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Abstract: Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have
reduced susceptibility to neutralization by vaccines. In response to the constantly updated variants, a
global vaccine booster vaccination program has been launched. In this study, we detected neutralizing
antibody levels against wild-type (WT), Delta (B1.617.2), and Omicron BA.1 viruses in serum after
each dose of CoronaVac vaccination. We found that booster vaccination significantly increased the
levels of neutralizing antibodies against WT, Delta, and Omicron BA.1. Compared with only one
vaccination, neutralizing antibody levels increased by 19.2–21.6-fold after a booster vaccination,
whilst two vaccinations only produced a 1.5–3.4-fold increase. Our results support the conclusion
that the CoronaVac vaccine booster can increase neutralizing antibody levels and cross-reactivity and
enhance the body’s ability to effectively resist the infection of new coronavirus variants, emphasizing
the need for booster vaccination.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is a potentially severe acute respiratory infection
caused by SARS-CoV-2, which has resulted in more than 580 million confirmed cases and
more than 6 million confirmed deaths [1,2]. Two doses of COVID-19 vaccine were more
than 70% effective against variants including Alpha (B.1.1.7) and Delta (B.1.617.2) before
the Omicron (B.1.1.529) variant emerged globally in late 2021 [3–5]. Mutations (e.g., Q493R,
N501Y, S371L, S373P, S375F, Q498R, and T478K) in the Omicron receptor-binding domain
(RBD) region enhance virus binding to the angiotensin-converting enzyme 2 (ACE2),
making it more infectious [6]. A study on the prevention of reinfection showed that
the vaccine was 90.2% effective against Alpha, 85.7% against Beta, 92.0% against Delta,
and only 56.0% against Omicron BA.1 [7], indicating that Omicron has a strong immune
escape potential [8]. This also raised concerns about the efficacy of COVID-19 vaccines and
neutralizing antibodies (NAbs) against Omicron.

Emerging SARS-CoV-2 variants continue to drive the global pandemic; therefore, the
need for vaccines that provide efficacious and broad-spectrum protection has increased.
Globally, over 30 vaccines based on different technologies and effects have been approved,
10 of which are World Health Organization (WHO)-approved. Most of these vaccines
use the wild-type SARS-CoV-2 spike protein as the immunogen [9]. These vaccines have
been very successful in evoking neutralizing humoral and cellular immunity, especially
in decreasing COVID-19 infections, hospitalized cases, and deaths [10–12]. However, neu-
tralizing antibody responses and vaccine efficacy vary with vaccine dose, decline over
time after vaccination, and are adversely affected by new variants [13,14]. To counteract
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weakened antibody responses and new variant emergence, booster vaccine doses have been
approved which are highly effective at inducing high NAb titers in vaccinated individu-
als [13]. To date, over 1.8 billion additional/booster immunizations have been administered
globally [15].

CoronaVac is a 2-dose β-propiolactone-inactivated COVID-19 vaccine approved by
WHO [16]. Many countries use two doses of CoronaVac as a priming immunization and
a large-scale vaccination program giving the third dose of homologous inactivation to
contain breakthrough infections of SARS-CoV-2 variants [17]. Therefore, it is important to
evaluate the immunization effect of the CoronaVac booster to improve and update immu-
nization strategies. However, considering the persistent mutations in COVID-19, sequential
vaccination with different vaccine types can improve the breadth, strength, durability, and
functionality of immune responses compared to boosting with the same type of vaccine.
Increasing vaccination coverage for the third dose, initiating a fourth vaccination, and
sequential immunization represent potential solutions to curb the COVID-19 pandemic.

