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Abstract: Mathematical modeling is crucial to investigating tthe ongoing coronavirus disease 2019
(COVID-19) pandemic. The primary target area of the SARS-CoV-2 virus is epithelial cells in the
human lower respiratory tract. During this viral infection, infected cells can activate innate and
adaptive immune responses to viral infection. Immune response in COVID-19 infection can lead
to longer recovery time and more severe secondary complications. We formulate a micro-level
mathematical model by incorporating a saturation term for SARS-CoV-2-infected epithelial cell loss
reliant on infected cell levels. Forward and backward bifurcation between disease-free and endemic
equilibrium points have been analyzed. Global stability of both disease-free and endemic equilibrium
is provided. We have seen that the disease-free equilibrium is globally stable for R0 < 1, and endemic
equilibrium exists and is globally stable for R0 > 1. Impulsive application of drug dosing has been
applied for the treatment of COVID-19 patients. Additionally, the dynamics of the impulsive system
are discussed when a patient takes drug holidays. Numerical simulations support the analytical
findings and the dynamical regimes in the systems.

Keywords: epithelial cell; antibody response; basic reproduction number; transcritical bifurcation;
impulsive control; drug holidays

1. Introduction

COVID-19 is considered to be transmitted mainly between people who are close in
contact with one another within about six feet, as well as through respiratory droplets
created when an infected person coughs or sneezes. These droplets can enter the mouths
or noses of people close by or possibly be inhaled into the lungs [1]. Virus spread depends
on the possibility of touching virus-infected surfaces or objects and then touching one’s
own mouth, nose, or possibly eyes [2,3].

In a SARS-CoV-2-infected human, the innate and adaptive immune responses work
together to neutralize the threat of SARS-CoV-2 infection [4–6]. When the virus enters
the human body, the innate immune response starts immediately. Proteins of the natural
immune system in a healthy cell also respond against the invading pathogens within the
first minutes or hours of infection [7]. This response is of great importance in preventing
new infections through the activation of the adaptive immune system [8,9]. Cytokines,
which are small soluble proteins, are an essential component of the immune system [10].
They are secreted from different cells in the human body. They can be categorized into one
of four families: (i) the hematopoietic family, (ii) the immunoglobin superfamily, (iii) the
tumor necrosis factor family, and (iv) interferons (IFNs) [11]. Cytokines balance the innate
and adaptive immune responses. Among cytokines, IFNs play a vital role in the innate
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immune response during viral infection. Thus, we consider the effect of adaptive immune
responses in our mathematical model.

There are many research articles that include population modeling for the transmission
dynamics of COVID-19 [12–18] These studies mainly focused on susceptible exposed
populations and asymptomatic infected populations for a particular region. Population
density is a major factor for disease transmission for this type of modeling. Some of these
articles include vaccinations and optimal control [19–21]; additionally, some articles focus
on population awareness through media [22,23].

However, for the SARS-CoV-2 dynamics at the micro-level (i.e., the dynamics of the
disease within the human host), few model-based studies are available. The dynamics of
SARS-CoV-2 infection can give insight to controlling the virus in a human host [11,24,25].
Many infectious disease dynamics are explored extensively by researchers with the help of
mathematical modeling with real data at the cellular level [26–29]. Tang et al. [30] proposed
a four-population host cell infection model for MERS-CoV mediated by DPP4 receptors.
The infection processes of SARS-CoV-2, SARS-CoV, and MERS-CoV are similar. Researchers
are still working on inter-host modeling for SARS-CoV-2 and target cell limitations under
immune responses [31,32]. Hernandez et al. [31] proposed a model to examine cellular
level dynamics and T cell responses against viral replication. Wang et al. [32] evaluated
the effect of several potential interventions for SARS-CoV-2. Their study reveals that
combining antiviral drugs with interferons effectively reduces the viral plateau phase and
shortens the recovery time. Chatterjee and Bashir [29] formulated a mathematical model to
examine the consequences of adaptive immune response to viral mutation to control disease
transmission. They also studied the effect of antiviral drug therapy and its impact on model
dynamics. Chatterjee et al. [11] proposed a set of fractional differential equation models
considering uninfected epithelial cells, infected epithelial cells, SARS-CoV-2 virus, and CTL
response cells, accounting for the lytic and non-lytic effects of immune responses [11].
They also studied the impact of a commonly used antiviral drug in COVID-19 treatment
in an optimal control-theoretic approach. Wang et al. [28] studied the effect of antiviral
drugs against SARS-CoV-2 viral dynamics during COVID-19 infection. In [33], within-host
dynamics of SARS-CoV-2 infection were studied with potential treatments. Authors have
used repurposed drugs (remdesivir) that inhibit the transcription of SARS-CoV-2.

