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Abstract: Despite the progress in the comprehension of LC progression, risk, immunologic control, 

and treatment choices, it is still the primary cause of cancer-related death. LC cells possess a very 

low and heterogeneous antigenicity, which allows them to passively evade the anticancer defense 

of the immune system by educating cytotoxic lymphocytes (CTLs), tumor-infiltrating lymphocytes 

(TILs), regulatory T cells (Treg), immune checkpoint inhibitors (ICIs), and myeloid-derived sup-

pressor cells (MDSCs). Though ICIs are an important candidate in first-line therapy, consolidation 

therapy, adjuvant therapy, and other combination therapies involving traditional therapies, the 

need for new predictive immunotherapy biomarkers remains. Furthermore, ICI-induced resistance 

after an initial response makes it vital to seek and exploit new targets to benefit greatly from immu-

notherapy. As ICIs, tumor mutation burden (TMB), and microsatellite instability (MSI) are not ideal 

LC predictive markers, a multi-parameter analysis of the immune system considering tumor, 

stroma, and beyond can be the future-oriented predictive marker. The optimal patient selection with 

a proper adjuvant agent in immunotherapy approaches needs to be still revised. Here, we summa-

rize advances in LC immunotherapy approaches with their clinical and preclinical trials considering 

cancer models and vaccines and the potential of employing immunology to predict immunotherapy 

effectiveness in cancer patients and address the viewpoints on future directions. We conclude that 

the field of lung cancer therapeutics can benefit from the use of combination strategies but with 

comprehension of their limitations and improvements.  

Keywords: lung cancer; immunotherapy; epidemiology; immune profiling; vaccines: combinatorial 

therapy; cancer models 

 

1. Introduction 

Lung cancer (LC) is the primary reason for cancer-related death worldwide. Over the 

previous ten years, progress in overall survival (OS) has been reported as a result of new, 

efficient medicines that have developed in part due to advancements in the management 

of non-small cell lung cancer (NSCLC) [1]. Numerous authorized targeted drugs are the 

therapy of choice for NSCLC patients with genetic alterations [2]. NSCLC is caused by a 

biologically complex collection of several oncogenes. A downside of targeted therapy is 
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the inability to identify suitable oncogenes to target cancer cells. Immune checkpoint in-

hibitors (ICIs), the current leading candidate in immunotherapy, are currently a vital com-

ponent for NSCLC therapy. Biomarkers that can indicate how well a patient will respond 

to checkpoint inhibitors include Programmed cell death ligand-1 (PD-L1) and CTLA-4-

cytotoxic T-lymphocyte antigen 4 (CTLA-4). Although PD-L1 expression is not ideal, it is 

currently the most reliable clinical biomarker. Patients in advanced LC stages exhibit dis-

ease regression with first-line treatment, as well as the second-line choices are restricted 

in patients without a targetable gene mutation [3]. Additionally, the clinical utility of ICIs 

in the administration of small cell lung cancer (SCLC) is competitively less than that of 

NSCLC [4]. It is still imperative to increase immune system activation, broaden the range 

of available therapies, and prevent ICI resistance to improve the clinical efficacy of LC [5].  

In this review, we discuss the epidemiologic trend of LC immunotherapy approaches 

using data curated from The Cancer Genome Atlas (TCGA)-cBioportal. We also focus on 

the current trends and advances of LC immunotherapy, importantly LC-immunoprofil-

ing, preclinical and clinical studies in NSCLC and SCLC considering cancer models and 

vaccines, and also the emerging combinatorial approaches using immunotherapy.  

2. Current Lung Cancer Epidemiology 

Substantial changes have been experienced in LC epidemiology, considering inci-

dence, prevalence, and mortality during the past several decades [6]. The WHO mortality 

predictions and the epidemiologic trends of different malignancies reported on the Global 

Cancer Observatory (GLOBOCAN)-2020 revision are in agreement [7]. The frequent oc-

currence, prevalence, and mortality rates of LC highlight the need for efficient therapeutic 

approaches. Cancer in its early-stage identification is vital because the localized stage has 

a competitive benefit in terms of relative five-year survival over regional and distant 

stages. Over NSCLC, which makes up around 85% of all LC types, SCLC is the most prev-

alent epithelial LCs [8]. According to Surveillance, Epidemiology and End Result program 

(SEER), distant stage LC has a greater diagnosis rate (56%) and a lower relative five-year 

survival rate (6.3%) than regional and local stages [9]. About 15% of all cases of LCs are 

SCLC, in which most patients (60–70%) have advanced stages of their diagnoses. Less than 

10% of patients with advanced illnesses survive for five years [8]. We have curated TCGA-

cBioportal data with the keywords LC, clinical prognosis, and immunotherapy and have 

plotted them in Figure 1. The OS rate of LC patients is poor and is associated with the 

stage of LC initially diagnosed (Figure 1a). The PD-L1 expression in various tissue sites 

(Figure 1d) of LC cases has given a higher frequency for lymph nodes followed by bone, 

pleura, liver, brain, and pleura, using the protein expression data from 31 studies (Figure 

1c), and various histotypes (Figure 1b). We have compared the number of cases that have 

undergone radiation therapy, chemotherapy, targeted therapy, and immunotherapy, and 

it is higher in chemotherapy (683/175) and lower in radiation therapy (158/822) followed 

by immunotherapy (191/666) (Table 1) [10]. The data represent that only 28.6% of LC pa-

tients underwent immunotherapy. 
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Table 1. TCGA-cBioportal data comparison on various LC therapy from 31 studies (Data source: 

https://www.cbioportal.org/). 

Therapy 

No. of 

Patients 

Undergone 

Therapy 

No. of Patients 

Does Not 

Undergo 

Therapy 

Not Applicable 

The Ratio 

between No. of 

Patients 

Undergone to Do 

Not Undergone 

(%) 

Total Number of 

Cases with LC 

Therapy-Data 

Availability 

The Proportion of 

Subjects with Data 

Availability and ‘Not 

Applicable’ (%) 

Radiotherapy 158 822 6986 19.2 920 13.2% 

Chemotherapy 683 175 7108 _ 858 12.1% 

Targeted therapy 319 541 7106 58.9 860 12.1% 

Immunotherapy 191 666 7109 28.6 857 12.0% 

 

Figure 1. TCGA-cbioportal data on LC. (a) KM plot of the LC cases with five-year overall survival: 

x-axis (% event free), y-axis (time of event in months). (b) Frequency of LC histotypes with the over-

lap in different studies. (c) LC projects registered with TCGA. (d) PD-L1 tissue site expression in LC 

cases. (e–h) Patient records who availed therapies, including radiation therapy, chemotherapy, tar-

geted therapy, and immunotherapy, respectively (Data source: https://www.cbioportal.org) 
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3. Five Pillars of Lung Cancer Therapy 

Traditional cancer treatment approaches can be divided into five main categories: 

surgery, chemotherapy, radiation therapy (also known as external radionuclide therapy 

(ERT)), targeted therapy, and immunotherapy which has recently been introduced as a 

fifth category [11]. Clinical cancer care has undergone a profound transformation with 

specific flaws in each of these pillars that have now been targeted by designer customized 

medicines intended to enhance survival rates and lessen side effects. The entire lung tu-

mor, as well as any adjacent lymph nodes, are to be removed during surgery [12]. Radia-

tion therapy can be used to treat LC in its early stages, but like surgery, it cannot be ap-

plied in invasive cases. The cancer cells that are in the exposure to radiation are killed by 

radiation therapy. The healthy cells in its path are likewise harmed [13]. Neoadjuvant and 

adjuvant therapies are preferred due to disease recurrence in LC patients, respectively, 

before and after the surgery [7]. Chemotherapy, targeted therapy, and immunotherapy 

fall into adjuvant therapy subtypes wherein medications kill cancer cells (Table 2) [14]. 

Cancer cells are prevented from proliferating, dividing, and producing new cells by chem-

otherapy [15]. It has been demonstrated to enhance OS in patients with LC at all stages. A 

chemotherapy regimen normally comprises a specific number of cycles delivered over a 

predefined duration of time. The medications suggested for chemotherapy depends on 

cancer histotypes, such as adenocarcinoma (ADC) or squamous cell carcinoma (SQCC). 

The chemotherapy side effects vary depending on the dosage and the patient. A treatment 

known as targeted therapy specifically targets the unique proteins, genes, or tissue envi-

ronment that promotes the survival of the disease. This form of therapy prevents the pro-

liferation and invasion of cancer cells while minimizing harm to healthy cells [16]. Immu-

notherapy, often known as biological therapy, aims to strengthen the inherent defenses 

against cancer. It uses materials that can be produced in vivo or in vitro to restore immune 

system function. Immunotherapy for NSCLC patients may be administered as a single 

medication, in combination with other immunotherapy medications, or in conjunction 

with chemotherapy. Immunotherapy or combinatorial approaches can be considered in 

cases where targeted therapy cannot be applied [17]. For instance, immunotherapy out-

performed chemotherapy in NSCLC patients with high expression of PD-L1. For example, 

Phase III trial KEYNOTE-042 trial compared the efficacy of immunotherapy (pembroli-

zumab) over chemotherapy (platinum-based) in 1274 patients with PD-L1 expression of 

greater than 1% Tumor Percentage Score (TPS). Pembrolizumab had better OS comparing 

chemotherapy (16.7 months, 12.1 months, respectively), but the PFS was more significant 

for chemotherapy (5.4 months, 6.5 months, respectively) [18].  

Table 2. FDA-approved drugs used in chemotherapy, targetable therapies, and immunotherapy 

against major oncogenes in LC (Gene names are italicized). 

Therapy Drugs Target 
Estimated Frequency of 

Mutation in LC (%) 
References 

Chemotherapy 

Carboplatin, cisplatin, 

docetaxel, etoposide, 

gemcitabine, nab-

paclitaxel, paclitaxel, 

pemetrexed, 

vinorelbine 

  [19] 

Targeted therapy 

Afatinib, dacomitinib, 

entrectinib, erlotinib, 

gefitinib, osimertinib 

EGFR (receptor 

protein) 
15 [20–23] 

Amivantamab, 

mobocertinib 

EGFR (exon 20 

insertion) 
15 [20–23] 
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Fam-trastuzumab 

deruxtecan-nxki 
HER2 2 [21,24,25] 

Alectinib, brigatinib, 

ceritinib, crizotinib, 

loralitinib 

ALK 5 [20,21,26–29] 

Ceritinib, crizotinib, 

entrectinib 
ROS1 2 [21,30–33] 

Sotorasib KRAS G12C 25–33 [20,21,25] 

Larotrectinib NTRK   

Dabrafenib, trametinib BRAF V600E 2 [20,21,25] 

Capmatinib, tepotinib 
MET (exon 14 

skipping) 
3 [21,34,35] 

Pralsetinib, 

selpercatinib 
RET 2 [20,21,36,37] 

Immunotherapy 

Atezolizumab, 

durvalumab, 

cemiplimab, 

nivolumab, 

pembrolizumab 

PD1/PDL1 pathway 33 [21,38–43] 

Ipilimumab CTLA4 pathway  [25,44] 

The italic represent the gene. 