2. Materials and Methods
2.1. Cell Culture

Vero cells (ATCC CCL-81, Sinovac Biotech, Beijing, China) were cultured in minimum
essential medium (Gibco, Grand Island, NY, USA). Vero E6 (ATCC CRL-1586) and BHK-
21-hACE2 cells stably expressing human ACE2, supplied by Prof. Xiao-Feng Qin, were
cultured in high-glucose Dulbecco’s modified Eagle’s medium (Gibco). All media were
supplemented with 10% fetal bovine serum (FBS, Gibco, USA), 1% penicillin-streptomycin,
and 25 mM HEPES. The Vero cell medium was supplemented with 2 mM L-glutamine and
all cells were passaged every 2–3 days using trypsin-EDTA (0.25%, Gibco).

2.2. Virus Stocks

Experiments were performed using three SARS-CoV-2 strains isolated at our Biosafety
Level 3 virology laboratory (Zhejiang Provincial Center of Disease Control and Prevention,
Hangzhou, China) [18]. SARS-CoV-2/Vero/WGF/2020/WZ122 (WT strain/EPI_ISL_12040150)
and SARS-CoV-2/Vero/LXG/2021/ZJ28 (Delta/B.1.617.2/EPI_ISL_1911196) were isolated
from a throat swab and cultured in Vero cells. SARS-CoV-2/VeroE6/DSh/2021ZJ25 (Omi-
cron/B.1.1/EPI_ISL_12040149) was grown in Vero E6 cells. WT passage 3, Delta pas-
sage 5, and Omicron passage 3 virus-containing supernatants were harvested at 80%
cytopathogenic efficiency (CPE), and viral titers were determined using a microdose CPE
assay. Virus stocks were sequenced using Illumina NextSeq (Illumina Inc., San Diego, CS,
USA) to verify that they contained the expected spike protein sequence, with no changes to
the furin cleavage sites.

2.3. Blood Samples

Zhejiang Provincial Center for Disease Control and Prevention recruited 43 volun-
teers who received a three-dose CoronaVac homologous vaccination regimen between
29 March 2020 and 27 July 2021. The place of inoculation was Changhe Street Commu-
nity Health Service Center, Temporary Vaccination Site for Fangcang in Binjiang District,
Hangzhou. The 43 participants provided 129 blood samples at 28 days after each dose
of the vaccine. Participants’ clinical information (age, gender, and physical fitness) was
recorded at sampling. Serum samples obtained after centrifugation at 2000 rpm for 15 min
were stored at −80 ◦C and inactivated at 56 ◦C for 30 min before use.

2.4. Ethical Approval

The study protocol was approved by the Ethics Committee of Zhejiang Provincial
Center of Disease Control and Prevention.
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2.5. Live Virus Neutralization Test

The neutralizing antibody titer test was carried out in July 2022. Post-vaccination
serum samples were serially diluted 2-fold with cell culture medium and mixed 1:1 with
100 TCID50 (median tissue culture infectious dose)/50 µL virus suspension in a 96-well
plate. After 2 h of incubation, 1–2 × 104 Vero-E6 cells were added to the serum–virus
mixture and incubated for 3 days at 37 °C in a 5% CO2 incubator. The CPE in each well was
recorded under a microscope, and the neutralization titer was calculated by the dilution
number of 50% of the protective condition.

2.6. Statistical Analysis

Data are presented as the mean ± SD. Statistical analyses were conducted using
GraphPad Prism 9.4.1 (GraphPad Inc., La Jolla, CA, USA). Differences between independent
samples and those between two related samples were evaluated using unpaired and two-
tailed t-tests, respectively. p < 0.05 was considered significant (* p < 0.05, ** p < 0.01,
*** p < 0.005, **** p < 0.001).