Despite numerous therapeutic strategies, to date, there is no specific effective treatment
for SARS-CoV-2 infection. Recently, all over the world, clinicians have been working on an
effective therapy for coronavirus disease 2019 (COVID-19). Clinical observation suggests
that cytokine levels enhance the hyperinflammatory response secondary to SARS-CoV-2
infection. This is the leading cause of multi-organ damage for COVID-19 patients [1]. For
these reasons, numerous clinical trials are currently undergoing to explore the effectiveness
of drugs such as interleukin-1 blockers and interleukin-6 inhibitors in COVID-19 [33–35].

The most useful method to study drug dynamics is the use of impulsive differential
equations [28]. Perfect or imperfect drug adherence and drug holidays can make the
development of resistance easy. Recently, the effects of perfect drug dosing on antiretroviral
therapy have been studied by impulsive differential equations. Chatterjee and Basir [24]
formulated a dynamic model of epithelial cells during SARS-CoV-2 infection and CTL
responses. They established a new mathematical model considering epithelial cells and
the role of the ACE2 receptor using impulsive differential equations, which describe the
within-host dynamics of SARS-CoV-2 infection with treatments. The dosing period and
threshold values of dosage can be obtained using this method.

In the present research, we study the dynamics of COVID-19 in humans using im-
munostimulant drugs. We explor the dynamics using the antibody-response model of
SARS-CoV-2 infection by examining the interaction between viral replication. We consider
uninfected target epithelial cells, infected epithelial cells, SARS-CoV-2 virus, and antibody
responses in the modeling process, with an aim to reduce the infected epithelial cells and
viral load using immunostimulant drugs. The local and global dynamics of the system with-
out drugs have been provided. Forward transcritical bifurcation is also analyzed. Finally,
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we implement impulsive differential equations to observe the impact of drugs. The dosing
rate and interval, and how many drug holidays a patient takes have been studied.

The drug data we have used here are those of monoclonal antibodies (mAbs). These
have the capability to detect and prevent the disease propagation [36,37]. A SARS-CoV-2
patient who is at high risk of transmitting to another individual with SARS-CoV-2 for longer
than 4 weeks, and who is unable to mount an adequate immune response to SARS-CoV-2
vaccination, can take an initial dose of 600 mg of casirivimab and 600 mg of imdevimab, then
repeat doses of 300 mg of casirivimab and 300 mg of imdevimab once every 4 weeks [38].

The article is organized as follows. The next section (Section 2) contains the formulation
of a mathematical model of immune responses. The qualitative properties of the model
are provided in Section 3. Theoretical analysis of the impulsive model is carried out in
Section 4. The numerical simulation is included based on the analytical findings in Section 5.
Discussion and concluding remarks are given in Section 6.

2. Derivation of the Mathematical Model

The mathematical model helps us to understand the basic dynamics of viral infection.
In general cases, modeling consist of a antibody response model with some variants [39].
Here, we consider the simplest version including three populations, namely:

• ES(t) : the uninfected susceptible target cells, which are surface epithelial cells with
ACE-2 receptors located in the respiratory tract, including the lungs and nasal and
trachea/ bronchial tissues;

• EI(t): the SARS-CoV-2-infected virus-producing cells;
• V(t): the virus particles.

