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Abstract: A fractional-order model consisting of a system of four equations in a Caputo—Fabrizio
sense is constructed. This paper investigates the role of negative and positive attitudes towards
vaccination in relation to infectious disease proliferation. Two equilibrium points, i.e., disease-
free and endemic, are computed. Basic reproduction ratio is also deducted. The existence and
uniqueness properties of the model are established. Stability analysis of the solutions of the model is
carried out. Numerical simulations are carried out and the effects of negative and positive attitudes
towards vaccination areclearly shown; the significance of the fractional-order from the biological
point of view is also established. The positive effect of increasing awareness, which in turn increases
positive attitudes towards vaccination, is also shown numerically.The results show that negative
attitudes towards vaccination increase infectious disease proliferation and this can only be limited by
mounting awareness campaigns in the population. It is also clear from our findings that the high
vaccine hesitancy during the COVID-19 pandemicisan important problem, and further efforts should
be madeto support people and give them correct information about vaccines.

Keywords: mathematical model; fractional-order; Caputo-Fabrizio; existence and uniqueness;
vaccination; awareness

1. Introduction

Scientific discoveries and their applications are what define modern societies. Re-
cently, the emergence of anti-scientific attitudeshas led to a decrease in public trust in
science [1]. Vaccines areamong the most significant discoveries in science, and have saved
many lives. However, the increases anti-vaccine groups leads to vaccine rejection [2—4].
Hence, theseanti-vaccine groups increase the danger of infectious disease proliferation to
themselves and to the entire society. Since the emergence ofthe COVID-19 pandemic and
the serious problems it has caused, the study of the problemsleading to vaccine rejection is
of paramount significance. Many people from different backgrounds are against vaccines,
which consequently leads to reductions inpre-existing immunity [5].

Studying the causes of both negative and positive attitudes towards vaccination is
therefore very significant as the purely scientific and applied perspectives are concerned.
Several studies have investigated the causes of the increases in anti-vaccine groups and
their focus has beengeared towards individual differencesmost of the time.For example,
in [6] they claim that anti-vaccine attitudes are related tomoral purity concerns, and or-
thodox religiousness. In [7] they claim anti-vaccine attitudes have direct relationships
withindividualistic/hierarchical worldviews and conspiratorial thinking.

Many models in theliterature have considered the vaccination decision-making pro-
cess [8-11]. Most of these models are based on ordinary differential equations. In most
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of these models, the factors considered to affect the acceptance of vaccine are beliefs, fear,
factual information, and rumors. Because of the hereditary properties and provision of a
good description of the memory, fractional order derivatives and fractional integrals play
important roles in mathematical modeling. This is why many researchers studyingreal-life
phenomena use fractional order differential equations [12-15]. The Caputo-Fabrizio (CF)
fractional-order derivative was developed in 2015. This fractional-order derivative is based
on an exponential kernel and the details on the operator can be found in [16]. Many studies
haveused the Caputo—Fabrizio derivative to model problems in various fields [17-19] and
the Caputo-Fabrizio fractional derivative gives less noise than the Riemann-Liouville
derivative [20]. Hence, in this research, the Caputo—Fabrizio fractional derivative was
used.The Caputo-Fabrizio (CF) fractional operator used in this study is a particular case of
the new generalized Hattaf fractional (GHF) operator presented in [21,22].

As for vaccine hesitancy, an investigation conducted in October 2020 [23] suggests
that46%of French citizens are vaccine hesitant. Other countries exhibit percentages of
opposition and hesitancy that exceed30%, i.e., 36%in Spain and the USA,35%in Italy,32%in
South Africa, and31%in Japan and Germany. Globally, vaccinehesitancy and objection rates
are as large as 27%.

Given these large percentages of hesitance and opposition to COVID-19 vaccines, [24]
constructed a mathematical model that employs a behavioral epidemiology approach to
study the implementation of a vaccination campaign for COVID-19. To this end, they
adopt a strategy similar to the one used in [25]. In other words, they assume that the
vaccination rate is a phenomenological function of the present and past information that
the citizens have on the spread of the epidemic. Refs. [26-29] constructed a mathematical
model in the context of SIR and SEIR infectious diseases, but thesemechanisticmodelsare
based on evolutionary game theories which are reduced to the case of volatile opinion
switching. Most of these models are either statistical or classical in nature, however in
modeling hesitancy memory plays a vital role, hence the need for a fractional order model.
Furthermore, the effect of awareness will be of paramount importance in reducing hesitancy.
Our model is fractional in nature and also discusses the effect of awareness.