4. Lung Cancer Agonistic and Antagonistic Immune Cells  

Although LC immunosurveillance may be successful in the early stages of oncogen-

esis, it is hindered when a clinically detectable tumor has formed. LC cells have a very 

low and heterogeneous antigenicity, allowing them to passively evade the anti-cancer de-

fense of the immune system. Mesenchymal, epithelial, and endothelial cells, in addition 

to a substantial number of immune cells tangled in a sophisticated cytokine network, 

serve the lung's immune system. The cytokines and the cellular components in the im-

mune system interact and are stably integrated into healthy individuals [45] but are dis-

torted in cancer conditions [46,47]. The antitumor response requires two major immune 

cells: non-specific cells and cytotoxic T lymphocytes (CTLs). Non-specific cells can recog-

nize and present the tumor cell antigen to CTLs [45,48,49]. The malignant tissue should 

be invaded by activated T lymphocytes that can identify the neoplastic antigens. The in-

tracellular cytotoxic proteins from CTLs are released at the site of neoantigens and in com-

bination with general mechanisms offered by natural killer (NK) cells or macrophages. 

The interactions between the tumor microenvironment (TME) and the immune system are 

obviously diverse and dynamic, impacting carcinogenesis [45,50,51]. LC agonistic and an-

tagonistic immune cells in terms of ICI effectiveness and immune activation can be ex-

plained with (a) tumor with an immunological exclusion, where the immune cells are lim-

ited to the stroma or the margin of the tumor; (b) cold tumors, where a significant inflam-

matory response is not present in tumor cells; (c) hot tumors, in which T lymphocytes are 

heavily infiltrated, and various inflammatory signals are activated [52–54].  

Immunological cells that lack the ability to homing to the tumor bed are another def-

inition of tumors with immune exclusion [55]. Angiogenesis, elevated transforming 

growth factor (TGF)-β signaling, and myeloid polarization are all characteristics of im-

mune-excluded tumors [55,56]. Additionally, T cell distribution at the boundary of the 

tumor is also a characteristic. Pai et al. hypothesized different mechanisms most likely in 

charge of immunological exclusion. There are physical barriers that stop T cells from en-

countering cancer cells directly as an initial anti-tumor response [55]. The primary con-

tributing factors include increased Vascular Endothelial Growth Factor (VEGF) secretion 

and their cross-talks [55,57]. Second, there might be functional barriers made up of 



Vaccines 2022, 10, 1963 6 of 38 
 

 

biochemical and metabolic cross-talk between immune, stromal, and cancer cells [58,59]. 

The deregulation of Wnt/β-catenin signaling and phosphatase and tensin homolog 

(PTEN) leads to the inhibition of CTL from invading tumor tissue [55,59,60]. Additionally, 

TME is enriched with metabolites, including indoleamine 2,3-Dioxygenase (IDO), nitric 

oxide (NO), and arginase [61]. 

Cold tumors are characterized by the absence of tumor-inducing immune cells inside 

the tumor tissue [52]. In addition, large amounts of pro-inflammatory cytokines or other 

metabolic factors, such as NO, IDO, and arginase, are not seen in the microenvironment 

of this kind of neoplasm. A single-driver mutation is thought to be more prevalent in cold 

tumors because neither a significant TMB nor the presence of neoantigens are seen in these 

tumors [62]. However, Treg cells and MDSC may be present in the TME around cold tu-

mors [63–66]. A low concentration of adhesion molecules such as CD34, intercellular ad-

hesion molecule (ICAM), vascular cell adhesion molecule (VCAM), and E-selectin, to-

gether with MDSC and Treg cells, stimulate angiogenesis and metastasis. MDSC and Treg 

cells also inhibit the tumor-suppressing activity of dendritic cells [52,63,67].  

Hot tumors are characterized by significant inflammatory signals inside the tissue, 

both pro-inflammatory cytokines and inflammatory cell infiltration [54,68]. However, the 

immune reaction in this form of cancer is incredibly ineffectual even though the tumor 

cells are very heavily infiltrated by tumor-suppressing immune cells [53,68]. Tumor-asso-

ciated macrophages (TAMs) with their pro-tumor characteristics are strongly infiltrated 

in hot tumors along with non-specific immune cells [69,70]. TGF-β, IL-10, and other anti-

inflammatory cytokines secreted by M2 macrophages have immunosuppressive effects in 

TME. T cell and NK cell anti-tumor activities are less stimulated because of the inefficiency 

of TAM to present tumor-associated antigens [63,69,70]. In particular, interferon (IFN)-γ, 

which mediates PD-L1 expression on tumor cells will be masked in lymphocytes [64,65].  

Macrophages, lymphocytes, and granulocytes are the major antagonistic candidates 

in cancer progression. TAM [71,72], tumor-infiltrating lymphocytes (TIL) [73,74], tumor-

associated tissue eosinophilia (TATE) [75], and tumor-associated neutrophils (TAN) [76] 

are the acronyms for the domains of macrophages, lymphocytes, eosinophils, and neutro-

phils respectively [75]. CTLs are the predominant cell population with activity in the im-

mune response against cancer [77]. Natural killer T cells (NKT), CD8+ and CD4+ lympho-

cytes, and B lymphocytes make up the lymphocyte population [78,79]. Cancer cells are 

often destroyed by the cytolytic reaction or by apoptosis. Tumor cells and antigen-pre-

senting cells (APC) must effectively offer antigens for the cytotoxic onslaught to be suc-

cessful. Dendritic Cells (DCs) and macrophages play a major role in doing this [80]. After 

coming into touch with cancer antigens, APC delivers neoantigens to activate effector 

cells. Co-stimulatory molecules on APC and associated receptors on lymphocytes serve a 

critical role in the propagation of APC-lymphocyte signaling [77,81]. As major candidates 

in the CTL candidates, cytotoxic CD4+ lymphocytes, and CD8+ cells, the signal pathway 

B7-CD28 is extensively studied [77]. APC-CTL interaction was found to be blocked in ma-

lignancies. It is generally known that tumor inhibitory response is inadequate in larger 

solid tumor masses [82]. Low costimulatory molecule expression and low antigen presen-

tation help LC cells conceal themselves from the cytotoxic onslaught. The various epige-

netic and genetic changes during oncogenesis also result in the instability and poor defi-

nition of the LC antigen. Together, these factors cause cancer cells to passively evade im-

munosurveillance. However, many other aspects of this escape involve the intentional 

control and inhibition of the anti-cancer response of the immune system. Interactions be-

tween PD-1/PD-L1, FAS/FASL, and the secreted cytokines, including TGF-β, IL-6, and IL-

10, induce CTL inhibition [83]. Cytotoxic T cells (Tc), Treg, Helper T cells (Th), NK cells, 

and B lymphocytes express PD-1. High levels of the PD1 ligands B7-H1 (CD274) and PD-

L2 (CD273, B7-DC) are expressed by immune cells in TME. The interaction between 

PD1/PD-L1 and FAS/FASL has potent immunosuppressive properties [84–86]. Along with 

a higher percentage of FAS-positive lymphocytes and CTLs expressing a lot of the FAS 

receptor, cancer cells are also known to express a lot of the FAS-L protein. NSCLC has also 
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been associated with changes in the amount of the soluble forms of FASL and FAS, which 

downstream regulate apoptosis. As a result, this receptor pathway is crucial to CTL num-

ber reduction [87]. There is presently no treatment being tested in a clinical setting that 

targets this pathway. Co-stimulatory molecules on APC and cancer cells can get modified 

as a mechanism for reducing anticancer resistance and masking cancer cells from CTL 

attack [88].  

The CD28 receptor on lymphocytes (co-stimulatory molecule) and the B7 molecule 

(CD80/CD86) on the APC are required to initiate the cytotoxic action. B7 molecules can, 

however, also deliver a suppressive effect when they are linked to CTLA-4 [89–91]. CTLA-

4 can block the T cell receptor (TCR) through sharing homology with CD28. By inhibiting 

CD28, CTLA-4 prevents the progression of the cell cycle and reduces IL-2 secretion while 

increasing the secretion of TGF-β. CTLA-4 expressed on Treg cells can induce cancer reg-

ulatory effects via interaction with forkhead box P3 (FOXP3) [92–94]. There are two ways 

that CTLA-4 is expressed: intracellularly as storage and on the cell surface following acti-

vation. T cells express CTLA-4 differently in LC than in healthy individuals. The intracel-

lular domain of CTLA-4 is altered in cancer patients, while the surface expression is no-

ticeably higher in cancer patients [95,96].  

5. Immunophenotyping of Lung Cancer 

A favorable correlation exists between the cancer prognosis and the intensity of im-

mune cell infiltration into neoplastic tissue [97–99]. LC patient prognosis may be signifi-

cantly influenced by the knowledge about the immune system state in tumor tissue [100–

102]. CD8+ cell infiltration, non-Treg infiltration, IL12Rβ2 expression, CD69 expression on 

T cells, and the granzyme secretion contribute to a better prognosis, while neutrophil in-

filtration, IL-7R expression, and Treg cell infiltration represent worse prognosis. ICI ther-

apy efficacy is in association with infiltration of CD8+, CD3+, CD19+ T cells, CD68+ mac-

rophages, and PD-L1 expression [103]. Rather than the cytotoxic actions of T lymphocytes, 

they may be functionally inhibited in TME (for instance, tumor cell mutations in the janus 

kinase (JAK)1 and JAK2 genes may result in incorrect antigen presentation) [66,104,105]. 

The presence of TIL is a positive prognostic indicator in LC [106–109]. The presence of a 

high density of FOXP3+ lymphocytes and a higher proportion of stromal FOXP3+ cells to 

CD3+ cells is a reliable indication of stage II ADC recurrence [109]. Additionally, high 

expression of IL-12R is linked to a better outcome for patients with early-stage IA and IB, 

whereas IL-7R expression is a significant marker for the poor OS. Patients might even be 

classed for immunotherapeutic approaches focusing on the biology of TME [109]. Im-

munohistochemical analysis of TIM and TIL infiltration and c-Kit+ mast cells in cancer 

stroma in advanced ADC cases who received chemotherapy was performed. Patients who 

had much higher levels of TIM and TIL found in cancer tissue had a significantly better 

prognosis than those whose infiltration was predominately stromal. However, the quan-

tity of immune cells in either tumor clusters or stroma and treatment response were not 

significantly correlated. On the other hand, Kinoshita et al. showed that CD8+ T cells are 

classified as a poor predictive marker in the TME of non-smoking LC patients. These cells 

expressed numerous immunoregulation genes at high levels and were immunodysfunc-

tional in phenotype. On the other hand, high levels of IFNγ and granzyme-secreting acti-

vated CD8+ T cells were associated with postoperative survival in those patients [107]. 