The SARS-CoV-2 dynamics with immune cells are proposed in [39] as the following

dES
dt

= Π− βESV − µ1ES;

dEI
dt

= βESV − µ2EI ;

dV
dt

= pEI − µ3V. (1)

The first equation of (1) shows the dynamics of uninfected epithelial cells (ES(t));
the second equation shows the dynamics of the infected epithelial cells (EI(t)). The repli-
cation of the SARS-CoV-2 virus (V(t)) in the third equation of (1) is considering, as SARS
infection promotes endothelins on several organs as a direct consequence of viral involve-
ment [31].

The growth rate of epithelial cell is denoted as Π. The virus infects the uninfected cells
with a rate β (mL (RNA copies)−1 day−1). After a cell becomes infected, it behaves as a
virus-producing cell and produces viruses at a rate p (day−1), and are virus particle cleared
at a rate µ3 (day−1). The uninfected susceptible cells are cleared at a rate µ1 (day−1) due
to their natural apoptosis, and the infected cells are removed from the system at a rate µ2
(day−1) as a result of cytopathic viral effects and immune response [31].

Cytokine is vital in inhibiting viral replication and modulating downstream effects
of the immune response. Specific cytokines activate natural killer cells (NK), which act
against virally infected cells. In the case of SARS-CoV-2 infection, it is observed that viruses
often target the JaK/STAT pathway (i.e., a chain of interactions between proteins in a
cell) to decrease the production of IFNs. This immune suppressing mechanism observed
in SARS-CoV-2 can be represented in the functional form of a decrease in the cytokine
production rate, assumed to be αEI

V+θ . Cytokines activate the adaptive immune system,
mainly T cells and B lymphocytes, to produce an antibody that acts against the virus. B
cells mainly secrete IgM and IgG antibodies that are released from blood and lymph fluid
and neutralize the SARS-CoV-2 viral particles.



Vaccines 2022, 10, 1846 4 of 23

Considering the antibody responses A(t), we extend the antibody-response model
to include the depletion of viruses modeled via the term rAV. The extended model of (1)
reads as follows: 

dES
dt

= Π− βESV − µ1ES,

dEI
dt

= βESV − µ2EI ,

dV
dt

= pEI − µ3V − rVA,

dA
dt

=
αEI

V + θ
− µ4 A,

(2)

with the initial condition

ES(0) = ES0, EI(0) = EI0, V(0) = V0, A(0) = A0. (3)

The graphical representation of the above model is shown in Figure 1.

Figure 1. Conceptual diagram of Model (2). It shows the flowchart of antibody responses in SARS-
CoV-2 infection within a host.

Here, r is the rate at which the antibody neutralizes the viral particles, α is the antibody
simulation rate constant, and θ is the strength of antibody suppression, in which the
antibodies are lost at a rate of µ4.

We now impose impulsive drug dosing in the above model and analyze it in Section 4.
Impulsive differential equations result from drug effects; the metabolites are assumed

to decay with time in an exponential manner during each cycle and are assumed to change
instantaneously at dosing times tj for different drug doses, which can result in either
implicit or explicit models. In the presence of antibody-controlled therapy with perfect
adherence, we consider Model (2). Before analyzing the system, we first discuss the
one-dimensional impulse system as follows:
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dES
dt

= Π− βESV − µ1ES, t 6= tn (4)

dEI
dt

= βESV − µ2EI , t 6= tn

dV
dt

= pEI − µ3V − rVA, t 6= tn

dA
dt

=
αEI

V + θ
− µ4 A, t 6= tn,

dA
dt

= ζD +
αEI

V + θ
− µ4 A, t = tn,

dD
dt

= −µ5D, t 6= tn

D(t+n ) = ω + D(t−n ), t = tn.