In our research, the main goal is to study the problem from a group processes view-
point. In order to achieve this, we considered amathematical modeling approach. The target
is to study the most significant parameters that lead to increases in anti-vaccine sentiments,
and possibly study theeffects as they lead to increases in infectious disease proliferation
using fractional order models. Present day social psychologists acknowledge that the most
important procedure for group development is recognizing with the group and devotion
to the group operation. Identity of a group can be seen from a cognitive-motivational
perspective and the perspective of intergroup relations [8].

Here, we construct a model based on the Caputo-Fabrizio fractional derivative to
study the role of negative and positive attitudes towards vaccination in relation to infectious
disease proliferation. We divide the susceptible population into two:a pro-vaccination sus-
ceptible compartment and an anti-vaccination susceptible compartment. We also consider
the possibility of changing compartments among the susceptible population, possibly due
to change of mind.

2. Formulation of the Model

The model consists of a system of fractional order differential equations in the Caputo-
Fabrizio sense with four compartments. The compartments are F(t), A(t), I(t), and R(t),
which stand for the pro-vaccine susceptible compartment, the anti-vaccine susceptible
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compartment, the infected compartment, and the recovered compartment, respectively.

The model is given below:

CEDYF(t) = —A*F(H)I(t) +
CODFA(t) = —AYA(H)I(t) +

CODFI() = A[F(t) +
CODER(t) = BI(t) —

(1
(t)}l(
aR(H) +

with the following initial conditions:

puSI(t) + usR(E)] — v F(t) + y*A(t) — n*F(t),

—p)[#I() + usR(E)] — Y“A(t) + n*F(t),

t) — (B +u)I(t),

v E(t),

F(O) = ﬂl,A(O) = az,I(O) = ag,and R(O) = dy.

Define N = F 4+ A + I + R, to be the total population.
The meaning of the parameters involved in the model is given in Table 1 below.

Table 1. Meaning of parameters.

Variable/Parameter Meaning
F For-Vaccination susceptible compartment
A Against-Vaccination susceptible compartment
I Infected compartment
R Recovered compartment
A Infection rate
§ Recovery rate
M1 Death rate of I
U2 Death rate of R
v Immunization rate of For-Vaccination compartment
Migration rate from Against-Vaccination to
Y For-Vaccination compartment through awareness
Migration rate from For-Vaccination to
| Against-Vaccination compartment through receiving
false information about vaccines
104 Fractional order 0 < o« <'1
P Probability term 0 < p <1

3. Analysis of the Model

Here, existence and uniqueness analysis of the solution of the model iscarried out.
Moreover, equilibria, basic reproduction number, and local stability analysis of the solution

of the model are studied.

3.1. Existence and Uniqueness of a Solution of the Model

In this paper, a fixed-point result is applied to check the existence and uniqueness of
the solution of the model. Let the system be re-written as

CODYF(t) = Fi(tF), (1)
GDEA(t) = Ra(t, A), @)
CODEI(t) = Fa(t, 1), 3)
CODER(t) = Fy(t, R). (4)

Applying the Caputo-Fabrizio operator, the system becomes:

F(t) — F(0) =

2(1—a)

(2 —a)M(

a)Fl(t/F)ﬂL(zi;é]VI(lx)/Fl(’?/F)d’?f )
0
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A(t) — A(O) = mpz(t,A) + (2_5;\4(“) 0/F2(17,A)d17, (6)
1(0) = 10) = oSt D) + Gy [ Bl Dy %
0
t
R~ RO) = o SR + s [ B R ©)
0

Now, we need to prove Fj, ..., F; satisfy Lipschitz continuity and contraction. See the
theorem below:

Theorem 1. F; is Lipschitz and if
0 <Ak +0*+74" <1,
it is a contraction.

Proof.

[EL(t, F) = Fy (£, FY) || = || = A%I(8) (F () — FL(1)) — (0% + %) (F(t) = F1(1)) |
< AMIOIEE) = FH B[ + (0" + %) [F(H) = FL(1)]
< (A% + 0" + )| E(t) — (1)
< Li||F(t) = F'(1)],

where L = A%k + 0" + y*andky > ||I(t)]].

In the same way, we show the Lipschitz continuity and contraction for F,, ..., Fy,
where we obtain Ly, ..., Ly, respectively, as their Lipschitz constants.