Impact of Immune Profiling and Scoring on Lung Cancer prognosis 

More PD-1 and CD8+ T cells were identified within the tumor and tumor borders of 

samples from pembrolizumab-treated patients [110,111], which indicates the predictive 

value of ICIs in cancer patients. Immunophenotyping of cancer cells is not an ICI predictor 

in prospective trials, including LC patients receiving immunotherapy [112,113]. The POP-

LAR research is one of the few retrospective experiments that correspond to immune sys-

tem functional studies in tumor tissues. The effectiveness of atezolizumab and docetaxel 

in treating patients with locally progressed or metastatic NSCLC was compared. Immune-
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related gene signature profiles by using NGS were analyzed for the mechanisms corre-

sponding to immune cell activation, like IFNγ signaling and immune cytolytic activity, 

and the results were compared. The genes linked to T-effector cell activation (GZMB, 

CD8A, IFNγ, CXCL10, GZMA, CXCL9, TBX2, and EOMES) was associated significantly 

with therapeutic significance in individuals who underwent anti-PD-L1 immunotherapy. 

Anti-PD1 inhibition is more effective against hot tumors, which are linked to higher gene 

expression for pro-inflammatory markers. The relationship between immunotherapy ef-

fectiveness and the immune environment in LC tissue was shown by Hwang et al. 

[114,115]. Using an Oncomine Immune Response Research Assay, 395 immune-related 

genes were examined in the pretreatment tumor sample. Patients with advanced NSCLC 

availing of anti-PD1 immunotherapy were classified into a non-durable clinical benefit 

(NDCB) and durable clinical benefit (DCB). DCB greatly outperformed NDCB in terms of 

the percentage of lymphocytes that infiltrated the center of the tumor. Gene profiles of 

peripheral T cells and M1 macrophages had the greatest influence on discriminating be-

tween NDCB and DCB patients. Genes with strong expression in the group M1 include 

CD48, c-c motif chemokine receptor 7 (CCR7), CD27, major histocompatibility complex 

class I G (HLA-G), forkhead box O1 (FOXO1), HLA-B, lysosomal associated membrane 

protein 3 (LAMP3), and NFκB inhibitor alpha (NFKBIA), whereas genes with high expres-

sion in the peripheral T cell signature include HLA-DOA, G protein-coupled receptor 18 

(GPR18), and signal transducer and activator of transcription 1 (STAT1). Additionally, the 

authors discovered that the highest expression of proteasome subunit beta type-9 

(PSMB9) and CD137 among the several examined genes were indicative of a long-lasting 

therapeutic benefit from anti-PD1 immunotherapy. Hwang et al. amply show the exces-

sive complexity of the interactions necessary for an efficient immune response in neo-

plastic disorders. It signifies the accuracy of multigene analysis over TMB status evalua-

tion or PD-L1 expression alone. Moreover, this study demonstrated the need for major 

efforts to be made to gather accurate information regarding the specific (peripheral T cell) 

and non-specific (M1) signatures of the immune response [115]. Automated image analy-

sis, as carried out by Althammer et al., is a new method to identify immunological predic-

tive markers, such as the presence of CD8+ T cells and PD-L1 expression. Anti-PDL1 ex-

pressing NSCLC cases who received immunotherapy were digitally graded for the den-

sity of CD8- and PD-L1 + ve cells. The median OS for durvalumab-treated PD-L1 and CD8 

double +ve tumors and CD8 and PD-L1 negative tumors were 21 and 7.8 months, respec-

tively. Only in ICI-treated patients, PD-L1-and CD8- double positive signatures offered a 

more accurate classification of OS than single high levels of PD-L1 or CD8+ cells. A single 

dense population of CD8+ cells, however, was substantially related to longer median OS 

(67 months) for immunotherapy-naive patients compared to the group with reduced 

CD8+ cell concentration [116].  

6. Immunotherapy-Based Clinical Studies in Lung Cancer 

Immunotherapy, particularly ICIs, has replaced chemotherapy as the primary treat-

ment due to its improved survival rates and manageable adverse effects. Moreover, im-

munotherapy has the potential for better OS comparing other LC therapies. Both PD-1 

and PD-L1 inhibitors are now considered a crucial component of managing unresectable 

and locally advanced LC treatment options [81]. In this section, we will discuss major 

NSCLC and SCLC clinical trials corresponding to immunotherapy. 

6.1. Immunotherapy in Non-Small Cell Lung Cancer 

The therapeutic potential of nivolumab (PD-1 inhibitor) was examined in the CA209-

003 Phase I study in multiple cancer types, which consisted of 122 patients with NSCLC, 

and has resulted in RR of 17%, 5-year OS rate of 16%, and a median response of 17 months 

[117]. KEYNOTE001, a phase I investigation of pembrolizumab, was analyzed in 495 

NSCLC patients, which involved immunohistochemical detection of PD-L1 using a 22C3 

clone [118]. It resulted in an RR of 19.4%. Moreover, 53 patients with NSCLC were 
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considered in the atezolizumab (targets PD-L1) phase I study, which revealed an RR of 

23% [119]. Another PD-L1 clone, SP142, was used to measure PD-L1 expression, however, 

the outcomes were consistent. Randomly selected phase III trials (CheckMate017) were 

used to test the effectiveness of three ICIs against the docetaxel-based standard second-

line treatment. Docetaxel 75 mg or Nivolumab 3 mg monotherapy was the second-line 

treatment option for 272 patients with squamous NSCLC [120]. The study showed signif-

icant OS and outperformed second-line docetaxel in almost all significant outcomes. 

Nivolumab had an RR of 20% compared to docetaxel's RR of 9%. Nivolumab was related 

to a longer median PFS of 3.5 months and reduced toxicity. 

In the OAK study, 850 NSCLC patients with any histology were randomized to re-

ceive either 1200 mg of atezolizumab monotherapy or 75 mg of docetaxel every three 

weeks. Atezolizumab provided better chances of survival. Atezolizumab and docetaxel 

showed a median OS of 13.8 months and 9.6 months, respectively. The OS of non-squa-

mous and squamous LC had similar outcomes across histologic subtypes. Additionally, 

atezolizumab showed OS benefits in all PD-L1 strata, including those with low, moderate, 

high, and unfavorable outcomes. Atezolizumab (15%) had a lower incidence of grades 3–

4 TRAEs than conventional docetaxel (43%) [121]. 

In individuals with advanced NSCLC, anti-PD-L1 treatments do not work similarly. 

The JAVELIN Lung 200 study compared the anti-PD-L1 antibody avelumab to docetaxel 

[122]. In this phase III randomized trial, 792 NSCLC patients' recurrence after receiving 

platinum-doublet chemotherapy and with a minimum of 1% of cells expressing PD-L1 

were enrolled. Despite having fewer Grade 3 or higher TRAEs than docetaxel (10% vs. 

49%), a significant OS was not achieved. Avelumab and docetaxel had a median OS of 

11.4 and 10.3 months, respectively. 

Ipilimumab (anti-CTLA-4 antibody) is a typical candidate for renal cell carcinoma 

(RCC) and melanoma therapy. CheckMate 227 study shows the effectiveness of CTLA-4 

in immunotherapy. It is a common first-line choice in NSCLC. In the MYSTIC study, 1118 

NSCLC cases with previously untreated EGFR and ALK wild-type NSCLC were catego-

rized into treatment: chemotherapy alone, durvalumab, durvalumab plus four doses of 

tremelimumab, or durvalumab plus tremelimumab [123]. Although there was no PD-L1 

selection for study enrollment, the results were analyzed in 488 NSCLC cases with a min-

imum of 25% PD-L1 expression. There was a numerical but not statistically relevant in-

crease in survival with immunotherapy in the primary efficacy analysis cohort. Compared 

to 12.9 months with chemotherapy, the median OS was 16.3 months with durvalumab. 

Durvalumab with tremelimumab resulted in a median OS of 11.9 months. Durvalumab, 

durvalumab plus tremelimumab, and chemotherapy had median PFS of 4.6, 3.9, and 5.4 

months, respectively.  

6.2. Immunotherapy in Small Cell Lung Cancer 

The goal of immunotherapy and their combinatorial approaches involving chemo-

therapy is to maximize the efficiency of the immune system fight cancer by fostering a 

favorable environment [124]. In the phase 2 STIMULI study, which included 153 limited-

stage small cell lung cancer (LS- SCLC) cases, the treatment with nivolumab and ipili-

mumab showed a one-year OS rate of 79%, while 89% in the observational group. The 3-

year OS was 54% in the consolidation group but 41% in the other arm, with no significant 

difference in PFS in both arms [125].  

The phase 3 CASPIAN trial demonstrated superior survival results in durvalumab-

platinum etoposide (PE) (another PD-L1 inhibitor) treated patient groups [126]. In this 

trial, patients in the control arm were compared to the test arm who received 4–6 rounds 

of durvalumab plus tremelimumab, carboplatin, or cisplatin in combination with etopo-

side and durvalumab. In comparison to the conventional chemotherapy arm, durvalumab 

contributed to OS of 2.4 months. Contrary to IMPOWER 133 study, durvalumab raised 

RR by 10% (67.9% in the test arm vs. 58% control arm) and significantly favored immuno-

therapy in all populations with or without brain metastases. Tremelimumab in 
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combination with durvalumab and chemotherapy, and these results indicated a trend to-

ward increased survival. 

The phase 2 ECOGACRIN EA5161 research used nivolumab as the first-line therapy 

for ES-SCLC. Every three weeks, nivolumab was used with four cycles of chemotherapy. 

In responding patients, nivolumab 240 mg was given in every two weeks. In terms of OS 

(11.3 vs. 8.5 months) and PFS (5.5 vs. 4.7 months), nivolumab showed statistically signifi-

cant improvement. Moreover, the nivolumab arm with no significant toxicities was noted 

[127].  

The efficiency of nivolumab alone and in combination with ipilimumab in 834 SCLC 

patients after four dosages of chemotherapy was examined in the phase III CHECKMATE 

451 trial [128]. The test arm was treated with nivolumab every two weeks and four ses-

sions of nivolumab with ipilimumab every three weeks, and the results were compared 

with the placebo arm. Both ipilimumab and nivolumab (9.2 vs. 9.6 months) and 

nivolumab alone (10.4 vs. 9.6 months) did not significantly differ from the placebo in OS. 

Relative to placebo, immunotherapy was associated with a reduced rate of recurrence in 

both treatment groups (1.7 vs. 1.4 months, 1.9 vs. 1.4 months, respectively). In patients 

with TMB of 13 mutations per mega base, nivolumab with ipilimumab showed a trend 

toward OS advantage. The rate of adverse events in the consolidation arm of nivolumab 

plus ipilimumab, in the nivolumab arm, and the placebo arm was 52.2%, 11.5%, and 8.4%, 

respectively. 

CTLA-4 inhibitor (ipilimumab) efficiency in ES-SCLC in combination with first-line 

therapy was studied in ICE and CA184-041 phase II studies and CA184-156 phase 3 study. 

ICE study consisted of 42 patients in the single arm who received ipilimumab 10 mg/kg 

together with etoposide and carboplatin. PFS was the main objective of the study, but it 

was not successfully achieved (median PFS 6.9 months). The chemotherapy drug 

paclitaxel plus carboplatin was used in the CA184-041 phase II study, which involved 130 

patients, and they were randomly grouped into three: the first group received ipilimumab 

(10 mg/kg) together with chemotherapy; the second group (the staged arm) received ipili-

mumab along with chemotherapy; the third group received chemotherapy plus placebo. 

