [257,258].

Several studies report depletion of dopamine reserves in HIV-infected individuals,
and the use of methamphetamine exacerbates this depletion [237,259]. HIV proteins, Tat
and Gp120, are toxic to dopaminergic neurons [260]. Methamphetamine synergistically acts
with HIV Tat to diminish dopamine levels [261]. There is evidence in support of Tat interact-
ing with and inhibiting VMAT2 and DAT, the same molecular targets of methamphetamine,
justifying the synergy between methamphetamine and HIV proteins [262,263]. It has been
recently shown that crosstalk occurs between neurons and microglia that influences HIV in-
fectivity and subsequent inflammation or neuronal damage. Using a neuron-hµglia (human
microglia) co-culture, it has been demonstrated that HIV-infected microglia are the main
drivers of neurotoxicity. Methamphetamine abuse further potentiates this neurotoxicity via
activation of the sigma-1 receptor (σ-1R) in the microglia [264].

Methamphetamine is metabolized by the enzyme CYP2D6 through N-dealkylation.
Inhibition of CYP2D6 by ART drugs can increase the bioavailability of methamphetamine
and related drugs, thereby exacerbating neurotoxicity [265]. Methamphetamine is also
known to interact with CYP3A4 and, as a result, can modulate the bioavailability of PI
ART drugs [266].

7.5. Ethanol

Ethanol-associated neurodegeneration involves neuronal apoptosis, among other
mechanisms. Reports of ethanol-induced apoptosis have been documented in well-characterized
rodent brain models [267–269]. Ethanol suppresses neuronal activity by altering glutamate
and GABA transmission. Chronic alcohol consumption has been known to alter various
functions of the immune system, including both humoral and cell-mediated processes.

There is much controversy as to whether ethanol serves as a cofactor in AIDS de-
velopment [270,271]. Ethanol exacerbated opportunistic infections in a murine AIDS-like
syndrome model and contributed to the progression of AIDS [272–274]. Ethanol is known
to have both direct and indirect effects on HIV replication and expression in vitro. It has
been suggested that ethanol stimulates HIV replication in latently infected cells by altering
cytokines that increase HIV-1 expression [275]. In Jurkat T cells, ethanol increased tumor
necrosis factor α (TNF-α)-stimulated HIV transcription [276]. Exposure of ethanol and its
metabolites, acetaldehyde, and acetate, to a human macrophage cell line resulted in the di-
minished production of interleukin 1alpha (IL-1alpha), IL-1beta, and intracellular cytokine.
Ethanol has been shown to decrease macrophage function during HIV-1 infection [277].
Ethanol also induced direct cell death in human neurons at a clinically relevant dose range,
and at low and moderate concentrations, it strongly potentiated HIV-1 gp120-induced
neuronal apoptosis via both the death receptor and NMDA receptor pathways [278]. Simi-
larly, in the presence of ethanol, the HIV-1 regulatory protein Tat synergistically increased
neuronal apoptosis [275] and neutrophil dysfunction in transgenic mice [279]. Co-exposure
of mice to intraperitoneal ethanol and Tat resulted in increased production of oxidative
stress and proinflammatory cytokines (IL-1B, MCP-1, and TNFα) as well as elevation of
ICAM-1 mRNA expression.

Ethanol is largely metabolized by the cytochrome enzymes CYP2E1 and CYP3A4,
which also metabolize the majority of ART drugs [200]. As with other drugs of abuse,
this competition for the same enzymes can modulate each drug class’s bioavailability and
increase their respective toxicities.

8. ART, Drugs of Abuse, and Hand

The main approach implemented to prevent HIV incidence in PWID/PWUDs is
through ART. Peripheral viral loads have been very effectively suppressed by ART. How-
ever, the benefits of reduced viral load and health improvement of HIV patients come
at the cost of toxic side effects of the drugs used in the ART regimen, primarily due to
their continuous use under all physiological situations during their lifetime. In some HIV
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cohorts, antiretrovirals with a greater CNS penetration (CPE) score improved viral suppres-
sion in the CNS while still exhibiting impaired neurocognitive performance; in other HIV
cohorts, ART with a high CPE score showed improved neurocognitive performance when
it consisted of three or more antiretrovirals, probably because these patients may require
more than three antiretrovirals for a sufficient amount of the drug to reach the brain and
treat HIV in the nervous system [280,281].