In recursive form, let

Gin(t) = F"(8) = "1 (1) = 2asaitey (B (6 B = R (6, F'2)) + =y [ (B8, P Y) — R (0,F72))ds,  (9)

ST,

Gon(t) = An(t) = Ay () = il (Bt An 1) = Balt Au2)) + =2t

ST,

(B2(8, Ay_1) — B2(5, Ay_2))ds,  (10)

Gan(t) = In(t) — L1 (t) = %(Fs(f Ii—1) — B5(t, In—2)) +

t
o J(Bs(6, 1y 1) = B3(6, Iy 2))do, (11)
0

Fan() = Ru(t) = Ru1(5) = 25ty (Falt, Rucr) = Fa(t Ru2)) + (=2

o .

(F4(6,Ry—1) — F4(8,Ry,—2))dé, (12)
with initial conditions:
Fo(t) = F(0), Ao(t) = A(0), Io(t) = 1(0)andRo(t) = R(0). (13)
Taking norm of 41, we have:
lgua ()] = [IE"(t ) F”’l(f)\l

t
= Ity (R (6 ') = B (6 F72) o B | (a0, F ) = R0, P %)) o
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Applying triangular inequality, we have:

g1 ()] = [IF" () = F*~ 1 (1))
2(

= (B (L) = R F2) )+ =2 | J (B8, ") — Ry (6, F'2))dd]

~

t
< it LIF () = P01+ iy [ 10— P10 o

This implies:

ln(0] < Gty bl O+ gy 0/ ()40, 5)

Similarly,
la2a 0] < G5ty Ll 0+ s O/ gt (Dlds,  (16)
la3n )] < G5ty bl O+ = e 0/ lgsns(Dllds,  (17)
9sn 1 < G5ty Ll O+ =y L O/ g1 (Ollds. (19)

Subsequently, we have:

- équm, An(t) = éq%m, () = éqaim, Ru(f) = éqm 19)

To show the existence of the solution, we prove the following theorem:

Theorem 2. The solution exists if there exist t such that the following inequality is true,

(22—(104)_1\2“)Li +3 _Zf)tzl\/[(a)Li <1,i=1,...,5. 20)
Proof. Recursively, we have
IOl < 1O | et + ot e
a1 < 1A O | oo 4 ot @)
sn (8] < 11O | g ed s L+ o sta] @)
Jaan O] < RO | o b+ L @)

Hence, solutions exist and are continuous. To show that the functions above construct
the solutions, consider:

E(t) — F(0) = F"(t) — Hy, (1), (25)
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A(t) — A(0) = Au(t) — Hp, (1), (26)
1(t) = 1(0) = I(t) — Hs, (1), (27)
R(t) = R(0) = Ry () — Ky, (). (28)
Hence,
t
| H, ()] = Il 2ty (FL(E ') = F(8 F'2) + = J(R (0, F"Y) = R (6, F"2))do]

t
< ot B (6 B = B (6 F2) | + o= | Of (Fi (6, F*1) — Fy (5, F"~2))dé||
< %Llul‘ﬂ—lmil” + %MHF— F= 18,
Carrying out the procedure, we get
2(1—a) 2ut
<
I1H, O < | G aattes * G aisi

n+1 .
L,
(IX)]

Att =t1, we get

2(1—a) 20t
I, 01 < | ey * o

n+1 .
n+
M Ly,

Taking limit as n — co, we get
| Hy, (£)[| — 0.

Similarly, we get
[ Ha, (), | Hs, () [I, [|Ha, (£)]] — 0.

Finally, to show uniqueness, assume there exists some solutions say, F!(t), A'(t), I'(t)
and R'(t), then

IF0) - PO (1~ G atsh -~ gyl ) <O

The following theorem completes the result.

Theorem 3. If

. 2(1-a) B 2ut
(1 - M) (z—a>M<a>L1>>°'

then the solution is unique.

Proof. Consider

166 - F 01 (1= et — gyl ) <O

Since,

2(1—u) 2ut
(1 oM@ T <z—a>M<a>L1> =0

|E(t) - F' ()] = 0.

then
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This implies,
F(t) = FL(t).

This applies to the remaining functions.
Since R = N — (F + A + I), we can limit our analysis tothree compartments, {F, A, I}.