Only a PFS difference (6.4 months vs. 5.3 months) and a statistically insignificant OS dif-

ference (12.9 months vs. 9.9 months) were seen between the second arm of the study and 

the placebo group. There was no discernible difference between the third arm and the 

placebo. CheckMate 032 phase I/II comprises patients with disease recurrence after first-

line platinum-based therapy. Both randomized and non-randomized arms were included 

in the study. In the non-randomized arm, four cycles of nivolumab in combination with 

ipilimumab were administered to 61 patients, and nivolumab was tested on 98 patients 

every two weeks. Interestingly, the randomized arm contained 95 and 147 patients, re-

spectively. Interestingly, nivolumab alone had RR for the second line or later that were 

approximately 11–12% in the pooled cohort, whereas a doubled response in the combina-

tion arm was noted [129].  

7. Cancer Immunotherapy Approaches 

Various immunotherapy approaches include cytokines, ICIs, monoclonal antibodies 

(mAbs), vaccinations, and adoptive cell transfer (ACT) [130]. Immunotherapy shows a 

competitive advantage over other LC therapeutic approaches but determining personal-

ized treatment strategy and when and how to target tumor cells remains a challenge [131]. 

The immunotherapy-based clinical trials with their central design and descriptions are 

listed in Table 3. 
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Table 3. Current and completed clinical studies of PD-1 and CTLA-4 ICIs (Data source: 

https://clinicaltrials.gov/) [132]. 

Agent Phase Study Population Design and Description 
Primary 

Endpoint 
Enrolment NCT 

Durvalumab II Advanced NSCLC 

Evaluating efficacy and safety of the PD-

L1 inhibitor durvalumab as first-line 

therapy 

OS 50 NCT02879617 

Niraparib II NSCLC 

Niraparib + Pembrolizumab 

Niraparib alone  

Niraparib + Dostarlimab 

ORR 53 NCT03308942 

Ipilimumab III 
Stage IV/Recurrent 

NSCLC 

Ipilimumab + Paclitaxel/Carboplatin 

Placebo + Paclitaxel/Carboplatin 
OS 1289 NCT01285609 

Pembrolizumab II Advanced NSCLC 
Pembrolizumab + Physician’s choice 

chemotherapy 
PFS 35 NCT03083808 

AK104 II Advanced NSCLC AK104 +Docetaxel ORR 40 NCT05215067 

Pembrolizumab II Metastatic NSCLC 
Pembrolizumab + chemotherapy vs. 

Placebo + chemotherapy 
PFS 98   NCT03656094 

AK105 III 

Metastatic 

Nonsquamous NSCLC 

Stage IV 

AK105 + Carboplatin and Pemetrexed vs. 

Placebo + Carboplatin and Pemetrexed 
PFS 360  NCT03866980 

ONC-392 I & II 
advanced or metastatic 

solid tumors and NSCLC 

ONC-392 Treatment as a single agent vs. 

ONC-392 in combination with 

pembrolizumab 

DLT, MTD, 

RP2D, TRAE 
468 NCT04140526 

mRNA Vaccine I & II Metastatic NSCLC 

BI 1361849 mRNA Vaccine + durvalumab 

BI 1361849 mRNA Vaccine + durvalumab 

+ tremelimumab 

TEAE 61 NCT03164772 

KN046 II Advanced NSCLC KN046 + Axitinib ORR 54 NCT05420220 

7.1. Checkpoint Inhibitors 

The range of standard therapeutic options available to patients with metastatic 

NSCLC has recently been expanded by the use of ICIs that are used alone or in combina-

tion with therapeutic strategies including anti-angiogenic antibodies and chemother-

apy[133]. ICIs that target PD-L1 or PD-1 and the CTLA-4 to treat advanced NSCLC are 

approved by FDA [134,135]. Immune checkpoint drugs work primarily by blocking the 

immune inhibitory signal pathways activated by the interplay of PD-1 and its ligand PD-

L1, restoring the normal capacity of T lymphocytes to destroy tumor cells [136].  

It was verified that for 12 types of human malignancies, ICIs have a significant cura-

tive effect (melanoma, colorectal, head and neck, esophagus, bladder, gastric, hematology, 

breast, ovarian, lung, and pediatric cancers). The likelihood of high neoantigen content 

and the TMB vary greatly between various cancer types. Studies have addressed that com-

bining PD-L1 and TMB as composite biomarkers possess a better predictive capacity for 

the combination strategy [137,138]. Tumors with a high TMB are more susceptible to anti-

PD-1 therapy because it can increase T cell response efficacy [139]. IgG1 and IgG4 anti-

bodies that can target the PD-L1/PD-1 axis for NSCLC in combinational first line therapy 

includes atezolizumab, avelumab, durvalumab, cemiplimab, nivolumab, and pembroli-

zumab [140]. Recently, well-studied immune checkpoint inhibitions including blockade 

with mAbs, are utilized as a treatment for several illnesses, including malignancies with 

diverse origins. Combinatorial therapy, which uses mAbs and other medications at a tol-

erable dose can prolong survival in NSCLC patients [141]. 

BMS-936559 is the first IgG4 mAb that was directed against PD-L1 and showed po-

tential therapeutic effects in NSCLC. In a phase I study to test BMS-936559 in 49 NSCLC 

patients, an ORR of 10% was demonstrated, out of which; 12% had stable disease (SD) at 

6 months; 31% had PFS at 24 weeks, and an RR that was irrespective of histology [142]. 

NSCLC patients at stage IV received the PD-1 inhibitor nivolumab in the second line and 



Vaccines 2022, 10, 1963 12 of 38 
 

 

pembrolizumab in the first line, had up to 16% and 31.9% of patients living for five years, 

respectively [117,143]. PD-L1 is better used as a biomarker in clinical practice, yet its ac-

curacy in predicting outcomes is not 100% [144].  

CD28 possesses competitive binding with CTLA-4 on the activated CD8+/CD4+ T 

cells for their natural interaction with B7 molecules [136]. An anti-CTLA-4 mAb (IgG1), 

Ipilimumab, inhibits the binding of CTLA-4 to its ligand. Patients who underwent chem-

otherapy with ipilimumab had a greater OS than those who had chemotherapy alone (12.2 

vs. 8.3 months) [145]. Nonetheless, blockade of CTLA-4 pathway causes more toxicity than 

compared to siege of PD-1/PD-L1 pathway [146]. 

Phase I Keynote 001 trial, showed that patients with treatment-naive NSCLC and PD-

L1 TPS of not more than 50% benefited from pembrolizumab, achieving a 58.3% RR, 12.5 

months of median PFS, and a 24-month OS rate of 60.6% [147]. Pembroli-zumab was ap-

proved by FDA for patients that exhibit a higher TMB with any tumor histotypes as a 

response to the KEY-NOTE-158 trial [138]. In phase II trial of 21 advanced NSCLC patients 

who were refractory or had advanced to at least first-line treatment, cemiplimab was as-

sessed and observed to have an ORR (6/21) of 28.6% and disease control rate (DCR) (12/21) 

of 57.1% along with grade 3 TEAEs. Within both non-squamous and SQCC, the ICI, 

nivolumab enhanced the median OS when compared to docetaxel [148].  

Access to non-invasive cancer-specific mutations is possible through the new liquid 

biopsy method, which can be used to profile circulating tumor DNA (ctDNA) and RNA 

(ctRNA) released into the blood by tumor cells [149]. A low-risk category can be identified 

by decreased ctDNA levels or its degradation with ICI therapy [150]. 34 NSCLC patients 

receiving ICI treatment were monitored using ctDNA analysis and blood kirsten rat sar-

coma virus (KRAS) mutation detection. Before treatment, finding a KRAS mutation had 

no obvious prognostic significance, but later on, significantly shorter PFS and a shorter 

OS were linked to a novel KRAS mutation that emerged after 3 to 4 weeks of therapy [151].  

7.2. Monoclonal Antibodies 

Monoclonal antibody therapy has proven to be a successful alternative that produces 

good results with reduced adverse effects. Four mAbs, pembrolizumab, cetuximab, 

bevacizumab, and nivolumab are licensed by FDA to treat NSCLC in recent years. These 

clinical trials showed potential benefits for NSCLC. Patients with malignancies linked to 

EGFR mutations are given erlotinib afatinib, and gefitinib; while a kinase inhibitor, crizo-

tinib has been authenticated to treat tumors containing ALK changes [152]. Cetuximab 

targets the EGFR, which is present in 80%–85% of people with NSCLC [153–155]. Accord-

ing to earlier research, adding chemotherapy to this treatment increases the likelihood of 

survival. For early-stage NSCLC, cetuximab has shown hope as neoadjuvant therapy 

when combined with other medications, like docetaxel and cisplatin [156]. Bevacizumab, 

a humanized anti-VEGF monoclonal, is the first medicine to receive approval against tu-

mor angiogenesis. In NSCLC, the expression of EGFR /human epidermal growth factor 

receptor 1 (HER-1) and VEGF are linked to poor prognosis. Advanced NSCLC can be 

treated more effectively by combining various mAbs that have direct effects on tumor 

cells. Phase I of Pembrolizumab clinical trials produced positive outcomes and reduced 

tumor size in 18% of advanced NSCLC patients who no more responded to chemotherapy 

[157]. In 2015, FDA authorized pembrolizumab for LC patients as second-line therapy 

[158]. According to combination trials primarily involving NSCLC patients, Figitu-

mumab, an anti-IGF-1 receptor (IGF-1R) mAb was shown to be effective in a phase I and 

randomized phase II research when combined with paclitaxel and carboplatin [159].  

7.3. CAR-T Cell Therapy 

Chimeric Antigen Receptor- T cells (CAR-T) are genetically modified T cells that ex-

press synthetic CAR vectors to recognize and attach to antigens (like CD19) on tumor cells 

[160,161]. The exact costimulatory molecules vary most significantly between CAR gener-

ations, and the fifth generation of CARs is now being tested [162,163]. NSCLC is the solid 
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tumor type on which most CAR-T cell research is concentrated. In the EGFR based CAR-

T therapy of NSCLC, two patients demonstrated partial response, and five patients dis-

played stable illness; has demonstrated additional need for CAR-T cells to treat NSCLC 

in the future. EGFR, prostate stem cell antigen (PSCA), mesothelin (MSLN), carcinoem-

bryonic antigen (CEA), mucin 1 (MUC1), PD-L1, inactive tyrosine-protein kinase trans-

membrane receptor (ROR1), CD80/CD86, HER2 are the antigens most frequently targeted 

in NSCLC. More than 60% of NSCLC mutations are related to neovascularization, tumor 

growth, and metastasis. Recombinant anti-EGFR CAR-T cells exhibits cytolytic activity 

specifically against tumor cells that are EGFR-positive [164].  