D(t−n ) denotes the drug concentration immediately before the impulse drug dosing, D(t+n )
denotes the concentration after the impulses, and ω is the dose that is taken at each impulse
time tn, n ∈ N. Here, ζ is the rate at which antibodies are produced due to the use of a drug.

3. Dynamics of the Model without Impulses

In this section, basic properties such as nonnegativity and boundedness, basic repro-
duction number, and equilibrium points and their stability properties are analyzed.

3.1. Non-Negativity and Boundedness

In this section we investigate the non-negativeness of the state variables of the
Model (2) for all time t with initial condition (ES(0), EI(0), V(0), A(0) ∈ R4

+. To prove
the non-negativity property, we establish the following theorem.

Theorem 1. Model (2) with initial condition (3) satisfies ES(t) ≥ 0, EI(t) ≥ 0, V(t) ≥
0, A(0) ≥ 0 for all t > 0; then, Model (2) is positively invariant.

Proof. The first equation of Model (2) can be rewritten as

dES(t)
dt

= Π− βES(t)V(t)− µ1ES(t),

= Π− ξ1ES(t), (5)

where ξ1 = βV(t) + µ1. Integrating (5), we obtain

ES(t) = ES(0) exp(−
∫ t

0
ξ1(u)du) + Π exp(−

∫ t

0
ξ1(u)du

∫ t

0
(e
∫ t

0 ξ1(v)dv)du) > 0. (6)

This implies that ES(t) is nonnegative for all t. For the second equation of Model (2),
we have

dEI(t)
dt

≥ −µ2EI(t),

which gives

EI(t) ≥ EI(0) exp(−
∫ t

0
µ2du) > 0. (7)

The third equation of Model (2) can be written as

dV(t)
dt

= pEI(t)− µ3V(t)− rA(t)V(t),

= pEI(t)− ξ2V(t), (8)
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where ξ2 = µ3 + rA(t). Integrating (8), we obtain

V(t) = V(0) exp(−
∫ t

0
ξ2(u)du) + pEI(t) exp(−

∫ t

0
ξ2(u)du

∫ t

0
(e
∫ t

0 ξ2(v)dv)du) > 0. (9)

This implies that V(t) is non-negative for all t. In a similar way, for the last equation,
we can say that

dA(t)
dt

≥ −µ4 A(t),

which gives

A(t) ≥ A(0) exp(−
∫ t

0
µ4du) > 0. (10)

The above results show that all the solution trajectories of Model (2) are non-negative
for all t > 0.

To verify the boundedness of Model (2) with non-negative initial values, we use the
following theorem.

Theorem 2. Model (2) with the initial condition (3) is uniformly bounded in the positive invariant
set U , where

U =

{
(ES(t), EI(t), V(t), A(t)) ∈ R4

+|0 ≤ E ≤ Π
µ1

, 0 ≤ V(t) ≤ pΠ
µ1µ3

, 0 ≤ A(t) ≤ αΠ
µ1µ4θ

}
. (11)

Proof. From the positivity of the solution, we obtain

dES(t)
dt

= Π− µ1ES(t)− βES(t)V(t),

≤ Π− µ1ES. (12)

This implies that

lim
t→∞

sup ES(t) ≤
Π
µ1

. (13)

Now, E(t) = ES(t) + EI(t); then,

dE(t)
dt

= Π− µ1ES(t)− µ2EI(t),

≤ Π− µ(ES(t) + EI(t)) where, µ = min{µ1, µ2},
≤ Π− µE(t). (14)

Hence, we can write limt→∞ sup E(t) ≤ Π
µ1

.
From the third equation of (2), we also have

dV(t)
dt

= pEI(t)−
(

µ3 + rA(t)
)

V(t),

≤ pEI(t)− µ3V(t),

=⇒ dV(t)
dt

+ µ3V(t) ≤ pEI(t)

=⇒ dV(t)
dt

+ µ3V(t) ≤ p Π
µ1

=⇒ lim
t→∞

sup V(t) ≤ pΠ
µ1µ3

. (15)
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From the last equation of Model (2), we obtain

dA(t)
dt

=
αEI

V + θ
− µ4 A

≤αEI
θ
− µ4 A

This implies that
dA
dt

+ µ4 A ≤αEI
θ
≤ α

θ

(
Π
µ1

)
.