3.2. Equilibria and Basic Reproduction Number

The equilibrium solutions are obtained by equating the equations in the model to zero
and solving the system simultaneously. We obtain two equilibrium solutions:

i Disease-free equilibrium (Eyp)
O UV [y B (1= p)ot s 4+ Ao [yt + B+ (1= p)ot]pg + AT [
ii. Endemic equilibrium (E7)
Ey ={F, Ay I},
where

AN
Ziw — 1 w o
Flz,u% (18 +1 ) _AB +VZIL

A% x
T ’
AN
PO (#5 —1) _ Bt
1— A 2 o A o 1]/
Pitut
and [ is obtained by solving the following quadratic equation,
—a+ Va2 —bc
= 2
where
(5]
L X 0 o
a= AL (i — ) + B (o),
B +uf

b= /\“(%), and

(B +) (ﬁw ’1>

ry ‘u DL+MD(

e L vﬁﬁ [y +7%+ (1 —p)o*].
D(+yti(

Clearly, we can see that the endemic equilibrium exists only if,

( A*N ) [v* + 5"+ (1 — p)o*]ps

B+ pi ) v + % + (1= p)ot]uy + "ot
1 2
Define ( ﬁf‘\:];‘f) 7 EZ;; f :1+—(;)_v f]);: ]f%uva = Ry, where Ry is the basic reproduction number.
2

3.3. Local Stability Analysis of the Solution of the Model

Consider the following Jacobian matrix from (1),

—AY — ot — gy Y& —AYF + pug
J= n" —AR I —Y® —AMA+ (T-p)us |- (29)
AYT AN AY(F+ A) — (B + p%)

Theorem 4. The disease-free equilibrium is locally asymptotically stable if Ry < 1.
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Proof. Consider (29) at Eyg, we get

ot — ;704 Yo _)\IXFO + pyzit
J(Eo) = n* —Y* —A*Ag+(1—puy |- (30)
0 0 A*(Fy+Ag) — (B +u)

The characteristics polynomial of (30) is
(=Y (=0 ) = A) (=Y = M)A (Fo + Ao) — (B + i) — A) = .
Therefore,
A= A%(Fo+ Ao) — (B* + 11)-

Az and A3 can be found by solving —#*Y* + (—(v* +71%) — A)(=Y* —A) = 0.
Itis clear that Ay < 0, if A%(Fy + Ag) — (B* +uf) <O.
This implies that % <1

Substituting the values of Fy and Ag, we get

( AN > (v + 1"+ (1 —p)o*luy
B+ uf ) [v* +n* 4 (1 — p)o*]us + y*o*

Simplifying —n*Y* 4+ (—(v* +75%) — A)(=Y* — A) =0, we get

=Ry < 1.

A2+ (0" + 7% + YA+ 0" Y = 0.

Using the Routh-Hurwitz criterion, P(s) = s* + a1s + ap has both roots with negative
real parts iff both coefficeints, a; > 0, i = 0,1,2. Here,

ag=1>0,a; = (" +n*+Y") >0, aday = v"Y* > 0.
Hence, Ej is locally asymptotically stable if Ry < 1. O

Theorem 5. The endemic equilibrium is locally asymptotically stable if Rg > 1, and the following
conditions are satisfied;

) pylA”‘11+Y“+)\”‘Il+/3“+}l1 > 1, and
7+ (AR)2 [y +A% (Fy +Aq)
ii) 2N ALHy* M (Fit-Ay) — (B +pd) [+ prg A T (A4 Y A Ty)

(A)* (AR +1) [ Fy+2(1—p) i A%l + (A% (Fy +Aq ) — (B+u8 ) ) (Yo +ATy)

Proof. Consider (29) at E;, we get

—A*h — o —n* & —A%F + pug
J(E1) = n* =A%l —Y* —AA + (1 -pus |- (31)
AL AT AY(Fp + Aqy) — (B* + ub)

The characteristics polynomial of (31) is

{Az + A( VLF + puiAST + Y* + AT — A%(Fy + A) + (B* + y’j‘))
+(2(A)? 11A1—|—17 [A"‘(F1+A1) — (B + )] + pHEATL (1P A% + Y* + ASTy)

— (AR + )R F+2(1 = p)pAE + (A%(F + Ar) = (B + ) (Y + A%T) ) )|[-A%hy
—0* —y*] =0.

Therefore,
)\1 = _/\thl —v* — 1’]“.
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Clearly, A < 0,if I; > 0,and I; > 0if Ry > 1.
Applying the Routh-Hurwitz criterion to,
A%+ /\(—17"‘ — (AL Fy + pusAST + Y + AL — A%(F + Ay) + (B + y‘;‘))
+ (200 B AL+ 7 [AS(Fy+ Ar) = (B + %)) + AL (P AS + Y™ + Ahy)
- ((M)Z(Mll F1)LE +2(1 — p)utAtTy + (A% (Fy + Ay) — (B* + %)) (Y* + /\“11))) =0,

we see that the remaining Eigen values are negative if,

pUSAS T + Y* + AR + B + uf 51
7% + (A2 4 A%(Fy + Ay)
and
2(AN)2 LAY+ A (F 4 Ar) — (B 4 )] + pusASL (1% A% + Y* 4+ A%T)
(AM2(ACL + 1)L Fy +2(1 — p)psAsy + (AS(Fy + A1) — (B + %)) (Y& + A%T)

O

4. Numerical Simulation

The numerical method used in this paper is similar to that of [21] and numerical
simulations are carried out. Parameter values are given as, A = 0.6day ', = 0.5day?,
p1 = 0.001day !, 4, = 0.0195day !, = 0.0005day !, = 0.1day ', = 0.05day !,
a = 0.2-1.0(dimentioneless), p = 0.5(dimentioneless).