At Sun Yat-sen University, C-X-C chemokine receptor (CXCR) type 5-modified anti-

EGFR CAR-T cells are evaluated in a phase I clinical trial to test their effectiveness and 

reliability in treating advanced NSCLC patients with EGFR mutations (NCT04153799). It 

was found that patients can easily administer anti-EGFR CAR-T cell perfusions three to 

five days at a time. Therefore, although more clinical research is required to support these 

findings, anti-EGFR CAR-T cells have turned up to be effective in treating NSCLC patients 

who possess the EGFR mutation [164]. Lower chance of survivability and tumor aggres-

siveness are linked with high expression of MSLN in individuals with early-stage lung 

ADC [165]. Benefits of anti-MSLN CAR-T cell treatment for NSCLC were evidenced by 

the management of mRNA-engineered T cells intravenously that allowed for transient 

expression of an anti-MSLN CAR, but metastatic tumors in NSCLC were not revealed 

[164]. A transmembrane glycoprotein called MUC1 is overexpressed in numerous cancer 

forms, including NSCLC. The effectiveness and security of anti-MUC1 CAR-T cell therapy 

combined with PD-1 deletion are being evaluated in Phase I/II clinical trial in advanced 

NSCLC patients (NCT03525782) [164]. In patient-derived xenograft (PDX) model, anti-

MUC1 CAR-T cells were unable to effectively slow down the development of an NSCLC 

tumor mass [166]. Anti-MUC1 and anti-PSCA CAR-T cells can potentially work together 

to treat NSCLC more efficaciously. A phase I research (NCT03330834) to assess the safety, 

tolerance, and engraftment potential of autologous CAR-T cells that target CD80/CD86 

and PD-L1 is used to treat recurrent or refractory NSCLC. In a phase I study of patients 

with PD-L1-positive advanced NSCLC, anti-PD-L1 CAR-T-cell treatments are tested for 

their dependability and effectivities [164]. Anti-ROR1 CAR-T cells used organoid tumor 

models and successfully killed NSCLC and triple-negative breast cancer (TNBC) cells. 

Moreover, tyrosine kinase-like ROR1 is an orphan receptor found in both NSCLC and 

TNBC. On that account, anti-ROR1 CAR-T-cell therapy emerges as an advanced strategy 

for the treatment of NSCLC [167]. 

The toxicity of CAR-T cells in clinical settings is still a concern, although they offer a 

potential method for treating NSCLC. As many TAAs are not tumor-specific, CAR-T cell 

nonspecific interaction with normal cells may lead to toxicity. A longer extent of in vivo 

efficacy, stronger ability to bind to targets, and a faster curative effect on NSCLC are the 

advantages of CAR-T over conventional therapy. The safety and effectiveness of conven-

tional CARs have also been enhanced by the development of multi-target, drug-inducible, 

dual-target switchable, universal, and inhibitory CARs [168–171]. 

7.4. Lung Cancer Vaccines 

Patients receiving chemotherapy for advanced-stage disease frequently possess 

drug-induced harsh side effects and have short-lived responses, especially when combi-

nation chemotherapy is given for an extended period. Vaccines may offer a therapeutic 

potential when incorporated into treatment plans soon after the first round of chemother-

apy. A few phase III trials are being conducted to evaluate these vaccinations [172]. After 

definitive treatment, patients with minimally recurrent disease are likely to benefit more 

from vaccinations and may have long-lasting therapeutic effects (Figure 2). 
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Figure 2. DCs get activated upon vaccine injection and move to the lymph node, wherein antigens 

are presented to T cells, which are then activated. As CD8+ cells mature because of cytokines re-

leased by CD4+ cells, they travel to the cells displaying the target antigen and execute a cytotoxic 

antitumor response. 

7.4.1. Belagenpumatucel-L Vaccine (Lucanix) 

One of the negative diagnostic factors of NSCLC, TGF-β, is identified to present in 

elevated levels in various malignan-cies including LC [173]. Preclinical research has 

demonstrated that the immunogenicity of tumor vaccines is raised by TGF-β2 suppression 

which serves as a repository for many TAAs [174]. An allogeneic tumor cell, gene-modi-

fied vaccine called Lu-canixTM (NovaRx, San Diego, CA, USA) is tested for four distinct 

NSCLC cancer cell lines that suppress TGF-β2 expression and boost immunogenicity by 

producing a TGF-β2 antisense gene [175,176]. At the injection site, the cause of immune 

suppression for vaccine is expected to be due to reduced TGF-β2 expression in the vaccine. 

The idea is that injecting downregulated TGF-β2 into allogeneic tumor cells will improve 

local immune identification and activate effector cells, triggering a systemic immune re-

sponse that can target the patient’s original tumor [177]. Lucanix to placebo, a phase III 

trial as maintenance therapy did not find any differences in OS or PFS, documenting 96 

NSCLC [178,179]. 

7.4.2. MAGE-A3 

MAGE-A family consists of more than 60 genes and most of them are positioned on 

X chromosome to which belongs the melanoma antigen A3 (MAGE-A3) [180]. TAA which 

are expressed explicitly on tumor cells include MAGE protein. It is expressed in male 

germ cell lines, but not in other normal cells, and due to the lack of MHC they are incapa-

ble to hand-out MAGE-A antigens to the immune system [181]. The MAGE-A3 expression 

is considered directly proportional to the cancer progression. As the disease spread, 

MAGE-A3, whose normal expression level was 35% in NSCLC changed from 30% in stage 

I patients to 50% in stage II patients indicating their correlation with poor prognosis 

[182,183]. Cancer germline genes are important factors in determining the immortality, 

tumorigenesis, invasiveness, metastatic, and immune evasion capacity of tumor cells 
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[184]. The tumor cell morphology, adhesion and migration can be altered by downregu-

lating expression of cancer-germline gene [185,186]. Comparison of postoperative injec-

tions of MAGE-A3 recombinant protein coupled with an adjuvant system in 182 patients 

of a randomized phase II trial resulted in an outcome that was statistically insignificant, 

although the survival benefits of MAGE-A3 were sufficiently robust to initiate a Phase III 

assessment [181,187]. To establish a predictive signature that matches up with the treat-

ment of MAGE-A3 antigen-specific immunotherapy, the gene expression profiling of tu-

mors before treatment was analyzed [188]. In a population with a predictive genetic sig-

nature, the risk of recurrence was reduced by 43% after treatment with MAGE-A3. An-

other phase III LC trial commenced in 2007 with NSCLC patients recruited from 33 coun-

tries. In patients with MAGE-A3–positive stages IB, II, and IIIA, the efficacy of MAGE-A3 

antigen-specific cancer immunotherapeutic (ASCI) agents were tested [189]. A total of 

13,849 patients were screened, of which, 4210 had a MAGE-A3 positive tumor and 2272 

patients were selected by randomization and then treated. A gene signature that aided in 

clinical benefit to MAGE-A3 was not observed because disease free survival (DFS) did not 

escalate on NSCLC in either the overall popula-tion or in NSCLC patients who did not 

receive ACT after treatment. 

7.4.3. CIMAvax-EGF 

CIMAvax-EGF is EGF based recombinant vaccine conjugated chemically onto p64K 

and emulsified in Montanide ISA 51 as adjuvant [190,191]. Antibodies against EGF are 

produced as part of mechanism of action of CIMAvax EGF, blocking EGF-EGFR interac-

tion, and inhibit EGFR phosphorylation that results in EGF withdrawal [192]. A total of 

five phase I/II, a randomized controlled phase II and another randomized controlled 

phase III clinical trials have been per-formed since 1995. The first five trials were modeled 

to optimize the formulation, dosage and timing of the vaccine concerning immunogenic-

ity and safety [193,194]. The pioneer step that attested the immunogenicity and the feasi-

bility of inducing an antibody titer against autologous EGF was conducted in patients 

with colon, lung, prostate cancer or stomach [190,195,196]. The phase II randomized trial 

could not show that the vaccinated cohort had an advantage in OS [197]. In patients 

younger than 60 years of age and with GAR compared to PAR in the vaccinated group, a 

significant trend toward a survival advantage was seen. However, an advantage in OS for 

vaccinated patients in the phase III trial was not observed. As a possible diagnostic and 

predictive factor, baseline serum EGF levels were revealed [198]. The link between CIMA-

vax-EGF and chemo-combination therapy was disclosed by the Pilot 5 study, regardless 

of the small sample size. It revealed the potential rise in vaccine immunogenicity when 

conjugated to a cytotoxic systemic treatment [197].   

7.4.4. Racotumomab 

Racotumomab, the monoclonal anti-idiotypic murine IgG1 vaccine [199], causes the 

N-glycolyl GM3 (NeuGcGM3) ganglioside, almost undetectable in normal cells but seen 

in some tumor cells to provoke a particular humoral and cellular immune response. Their 

overexpression remains a target for cancer therapy, and is linked to altered cell prolifera-

tion, tumor spread, angiogenesis, and immunological tolerance [200,201]. According to a 

meta-analysis of stage III and IV NSCLC comprising 26 studies and 7839 patients, 

racotumomab and pemetrexed maintenance therapy were found to be successful in terms 

of DFS and OS [202]. A phase II/III trial with advanced NSCLC in 87 patients led to the 

conclusion that the product is effective, safe, and showed an increase in OS and PFS. The 

trial reached a certain conclusion from the results: drug induced only minor adverse ef-

fects like localized injection site responses, bone pain, coughing, and asthenia [203]. In 71 

NSCLC patients for whom surgical treatment was not a choice, racotumomab was used 

as a second line therapy, and has shown to enhance OS in stage IV NSCLC patients [204]. 
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7.4.5. TG4010 

MUC1 is a TAA expressed by many solid tumors, including NSCLC. TG4010 targets 

MUC1 TAA and IL-2 [205]. The MUC1 protein is upregulated in LC and appears abnor-

mally glycosylated, making it an immune target as glycosylation is the reservoir for new 

antigens. In a randomized, multicenter, phase II study with advanced NSCLC patients, 

TG4010 was administered in combination with platinum-based chemotherapy (cispla-

tin/vinorelbine) wherein the ORR and time to progression were 29.5% and 4.8 month in 

arm 1, respectively. In 2011, the study was further extended to open-label randomized 

trial III, which comprised 100 and 48 patients expressing MUC1 in their tumor with stage 

IIIB and stage IV NSCLC, respectively [206]. In this study, to predict the response to 

TG4010, frequency of CD56+, CD16+, and CD69+ cells were considered as biomarkers as 

they correspond to the phenotype of activated NK cells in PBMCs.  

7.4.6. Vaccine Delivery Vehicles 

Even though immunotherapy is a successful treatment option for NSCLC, there are 

still several limitations such as tumor penetration, low efficacy, high toxicity, issue with 

optimization of synergistic treatment, and off-target effects re-main. Effective delivery 

methods can overcome all of these restrictions [207,208]. A crucial technique for creating 

a com-prehensive therapeutic approach is making of an effective delivery system. For in-

stance, therapeutic nanoparticles (NPs), are used to jointly administer chemo-immuno-

therapy regimens such as IL-12 and doxorubicin to achieve effective delivery into the tu-

mor [209].  