3. Results
3.1. SARS-CoV-2 OmicronBA.1 Is a Novel and Highly Mutated Variant

The S protein of SARS-CoV-2 consists of S1 and S2 subunits and is the major viral
surface protein. The S protein can bind to human ACE2 and enters the host cell mediated
by the C-terminal RBD of the S1 subunit [19–21]. Subsequently, the S2 subunit mediates
the fusion of the viral envelope with the host cell membrane, resulting in the release of
the viral genome into the cytoplasm [22,23]. Compared with the Delta variant and WT,
Omicron BA.1 mutation sites are more abundant and widely distributed on the surface of
the NTD and RBD domains, spanning the ACE2 binding site and NAb epitopes. These
mutations offer a potential evolutionary advantage by enhancing viral RBD-ACE2-binding
or immune escape from NAbs [24,25]. The RBD, which interacts with the ACE2 receptor,
contains 15 of these mutations: G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N,
T478K, E484A, Q493R, G496S, Q498R, N501Y, and Y505H (Figure 1) [26].
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Figure 1. Schematic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein
structure showing the mutations of the variants used in this study (https://outbreak.info (accessed
on 10 August 2022)). The N-terminal domain (NTD) is shown in blue and red denotes the receptor-
binding domain (RBD). (A) Linear mutation diagram of Delta spike (S1 and S2) proteins. (B) Linear
mutation diagram of Omicron spike proteins. Mutations shared by Delta with Omicron are shown in
red. Different mutations of Omicron and Delta at the same site are shown in blue.

3.2. CoronaVac Vaccine Booster Is Effective in Increasing Neutralizing Antibody
Levels and Cross-Reactivity

To determine the susceptibility of WT, Delta, and Omicron viruses to CoronaVac-
induced neutralization, we examined antibody levels and neutralizing activity in serum

https://outbreak.info
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after each vaccination with CoronaVac. Regardless of whether it was against the original
strain or the SARS-CoV-2 variant, the third dose of inoculation significantly increased serum
NAb titers. For the WT, NAb levels increased by 3.3-fold after two doses compared with one
dose (geometric mean titer, GMT 26), and by 19.4-fold after three doses (Figure 2A). There
were 21.6-fold and 19.2-fold increases in NAb titers against Delta (GMT 110) (Figure 2B)
and Omicron BA.1 (GMT 45) (Figure 2C) after the third dose, respectively. At the same
time, we also calculated the serum positivity for NAbs. CoronaVac is an inactivated vaccine
designed for the WT; therefore, the different vaccine doses did not affect the proportion
of serum antibodies in the WT, which were all 100% (Figure 2A). However, there were
obvious changes in the live virus neutralization experiments using the SARS-CoV-2 variant
strains Delta and Omicron BA.1. For Delta serum, positivity increased from 53.49% at one
injection to 95.35% after two injections, reaching 100% after three injections (Figure 2B).
For Omicron BA.1, serum positivity increased from 16.28% after the first dose to 93.02%
after the third dose (Figure 2C). Therefore, we believe that the third homologous booster
shot of the inactivated vaccine is immunogenic and can effectively improve the body’s
neutralizing immune response to a SARS-CoV-2 variant.
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Figure 2. Live virus neutralization test results from 129 serum samples obtained from 43 volunteers
vaccinated with three doses of CoronaVac homologously after each dose of CoronaVac. Neutralization
of authentic viruses was performed using a cytopathic effect (CPE)-based assay with a viral titer of
1010 TCID50 (median tissue culture infectious dose). The neutralization titer of the serum sample was
calculated as the reciprocal of the highest dilution that protected more than 50% of cells from CPE.
Pie charts show the proportion of vaccinees within each group that had detectable neutralization
against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) live virus. Fold-increase
in the geometric mean neutralization titer of each dose relative to those vaccinated with one dose
within a group is shown as a number with the “×” symbol above the lines. (A-C) The results of
neutralizing antibodies against the wild-type (WT) (A), Delta (B), and Omicron BA.1 (C) viruses in
the serum indicated by dots.