Drug abuse is widely prevalent all over the United States, especially among the
HIV-infected population. Before the introduction of ART, some studies reported an in-
dependent association between drug abuse and progression of AIDS and mortality [282].
However, with the widespread use of ART, it has become increasingly difficult to separate
the side effects of ART medication in active drug users from the physiologic effects of
drug abuse [283]. Several reports suggest a strong correlation between drug abuse and
poor ART adherence and that drug abuse, even intermittently, can cause decreased ART
adherence [284,285]. This decreased ART adherence in PWUDs can partly be explained as
a consequence of drug interactions between antiretrovirals and drugs of abuse. Enzymes
belonging to the cytochrome P (CYP) family are responsible for metabolizing the drugs of
abuse as well as most xenobiotics, including antiretrovirals [265,286–288]. The competition
between antiretrovirals and drugs of abuse modulates each other’s bioavailability, thus
providing a possible explanation for persistent disease progression in PWUDs while on
ART regimen [289]. However, recently it has been shown that drug abuse can aggravate
disease progression independent of ART adherence [290], and accelerated disease pro-
gression often leads to NeuroAIDS, especially in PWUDs [291,292]. Approximately half
of the HIV-infected PWUDs have an underlying mental illness, which can potentiate the
risk of overdose or behavioral conditions when left untreated. Active drug abuse triggers
the release of proinflammatory cytokines and chemokines from CNS cells, resulting in
neuroinflammation [293,294]. Drug abuse also compromises the integrity of the BBB, which
leads to increased migration of HIV-infected monocytes into the CNS [295].

Currently, no FDA-approved pharmacotherapy exists to treat addiction in HIV-infected
individuals, especially those who use more than one illicit drug [296]. Selective permeabil-
ity of the BBB further limits the amount of therapeutic drug (antiretroviral) concentration
reaching the CNS, thus leading to decreased drug efficacy and high dosing frequency
and enhancing existing neurocognitive issues [297]. Magnetic nanocarriers loaded with
antiretrovirals were shown to successfully cross the BBB without disrupting its integrity
upon applying a non-invasive external magnetic field [298–301]. As the mechanisms of
neurotoxicity mediated by both HIV infection and drugs of abuse are often similar, a drug
antagonist that can block or mitigate the effects of drugs of abuse, in combination with an
antiretroviral, can act as a promising therapeutic agent for polydrug users infected with
HIV. Magnetic nanoformulation of nelfinavir (Nel) and rimcazole (Rico) are such exam-
ples. Rico is a potent sigma-1 (σ-1) receptor antagonist with a high affinity for dopamine
transporters, hence possessing the capability to inhibit dopamine uptake. In combination
with the protease inhibitor, Nelfinavir, Rico was successfully able to mitigate the effect
of drugs of abuse on HIV infectivity, while being able to migrate across the BBB without
disrupting its integrity and with minimum cell toxicity [302]. The pharmacologic interac-
tions between antiretrovirals and drugs of abuse, as well as any other clinically prescribed
or unprescribed drug, generally complicate the impacts of the seemingly attractive HIV
treatment regimens [289,303].

9. Conclusions

Failure to eradicate the total viral load is a major limitation of ART. The limited
accessibility of antiretrovirals into anatomical sanctuaries leads to viral persistence and the
development of latent reservoirs. Despite the advances made in this field, HIV eradication
is still a long way away. The focus should primarily be directed toward eliminating
these latent reservoirs, as the viral particles existing in these reservoirs can contribute
to the release of proinflammatory factors that contribute to the neurocognitive decline.
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Neurocognitive deficits occur in more than half of the people living with HIV-1/AIDS,
even in those people where the infection is well controlled through ART. Thus, addressing
CNS impairments in HIV patients is a priority.

The presence of comorbidities in HIV-infected individuals, the most common being
drug abuse, contributes to the neurocognitive decline caused by the viral infection. Future
research should be directed toward eliminating the neurocognitive symptoms associated
with the comorbidities as well as latent reservoirs associated with HIV infection, especially
in PWUDs. Stringent assessment of single and polydrug use on HIV infection, along
with the consideration of ART regimen, must be made to understand their impact on
CNS function. This necessitates the understanding of interactions among various drugs
of abuse, drugs of abuse and HIV proteins, and drugs of abuse and ART drugs. Certain
antiretrovirals may impair endothelial barrier integrity, contributing to increased BBB
permeability. Studies need to be performed to characterize the combined effects of ART,
HIV, and drugs of abuse on the integrity of BBB and their contribution to the development
of HAND. Hence, there is an urgent need for the re-evaluation of the existing ART regimen
in the context of neurocognitive impairment. The development of novel, targeted delivery
of combination formulations, consisting of neuroprotective and antiretroviral drugs in
conjunction with gene therapy, may thus prove attractive therapeutic interventions to
eliminate HIV reservoirs and prevent neuro HIV.
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