Nanoparticle-Based Delivery 

Small molecules and their antagonists, for example, CpG oligodeoxynucleotides, in-

hibitors of TGF-β, IL-2, anti-PD-1 mAbs, antibodies and their fragments, peptides and 

proteins, can be delivered by NPs [210]. A few options available for NPs are nucleic acid 

nanotechnology, liposomes, dendrimers, inorganic nanocarriers polymeric systems, and 

exosomes. Delivery of cancer immunotherapies by NPs improves drug penetration, anti-

tumor efficacy, synergetic effect of treatments and drug retention [211,212]. Additionally, 

by employing techniques like drug efflux pump modulation and administering numerous 

medications, NPs can overcome chemotherapeutic resistance. 

NP-Loaded Small Molecules 

Advanced LC tumors require a standard of care of combination chemotherapy and 

radiotherapy and additional cut-ting-edge treatments like immunotherapy or tailored 

medication. The most recent advancements in nanomedicine for the treatment of LC are 

magnetic NPs (such as: GastromarkVR, LumirenVR, Feridex, EndoremVR, and I.V.VR), 

liposomes and solid lipid vaccines (metal NPs (zinc oxide NPs, titanium dioxide NPs, gold 

NPs, iron NPs, silver NPs, and cerium NPs), cisplatin-loaded lipid-chitosan hybrid NPs, 

taxane class of NPs, virus NPs (TMV-cisplatin VNP complex, DOX-PhMV-PEG, 

Trop2CD40L VLPs) and polymer NPs (doxorubicin-conjugated InP/ZnS QDs) [213].  

Extracellular Vesicles 

Tiny, membrane-enclosed vesicles released by living cells that can carry a variety of 

lipids, nucleic acid species, and proteins are called extracellular vesicles (EVs) [214]. Anti-

tumor immune responses are regulated by EVs, which assist in cell-cell interaction within 

TME [215]. Recently EVs have been identified as vehicles for various bioactive agents of 

cancer immunotherapy. For instance, designed EVs developed from fibroblast-like mes-

enchymal cells carrying short hairpin RNAs (shRNAs) or small interfering RNA (siRNAs), 

that target KRAS, are found to improve anti-pancreatic cancer activity and also raise 

mouse OS rates. The advantages of using EVs as a delivery platform are numerous and 
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include their capacity to overcome environmental obstacles, inherent cell-targeting abili-

ties, and circulatory stability [216]. 

Antigen-Mediated Delivery 

CHP-NY-ESO-1 vaccine system aids in enhanced immune response by providing tar-

geted delivery and is one of the important antigen delivery approaches in cancer immu-

notherapy. The polysaccharide nanogels of cholesteryl group-modified pullulan (CHP), 

that regulates TAMs are used to deliver the cancer-testis antigen, New York esophageal 

squamous cell carcinoma (NY-ESO)-1. The survival rate in patients with NSCLC found to 

be dose dependent on CHP-NY-ESO-1 in which a higher dose produces a longer survival 

rate. Targeted delivery and an improved immune response are possible with this ap-

proach [217]. 

Cell-Based Delivery 

A common procedure of cell-based therapy involves ACT, CAR-T, and TIL therapy 

[218]. CAR-T cell treatment is a highly successful immunotherapy in the fight against 

blood malignancies and cancers that are refractory. The FDA has ap-proved a number of 

CAR-T cell-mediated immunotherapy products. Breyanzi can be given to patients with 

refractory or relapsed large B-cell lymphoma, Abecma and Carvykti for refractory or re-

lapsed multiple myeloma patients, Yescarta for large B-cell lymphoma patients, and Te-

cartus for patients with refractory or relapsed mantle cell lymphoma [219]. In addition, 

drugs can act as nanoscale medicines that do not possess carriers advised for cancer care. 

Types of nanomedi-cines free of cargo are drug nanocrystals, antibody-drug conjugates 

(ADCs), drug-drug conjugate NPs and prodrug self-assembled NPs. For instance, to boost 

drug lodgment to tumors and kill both non-cancer stem cells (non-CSC) and CSCs, the 

medication SN38 (7-ethyl-10-hydroxycamptothecin) has been combined with the pH-re-

sponsive prodrug (PEG-CH=N-Doxorubicin (DOX) [213]. 

8. Combinatorial Approaches to Lung Cancer-Immunotherapy 

The traditional therapeutic methods continue to be the first choice of cancer treat-

ment; however, the success of these conventional regimens is limited by their unpleasant 

side effects, late illness detection, and deadly reversion as a resistant micro-metastatic dis-

ease. Hence, the gold standard of care for patients whose disease is not caused by a ge-

nomic change in NSCLC is PD-1 and PD-L1 inhibitors alone or given along with chemo-

therapy, radiation, or other ICIs [220].  

8.1. a. Targeted therapy 

Targeted therapy is the best option for those with irreversible LC and a driver gene 

mutation [221]. FDA-approved first-line medicines for metastatic NSCLC patients whose 

tumors possess EGFR exon 21 L858R mutations or EGFR exon 19 deletions are gefitinib, 

erlotinib, afatinib, dacomitinib, and osimertinib. EGFR/HER2 exon 20 mutations contain-

ing patients responded well to the two newly developed targeted medications such as 

TAK-788 and poziotinib [148]. A novel fusion oncogene echinoderm microtubule-associ-

ated protein-like (EML4)-ALK is seen in young and non-smokers, and 2–7% of patients 

with advanced NSCLC [221,222]. AMG510 is a tiny, effective drug that locks KRAS G12C 

in an inactive, GDP-bound state. Another KRAS G12C inhibitor, MRTX849, has shown 

promise in treating advanced solid tumors with KRAS G12C mutations [148]. IFN, which 

activates a variety of immune cell types, is found to be produced more abundantly by 

combining systemic IL-12 with trastuzumab and paclitaxel in a phase I clinical trial, and 

this further enhanced NK cell activation [223]. Their favorable correlation with clinical 

response potentiates the use of combinatorial strategies. 
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8.2. b. Chemotherapy  

Platinum-based chemotherapy, with roughly one-year median survival, is crucial in 

treatment methods for patients without a driver gene mutation [224]. In multiple random-

ized controlled trials in NSCLC and SCLC, chemotherapy plus ICI showed better results 

than chemotherapy alone [144]. The CheckMate-9LA study showed that chemotherapy 

for a shorter period, along with inhibitors of CTLA-4 and PD-1 is feasible without sacri-

ficing efficacy [225,226]. Ipilimumab, a CTLA-4 inhibitor, was given to NSCLC patients 

included in the phase II study either in a steady regimen in cycles 3 to cycle 6 of chemo-

therapy or concurrently in cycles 1 to 4 of six chemotherapy cycles, followed by ipili-

mumab maintenance [227]. In the KEYNOTE-021 study, the carboplatin-pemetrexed-

pembrolizumab combination had an ORR of almost 70%, testing the activity of pembroli-

zumab with carboplatin and paclitaxel, vs. carboplatin, paclitaxel, and bevacizumab, or 

carboplatin and pemetrexed [228]. In a recent phase Ib study, the ICI durvalumab (PD-L1) 

and tremelimumab (CTLA-4) were coupled with the chemotherapy drug cisplatin-

pemetrexed. Two ICIs combined with conventional chemotherapy appeared to be well 

tolerated, which revealed an ORR of almost 50% without specific hazard effects [229]. 

Quadruple combination therapy using bevacizumab, platinum-based chemotherapy, and 

atezolizumab was effective in treating patients with NSCLC who were oncogene-depend-

ent [142,230]. 

8.3. c. Radiotherapy 

Immunomodulatory effects of radiation include tumor-associated dendritic cell acti-

vation, improved T-cell action on tumors, altered TAM polarization, reduced immuno-

suppressive stromal cells, and induced immunogenic cell death [231]. The possibility of 

toxicity, particularly pneumonitis, when radiation and ICI are used together is a signifi-

cant issue [232]. It has also been demonstrated that high-dose ionizing radiation increases 

PD-L1 expression, and inhibition of PD-L1 improves the effectiveness of radiation by a 

CTL-dependent mechanism [233]. Anti-CTLA-4 and anti-PD-1 therapy with combined ra-

diation enhance the number of tumor-specific T cells, and it is noted that radiation-in-

duced immune responses can have anticancer effects [145]. Radiation, when combined 

with CTLA-4 inhibition, produced diversification of the T cell receptor repertoire of TILs 

and molded the repertoire of T cell clones that are expanded, which is consistent with an 

effective vaccination [234]. It was discovered that overexpression of PD-L1, which causes 

T-cell exhaustion, is a mediator of radiation resistance and CTLA-4 blocking [235].  

8.4. Emerging Combination Strategies in Adoptive Cell Therapy 

Reactive T cells are extracted from patients, amplified ex vivo, and returned to the 

patient, which will aid host immunity for battling the disease [236] and is a more direct, 

less expensive, and effective technique to produce potent immunotherapeutic molecules 

[237,238]. Adoptive immunotherapy comes in a variety of forms that are employed in clin-

ical trials, including lymphokine-activated killer (LAK), cytokine-induced killer (CIK), γ 

δ T-cells, TAA, TIL, and specific CTL [239]. NK-resistant tumor cells can be killed by LAK 

cells produced by lymphocytes exposed to IL-2. For patients with metastatic melanoma, 

TIL-based adoptive treatment has shown promising anticancer activity in a great number 

of clinical trials [240]. LAK possesses a powerful ability to lyse tumor cells that have sur-

vived after receiving cisplatin treatment and impart cytotoxic effects on A549 cells [241]. 

IL-2 and LAK cells coupled with chemotherapy or radiotherapy enhanced the survival of 

patients following surgical resection of primary LC, with 5- 9 years of survival rates in the 

immunotherapy group. Immunochemotherapy and immunoradiotherapy have shown 

OS of 54.4% and 52.0% in patient groups and 33.4% and 24.2% in the control group. 

PD-L1 expression and the degree of CD8+ T cell infiltration were affected by concur-

rent chemoradiotherapy, and both affected the prognosis of NSCLC patients [242]. 22.4 

months and 14.1 months was the median survival in the immunotherapy group and in 

https://paperpile.com/c/2JtPA3/OeCh+ljyC
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the control group in a randomized trial, respectively, that added IL-2 and TIL to standard 

chemotherapy/radiotherapy after surgery. For stage III cancer patients, local relapse was 

significantly decreased in the immunotherapy group but not in the distant relapse [243]. 

After concurrent chemoradiotherapy (CCRT) treatment, Yoneda et al. noted that CD8+ 

TIL with increased density is a good prognostic indicator for locally progressed NSCLC 

[244]. The heterogeneous T-lymphocytes, known as CIK cells, have unlimited MHC-wide 

anticancer activity and a mixed NKT phenotype [245]. Seven ongoing CIK trials are being 

conducted, and a recent study among early-stage patients revealed that the 2-year OS rate 

could be increased when chemotherapy is coupled with DC-activated CIK cells, but the 

DFS rate does not get affected [246]. In patients receiving CIK in addition to chemother-

apy, Wu et al. noticed that PFS (p = 0.042) and OS (p = 0.029) were longer [247]. Anti-γ δ 

TCR antibodies can be used to grow γ δ T-cells in vitro; this method may be more effective 

than employing phosphoantigen-expanded γ δ T-cells because the expanded γ δ T-cells 

have a longer in vivo survival time [248]. The effectiveness of CAR-NK cells to precisely 

identify tumor antigens has been demonstrated in numerous preclinical and clinical in-

vestigations, and therefore, adaptive NK-cell-based therapies can benefit from the features 

of recombinant CARs [249]. The phase-I trials, which were performed on patients with 

advanced and recurrent NSCLC revealed that activated NK cells are safe, well tolerated, 

and exhibit no substantial toxicity. Patients with LC were found to benefit clinically from 

repeated infusions of in vitro-activated HLA-mismatched NK cells when combined with 

conventional treatment [250]. In late-stage LC patients receiving vinorelbine-platinum 

chemotherapy, administration of a combination of immune cells, peptide-pulsed DCs and 

CIK were found to lessen the side effects of chemotherapy and increase patient survival 

[251]. 