3.3. Neutralizing Antibody Responses to SARS-CoV-2 Variants Indicate Massive
Escape of Omicron

Serum NAb results elicited by CoronaVac showed that the GMT for Omicron was
10.7–28.7-fold lower than that of the WT, and was significantly lower than that for the Delta
variant (Figure 3A–C). Numerous site mutations in the RBD region confer the ability of
Omicron to evade immunity from vaccines or previous infection and, more broadly than
any other variant, impair the potency of NAbs, which also contributes to a significant
decrease in the protective efficacy of existing vaccines against Omicron infection.
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4. Discussion

This study collected blood samples from volunteers who received a three-dose Coro-
naVac homologous vaccination regimen and measured live virus cross-NAb levels after
each dose. The results showed that the CoronaVac booster could significantly increase the
level of NAbs against Delta and Omicron BA.1, enhance the serum positivity for antibodies,
and increase the body’s ability to effectively defend against new coronavirus variants. This
was consistent with previous research results showing that vaccination with homologous
or heterologous boosters can increase neutralizing titers by severalfold [24,27,28]. Stud-
ies have shown that nearly all individuals with anti-SARS-CoV-2 CD8+ T cell responses
recognize the Omicron variant, while established SARS-CoV-2 stimulatory CD4+ and
CD8+ T cell responses to Omicron remain largely unchanged, suggesting that this vari-
ant does not produce widespread T-cell immune evasion [29,30]. This also implies that
T-cell immunity, which is less susceptible to Omicron mutations, might still be the key to
preventing infection. Previous reports have suggested that Omicron infections are mild
in nature, with serious infections rarely occurring in fully vaccinated individuals [31,32].
Therefore, we believe that the third dose of inactivated vaccine should be administered to
stimulate the development of humoral responses and improve the immune barrier, thereby
enhancing neutralizing potency and breadth and reducing the severity and mortality in
the population.

The T478K mutation, coexisting with other complex mutations, might be associated
with direct enhancement of the interaction of the RBD region with the ACE2 receptor.
Residue R493, located in the RBD region, substitutes the hydrogen bond with ACE2 residue
E35 with a new salt bridge, while residue R498, in addition to keeping the hydrogen bond
interaction between residue 498 and ACE2 residue Q42, also interacts with ACE2 residue
D38 to form a new salt bridge [33]. RBD residue S496 added a new interaction by forming
a hydrogen bond with ACE2 residue K353, while compensating for the loss of affinity
for ACE2 caused by the K417N mutation [34,35]. N501Y will form an additional stacked
ring with Y41 [36]. D614G existed in multiple mutant strains in the early stage, which is
mainly related to membrane fusion and can promote fusion of the virus with the human
cell membrane [37]. These mutations resulted in increased affinity of Omicron for hACE2
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and a significant increase in infectivity, which was 10-fold and 2.8-fold higher than that of
the WT and Delta variants, respectively [31].

Research from Oxford University demonstrated that the antigenic distance of Omicron
BA.1 is farther than that of Delta from the original SARS-CoV-2 vaccine strain [38], and most
current vaccines use the original wild-type SARS-CoV-2 spike protein as the sole immuno-
gen which has drawn attention to specific variant vaccines. Several recent studies have
generated and tested Omicron-specific vaccine candidates with different vaccine antigen
designs and components. However, the ability of these Omicron-specific vaccines to trigger
serum NAb production in the body shows that they have limited cross-protection ability
against different variants of SARS-CoV-2, and do not have broad spectrum activity [39–41].
In addition, new variants of SARS-CoV-2 emerge every 6 months on average, making it
unlikely that vaccines for new variants will be developed and completed promptly.

For SARS-CoV-2, the main goal of current vaccines is to prevent symptomatic COVID-19
and contain its rapid spread and worldwide epidemic. This study lacked evaluation of
the cross-protection effect of the currently popular variants, such as Omicron BA.4/5. In
the future, we will further study the protective efficiency of homologous vaccination with
CoronaVac, and heterologous vaccination, such as CoronaVac combined with other types
of vaccines (adenovirus vaccines, mRNA vaccines or recombinant protein vaccines) on
subsequent circulating mutants, to find the best immunization regimen for current or
potential future outbreaks.
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