The dynamics of the model are depicted in Figure 1. It is clear that none of the popu-
lations go to zero. The infected population and the recovered population simultaneously
reach their peak at around 50 h, which is approximately two days.

0.7
For VVaccination
06l — Against Vaccination | |
: = |Infected
'\/ —— Recovered
0.5} B
g o4 R
ki
@ 0.3 -
0.2 -
0.1 H =
o
o 100 200 300 400 500 600

Time

Figure 1. Dynamics of the model.

Figure 2 compares the population of infected individuals with the pro-vaccine pop-
ulation. It can be seen that, in the absence of the pro-vaccine population, the infected
population increases. This is because the remaining people in the population are against
the vaccine and hence a large portion of the population will not be vaccinated. This leads
to the proliferation of the disease.
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0.025

Infected when the population of For Vaccine is O
Infected

0.015

0.01

Roypation

0.005

-0.005 . . . . .
o 100 200 300 400 500 600

Time

Figure 2. Effect of eliminating the pro-vaccine population.

Figure 3 compares the population of infected individuals with the anti-vaccine pop-
ulation. It can be seen that, in the absence of the anti-vaccine population, the infected
population decreases. This is because the remaining people in the population are in support
of the vaccine and hence a large portion of the population will be vaccinated. This leads to
curtailing of the disease.

0.025

Infected
Infected when the population of Against Vacine is O

0.02

0.015 | i
3]
E 0.01 *

0.005 =

O+
-0.005 . . . . .
(0} 100 200 300 400 500 600
Time

Figure 3. Effect of eliminating the anti-vaccine population.

Figure 4 shows that increase in the level of awareness lead to decreases in the popula-
tion of infected individuals. This is because as the level of awareness increases, the number
of pro-vaccine individuals increases. This leads to increases in the number of vaccinated
individuals, which in turn leads to decreases in the population of infected individuals.
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0.025
Awareness lewvel is O
Awareness level is 0.2
0.02 Awareness lewvel is 0.4 ]
Awareness lewvel is 0.6
Awareness level is 0.8
0.015 -
b
g 0.01 Bl
0.005 { =
oL k
-0.005 L L L L L
(0] 100 200 300 400 500 600
Time

Figure 4. Effect of increasing awareness level.

Figure 5 shows the influence of the variation in the fractional-order « on the biological
behavior of the infected population. It is clear from this figure that the population has an
increasing effect when « is increased from 0.2 to 1.

0.025 T !
Alpha = 1.0
Alpha = 0.8
0.02 | Alpha = 0.6 b
——————— Alpha = 0.4
----- o=:=:=' Alpha = 0.2
0.015 i
5
E 0.01 8
0.005 |i -
(6]
-0.005 I 1 1 L L
[0} 100 200 300 400 500 600

Time
Figure 5. Dynamics of the infected population for various values of «.

5. Conclusions

In this paper, we studied a fractional-order model consisting of a system of four
equations in the Caputo-Fabrizio sense. Our aim was to study the role of negative and
positive attitudes towards vaccination in relation to infectious disease proliferation. The
compartments of the model were the pro-vaccine susceptible compartment, the anti-vaccine
susceptible compartment, the infected compartment, and the recovered compartment. We
obtained two equilibrium solutions, i.e., disease free and endemic. We were also able
to obtain the basic reproduction ratio. This paper studied the existence and uniqueness
properties of the model in detail. Numerical simulations were carried out to support the
analytic results. The effect of negative and positive attitudes towards vaccination was
clearly shown. Furthermore, the significance of the fractional-order from the biological
point of view was established. It was shown that increases in the level of awareness lead to
decreases in the population of infected individuals. This is because as the level of awareness
increases, the number of pro-vaccine individuals increases. This leads to increases in the
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number of vaccinated individuals, which in turn leads to decreases in the population of
infected individuals.

The limitation of this study is that there is a need for real data collection to validate
the model, and people’s opinions need to be heard and incorporated into the model for
further analysis.
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