Due to the viability and functionality of transplanted cells, which are instantly re-

jected after injection, adoptive treatment applications are restricted [252]. Nanocarrier sys-

tems based on innovative technologies can overcome these constraints. With tailored NPs, 

better adoptive T-cell treatment against prostate cancer was described [253,254]. Malei-

mide was surface conjugated to liposomes before being evaluated in a metastatic mela-

noma murine model. It was discovered that animals treated with NP-conjugated T-cells 

completely cleared the tumors, but non-conjugated T-cells slightly improved the survival 

of untreated mice [253]. These studies report that we can improve the effectiveness of ACT 

by delivering T cells using biomaterials [252]. Hence, according to recent clinical research, 

adoptive immunotherapy is effective for treating NSCLC and aid in an improved overall 

outcome and minimal toxicity. 

9. Lung Cancer Preclinical Models in Testing Immunotherapy  

9.1. 3D Models  

TME contain many factors that can affect the evolution and development of tumor. 

It can affect the metabolism, vascularization, and immune system of tumor tissues. It is 

comprehensive to study tumors using 2D culture models due to their inability to mimic 

the whole TME. 3D models can exhibit the proliferation, activation, and immuno-modu-

latory abilities of tumor tissues more than 2D culture models [255] (Table 4). 

9.1.1. Cell-Lines 

For the past 40 to 50 years, the spheroid model has been regarded as the gold stand-

ard among 3D in vitro models. Spheroids are 3D-based collections of cells along with 

ECM. To a certain extent, they can mimic the structure and metabolism of the tissue from 

where they originated. Based on cell genesis and culture methodologies, several spheroids 

may be defined, including multicellular tumor spheroids (MTCS), tumorospheres, tissue-

derived tumor spheres (TDTSs), and organotypic multicellular spheroid/organoid (OMS) 

[256]. The most popular and thoroughly defined model, MTCS, is frequently produced 

from primary cell or cell line suspension. The MTCS model accurately depicts the 

https://paperpile.com/c/2JtPA3/AWmm
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diffusion and exchange of oxygen, nutrients, and other soluble factors. Due to its remark-

able repeatability and relatively low cost, it is now the most used model for evaluating 

immunotherapeutic techniques [257]. 

Recently, inhibitors for immune checkpoints have been used for therapy in the fourth 

stage of NSCLC. In several studies, patient-derived NSCLC spheroids were used as a 

model to predict immune checkpoint treatment sensitivity. Spheroid heterotypic models 

are frequently employed to simulate the immunological microenvironment. The anti-

cancer effect of CTLA4, PD L1, and PD1 blockage are mediated by immune cells in sphe-

roids; also, they are characterized by increased CD8+ T cells and pro-inflammatory cyto-

kine expression. There was no correlation analysis performed with patients' outcomes in 

this model. Only a single clinical study on PD 1 therapeutic effect shows consistency in 

this model. Therefore, the predictive values are unclear, and this model cannot be consid-

ered a valid model in immunotherapy. New studies in this area are necessary to evaluate 

patient-derived spheroids' prognostic role in testing immunotherapy [258]. 

9.1.2. Patient-Derived Lung Cancer Organoid 

Scientific attention has switched to 3D cell culture techniques since 2D cell cultures 

only preserve a minimal similarity to their parent tissue. Patient-derived cell populations 

may be expanded in a 3D ECM to form organoids, distinguished by their ability to form 

structures that resemble the tissue from which they were obtained. Numerous tissues, 

most notably the lung, have been used to create tumor organoids [259]. LCOs require a 

specific concoction of growth factors and inhibitors, as well as a 3D matrix for support, 

most frequently Matrigel. Although the formulation of this growing medium differs be-

tween laboratories, all formulations include components that support the preservation of 

lung stem cells. Growth factors included are either EGF or members of the fibroblast 

growth factor (FGF) family, as well as inhibitors/activators of specific pathways, namely 

TGF-β and Rho-associated protein kinase and Wnt. The B27 supplement used as a substi-

tuted serum in neuronal cell cultures is the only factor common to all reported LCO-spe-

cific media formulations. LCOs may be created from tumor biopsies or resections that 

show a high rate of success in both short- and long-term cultures [260,261]. Li et al. devel-

oped a patient-derived tumoroid assay and the whole sequence to screen afatinib's effect 

in EGFR-mutated patients [262]. Using transcriptomics, Peng et al. compared the primary 

tissues of SQCC or ADC to the equivalent tumoroids. Comparing tumoroid models to 

cancer cell lines or PDXs, tumoroid models showed a greater transcriptional accuracy 

[263]. Another study conducted by Ma et al. in these same tumoroids identified the genes 

(CDK1, CCNB2, and CDC25A) implicated in the NSCLC tumor formation [264] (Table 5). 

9.1.3. Patient-Derived 3D Models  

PDOs enable the 3D cultivation of malignant cells from the primary tissue, resulting 

in stromal destruction and immunological compartments. Tumorospheres are clonal rep-

resentations of spheroids or organoids. However, this spheroid model is only suitable for 

CSC research since it cannot capture the diversity of cell types found in the TME. TDTSs 

are made from the patient tumor tissue that enzymes have digested. This model can pre-

serve only the interactions between tumor cells, not between the stroma and tumor cells. 

TDTSs produce small replicas of vascularized tumor regions. OMS preserve the cellular 

heterogeneity and origin tissue architecture, making them the most accurate replicas of 

the parental tumor. OMS is useful for biomarker and medication testing since they are 

reliable preclinical patient models. PDOs replicate the gene and protein expression of the 

real biopsies. Several models are available, including those developed from NSCLC, clear 

cell renal cell carcinoma (CCRC), melanoma, and glioblastoma [255]. 
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Table 4. The main studies conducted in the field of lung cancer using spheroids and organoids 

models. 

Models Source Application Reference 

spheroids 

Resection 

Lung cancer stem cells’ identification and description; production 

of 

Xenografts that replicate the parental tumor's histology 

[265] 

Resection, pleural 

effusion 

Technique to expand 

cancer cells from the lungs of patients 
[266] 

Core needle biopsy, 

surgical biopsy, 

pleural effusion 

Drug testing [267] 

Organoids 

biopsy 
Drug testing and evaluation of immune cell populations 

penetrating cultured tissues 
[268] 

Resection/PDX LCOs’ long-term growth, confirmation, and drug screening [269,270] 

biopsy 

For use in immuno-oncology research and testing for customized 

immunotherapy, a new approach for maintaining endogenous 

tumor-infiltrating cells has been developed. 

[271] 

Resection/biopsy Biobanking, drug testing [272–274] 

Resection/biopsy 
Examining and blocking regulators of mitochondrial fission in 

various tumor organoids 
[275] 

Pleural effusion 
drug testing and the establishment of an LCO culture system from 

pleural effusions 
[276] 

Resection/biopsy 
Analyzing several techniques to determine the tumor purity of 

organoids created from intrapulmonary tumors 
[277] 

PDX derived from 

biopsies 
Drug testing and organoid creation using PDXs from SCLC biopsies [278] 

Resection/biopsy Analyses of pathway inhibitors found by single-cell proteomics [279] 

pleural effusion Targeted drug testing and LCO production and characterization [280] 

Table 5. Currently used lung organoids and tumoroids models in NSCLC research. 

Tumor Type Model Application Reference 

NSCLC 

(Non-small cell lung 

carcinoma) 

Lung cancer organoids Drug screening [269] 

NSCLC organoids Drug screening [270] 

Patient-derived organoids 

model 
Genomics, production of treatment outcomes [274] 

Lung ADK (LADC)-

derived organoid model  

Drug screening, biomarker development, and living 

biobank 
[273,274] 

Patient-derived tumoroids 

(PDTs) 

PDTs are developed to be used in microfluidic devices for 

drug screening and mimic the cancer vascular network. 
[281] 

Patient-derived lung cancer 

organoids 

Patient-specific medication screening and support for the 

xenograft model from a living biobank 
[272] 

Patient-derived tumoroids 

(PDTs) 
creating new cell lines [282] 

Patient lung-derived 

tumoroids (PLDTs) 
Drug screening [283] 

Lung cancer organoids Personalized medicine [277] 
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9.1.4. Organ-On-Chip 

Although there have been in vitro models of LC for many years, most of them have 

consisted of monolayer cultures of lung epithelial cells or planar 3D tissue models with 

air-liquid interfaces. The model can be used to trace pharmacological treatments and im-

mune cells [284]. NSCLC-derived cell lines can be employed in microfluidic models of LC, 

where the A549 cell line is most often used. A549 cells often acquire the spheroid shape 

when cultivated in microfluidic devices because they cannot establish intercellular con-

nections. These platforms have been utilized to research a variety of significant issues 

[285]. The effectiveness of photodynamic treatment was analyzed using A549 spheroids 

cultivated in microfluidic devices. The ability to precisely manipulate and characterize 

cell-cell communication in the LC TME has been made possible using microfluidic de-

vices, for instance, to segregate different cell types seen in LC such as CAFs and ECs. 

NSCLC cell lines were cultured in microfluidic models in various studies to investigate 

the effects of tumor growth, medication response, and mechanical forces found in the 

lung, including blood and interstitial fluid flow. The interaction of a lung tumor and bac-

teria has also been studied using NSCLC cells cultured in microfluidic devices [284]. Us-

ing autologous TILs in two studies from the Borenstein group, small primary tumor or-

ganoids from NSCLC patient tumor biopsies were cultured. This allowed for the charac-

terization of tumor-immune interactions and the prediction of patient-specific responses 

to ICI therapies [286,287]. Future developments in microfluidic models of LC should care-

fully consider the tumor cell type and their source; the inclusion of different cell types 

such as immune cells, epithelial cells, and/or CAFs; and the biomarkers to represent ECM 

and hypoxia. Furthermore, the impact of mechanical strain, ECM composition, immune 

cell phenotype and infiltration, and response to treatment regarding this model is still 

poorly understood [284]. 

9.1.5. 3D Bioprinting  

3D bioprinting is a biomanufacturing technology that enables loading live cells, sig-

naling molecules, and biomaterials to create tissue-engineered constructions with pre-

cisely regulated tissue architecture. The use of bioprinting technology can produce gra-

dated macroscale designs that imitate the ECM, also boosting both the adhesion and pro-

liferation of various cell types. Constructs created via 3D bioprinting can successfully im-

itate the TME. Additionally, the capacity to incorporate perusable vascular networks, spa-

tial control of matrix characteristics, and automatic and high-level testing capabilities for 

identifying metabolic toxins and metabolic parameters are crucial components of bi-

oprinted models. According to their deposition process, droplet, extrusion, and laser-

based bioprinting techniques can be categorized based on instrumentation methodologies 

[288]. A substantial number of biopsy samples from patients with lung cancer were uti-

lized by Mazzocchi et al. to create 3D tumor models containing pleural effusion aspirates 

and lung cancer spheroids implanted within hydrogel scaffolds [276]. Another study 

showed that sodium alginate-gelatin hydrogel provides better printability and viability to 

the cells of NSCLC from patient-derived xenografts and associated fibroblast coculture 

[289]. The printed tumor models can also be manufactured using spheroids that exhibit 

tumor-specific markers and are used for drug screening. Wang et al. used A549/95-D lung 

cancer cells to create 3D bioprinted scaffolds to study metastasis [290]. The bioprinted 

tumor models developed using patient-derived cancer cells have in vivo-like anatomy 

[288]. 

9.2. In Vivo Animal Models  

The mouse genome is quite like the human genome and possesses the ease of gene 

editing, cheap cost, and straightforward feeding. It can imitate several biological proper-

ties, including cancer development and metastasis in vivo. Four approaches are often used 

to create animal cancer models, including chemical induction, PDX, genetically 
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engineered mouse models (GEMM), and cell line-derived xenograft (CDX). The chemical 

induction model is a model induced by chemical carcinogens that can mimic the onset of 

cancer from the beginning of its carcinogenic process. However, the major drawback is 

that it takes about 30 to 50 weeks for a tumor to grow. The CDX model, also known as the 

xenotransplantation model, is created by delivering cancer cell lines subcutaneously to 

immunocompromised mice. The key merit and demerit of this model include convenience 

to handle, but the prolonged in vitro culture alters the behavior of original tumor cells. 

The PDX model was developed as an animal model by introducing patient tumor tissues 

directly into mice. This model faithfully replicates the histology and genetics of the origi-

nal tumor [291]. These current models, however, are unable to precisely anticipate how 

the tumor and immune system of humans would interact among different species of mam-

mals. The humanlike mouse immune system model rebuilds the human immune system 

by grafting lymphocytes, hematopoietic cells, or organs of humans into mice with a com-

promised immune system [292] (Figure 3b). By implanting human tumor cells or tissues, 

it is feasible to understand tumor growth, the human immune system setting, and assess 

anti-tumor therapy, specifically the impact of immunotherapy and associated processes. 

The humanized mouse immune system models are categorized into three groups based 

on how the human immune system was recreated, and it includes human hematopoietic 

stem cells (Hu-HSCs), human peripheral blood lymphocyte (Hu-PBL), and human bone 

marrow, liver, and thymus (Hu-BLT) models [291]. 

  
(a) (b) 

Figure 3. Lung cancer models: (a) 3D models currently used to study Lung cancer, cancer stroma, 

and immunotherapy effects. (b) The humanized mouse model of the human immune system in-

volves implanting human hematopoietic cells, lymphocytes, or organs into immunodeficient mice 

to recreate the human immune system for cancer studies. Hu-BLT, human bone marrow, liver, and 

thymus; Hu-HSC, human hematopoietic stem cell; Hu-PBL, human peripheral blood lymphocyte. 

9.2.1. Zebrafish Model 

Zebrafish is the most popular vertebrate model due to their genome similarity with 

humans [293]. Transgenic and immunodeficient zebrafish can grow very fast, remain 

transparent in the adult stage, and have simple gene operations. Translucent embryos can 

detect and trail cancer cell propagation, metastasis, and spread [291]. Shen et al. developed 

the LINC00152 knockout xenotransplantation model and demonstrated that LINC00152 

silencing might lessen LC cell proliferation and spread [294]. The effectiveness and safety 

of anti-LC medications may also be assessed using the zebrafish model to determine a 

more effective course of therapy. Huang et al. employed the zebrafish LC models to assess 

the impact of DFIQ (quinoline derivative anti-cancer agent) on NSCLC in vivo. Monitoring 

cell migration, apoptosis, and proliferation revealed that DFIQ might suppress cancer 

cells. Zebrafish models can accurately reproduce the interactions between TME though 
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they lack lungs. The efficacy and safety of three anti-angiogenic medications have been 

investigated using a human NSCLC xenograft model. All molecules examined had anti-

angiogenic properties and reduced the development of tumors in zebrafish [295]. 

9.2.2. Patient-Derived Tumor Xenograft (PDX) Model 

The Hu-PDX model has been used in several tumor research studies. Lin et al. 

demonstrated PD-L1/PD-1 targeted immunotherapy in immunodeficient mice using pa-

tients' peripheral blood cells [296]. Rosato and his colleagues constructed a PDX model 

derived from TNBC patients to test anti-PD-1 immunotherapy as a TNBC preclinical trial 

[291]. Sanmamed et al. administered immunodeficient mice with gastric cancer patient 

lymphocytes, then administered mice with transplanted gastric cancer tissue, and then 

with nivolumab (inhibitor of PD-1) and urelumab (anti-CD137 agonist). This study 

demonstrated that these drugs could resist tumor growth through the induction of T cells 

[297]. The present Hu-PDX model does have significant flaws, such as a low modeling 

success rate, limited lifespan for the humanized immune system, and poor immunological 

response. The advancement of humanized mouse modeling technologies and the effec-

tiveness and longevity of the immune system should be the main areas of future study 

[291]. 

9.2.3. Patient-Derived Orthotropic Xenograft (PDOX) Model 

Comparable to the primary site of cancer, an in vivo environment that is favorable 

for the growth of the tumor can be created through orthotopic transfer of tumor tissue 

into animal organs. As a result, the PDX model serves as the foundation for the PDOX 

model. This model is more objective and accurate than the conventional PDX model in 

simulating the development of human cancers in vivo [298]. Using cervical cancer tissue, 

Hiroshima et al. created ten cases of the PDX model and eight cases of PDOX models by 

subcutaneous injection of cervical cancer tissues. The result demonstrated that in 50% of 

the PDOX models, tumor metastasis was shown but not in the PDX model. According to 

the data, the PDOX model is more likely to have characteristics of malignant tumors, such 

as invasion and metastasis, than the PDX model [299]. Hiroshima et al. conducted a study 

by treating these two models with entinostat medication and found that tumor growth 

inhibition took place only in PDOX models [291]. In the PDOX model, growth was found 

in vivo, making it challenging to monitor their progress using conventional detection tech-

niques and even more challenging to identify their metastatic paths [300].  

9.2.4. Mini Patient-Derived Xenograft (Mini-PDX) Model 

This model was created by infusing the patient's tumor tissue's digested cell suspen-

sion into a microcapsule and implanting the capsule into the animal. The major ad-

vantages of this model in the area of drug screening include consistent outcomes with the 

PDX model, economic, and short time to approach the results [291]. Zhang et al. created 

Mini-PDX models of pancreatic, gastric, and lung cancers, and PDX model was used as a 

reference model to assess drug sensitivity. The results indicate that both the Mini-PDX 

model and the conventional PDX model produce results that are 92% consistent; however, 

the Mini-PDX methodology requires substantially less time than the PDX model does 

[301]. This demonstrates that the Mini-PDX model might serve as a useful alternative to 

the PDX model for assessing cancer treatment. Due to these benefits, the Mini-PDX model 

can be anticipated as a device that aids in the individualized treatment of cancer patients 

[291]. 

10. Conclusions and Future Perspectives  
LC continues to pose a serious threat to global health, despite significant advance-

ments in early LC prevention, diagnosis, and treatment. Within the next 40 years, it is 

anticipated to overtake IHD as the leading cause of death. The GLOBOCAN-2020 revision 
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on epidemiologic trends of different malignancies agrees with WHO mortality projec-

tions. LC's increased prevalence, incidence, and mortality rates highlight the need for ef-

ficient intervention and therapy approaches. The TCGA-c Bioportal data on the number 

of LC patients who have undergone radiation therapy, targeted therapy, and immuno-

therapy is 19.2%, 58.9%, and 28.6%, respectively, where cases undergone chemotherapy 

outnumber the data that do not undergo therapy. The data availability for cases with var-

ious therapy to that of 'data does not available' was 13.2%, 12.1%, 12.1%, and 12% for ra-

diotherapy, chemotherapy, targeted therapy, and immunotherapy, respectively, which 

raises concerns about the validity of the data. 

The use of methods like combination therapy and the exploration of predictive treat-

ment biomarkers and prognosis have resulted from clinical trials of immunotherapy. The 

therapeutic tactics employed to take advantage of the immunosuppressive properties of 

TME in the present immunotherapy clinical trial landscape have created difficulties in 

treatment, clinical testing, and monitoring across diverse tumors. Immunotherapy as a 

cancer treatment strategy poses difficulties due to the immunosuppression brought on by 

TME. Microbiome-targeted cancer immunotherapy and the combination of genetic bi-

omarkers with immune-related indicators for more individualized treatment are the new 

immunotherapy-based strategies. Immune organization in TME is a potent predictor of 

response to immunotherapy. The basic pathomorphological diagnosis of NSCLC patients 

could be supplemented with a quick immunological study of the immune response al-

ready present in the malignant tissue, such as the presence of lymphocytes and CD8+ 

macrophages, including PDL1, CXCR3, CCLA4, JAK, TGFβ, and IFNγ expressions, and 

their placement inside the tumor. The complexity of immune system-tumor communica-

tion is complicated, and our understanding of key molecular mechanisms helps us to pro-

vide a suitable therapeutic strategy and predict the course of the disease. 

The FDA has approved a few combination medicines to boost the clinical effective-

ness of ICIs. Combinations of ACT, newer ICIs, cancer vaccines, and small molecule in-

hibitors are anticipated as action-driven reliable biomarkers for clinical immuno-oncology 

decision-making well-understood. In this sense, a truly patient-centered, tailored ap-

proach is what cancer immunotherapy needs to succeed in the future. Trials on combina-

tion therapy using chemotherapeutic drugs with PD1 and CTLA4 checkpoint inhibitors 

are in clinical trials now. Vaccinations in LC have limited clinical trial evidence to demon-

strate definite therapeutic advantages. Observable immune responses may not always 

correspond to clinically significant responses. While many trials concentrate on patients 

with distant-stage cancers, patients with stage I or stage II LC with potential recurrence 

after surgery may be the leading candidates for LC vaccinations. The set of best tumor 

antigens to target and tackle the different tumor escape mechanisms and many epitopes 

of a broad set of genes are to be traced for an effective immunotherapy-based LC treat-

ment.  

The multidisciplinary approaches of preclinical cancer research, with contributions 

from the field of stem cell biology, immunology, and developmental biology, help to de-

cipher the interaction between cancer and stroma. Currently, available models can fully 

recapitulate patient-tumor phenotypes and responses though various cancer models are 

available for cancer research. The application of multiple approaches, along with an idea 

of their limitations, can make improvements in the field of cancer therapeutics.  
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