Hence,

lim
t→∞

sup A(t) ≤ αΠ
µ1µ4θ

.

Therefore, all the solution trajectories that start from R4
+ will enter the region U and

never leave it.

3.2. Basic Reproduction Number

The basic reproductive number (R0) is useful in estimating the ability of a new
pathogen to be transmitted. It is defined as the average number of secondary transmissions
from a single infected person. When R0 is less than one, then the disease (epidemic) does
not grow, but if it is greater than one, the disease grows. The basic reproductive number
has important implications for disease control. It indicates the level of mitigation efforts
needed to bring an epidemic under control [40].

The next-generation matrix method, introduced by Driessche, Pauline, and Watmough
in [41], is used to determine the basic reproduction number. For this purpose, we consider
the non-negative matrix G and non-negative M matrixH, which represents the production
of the new infection and its transportation, respectively. The viral dynamical system of (2)
is defined below:

G =

(
βESV

0

)
, H =

(
µ2EI

−pEI +
(

µ3 + rA
)

V

)
. (16)

Now, the matrix G and H can be written as

G =
[∂Gi

∂xj
(P̄)
]
, H =

[∂Hi
∂xj

(P̄)
]
, with, 1 ≤ i, j ≤ 2. (17)

Additionally, G is non-negative and H is a non-singular M matrix; all eigenvalues of
J4 have positive real parts.

For our system,

G =
[ 0 βES

0 0

]
P̄
=
[ 0 βΠ

µ1

0 0

]
, (18)

H =
[ µ2 0
−p µ3 + rA

]
P̄
=
[ µ2 0
−p µ3

]
. (19)

Therefore, the basic reproduction number, denoted by R0, is the spectral radius of the
next generation matrix and is obtained as

R0 = ρ(GH−1) =
pβΠ

µ1µ2µ3
. (20)

Remark 1. Notice that the basic reproduction number R0 is proportional to the infection rate β
and replication rate p, and inversely proportional to the death rate of the virus µ3. Therefore, the
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disease can be managed by reducing the infection rate and replication rate p or increasing the death
rate of the virus. This can be done using antiviral drugs. We adopted impulsive periodic application
of antiviral drugs.

3.3. Existence of Equilibrium Points

Model (2) has two equilibria: (i) the disease-free equilibrium P̄( Π
µ1

, 0, 0, 0) and (ii) the
endemic equilibrium point P∗(E∗S, E∗I , V∗, A∗), where

E∗S =
Π

βV∗ + µ1
, E∗I =

ΠβV∗

µ2(βV∗ + µ1)
, A∗ =

αβΠV∗

µ2µ4(V∗ + θ)(βV∗ + µ1)
, (21)

and V∗ satisfies the equation

b0V∗2 + b1V∗ + b2 = 0, (22)

where

b0 = µ2µ3β,

b1 = µ2µ3(β θ + µ1)−Π β p +
Π α β r

µ4
, (23)

b2 = θ (−Π β p + µ1µ2µ3),

= θµ1µ2µ3(1− R0). (24)

We have the following Theorem:

Theorem 3. When R0 > 1, one and only one endemic equilibrium P∗ exists. For R0 < 1, there
may exist two endemic points.

Proof. From Equation (22), it is clear that b0 > 0 and b2 > 0 if R0 < 1. Furthermore, if
R0 > 1, then b2 < 0. Using Descartes’ rule of signs, we can say that there exist a unique
endemic equilibrium if b2 < 0 and two positive endemic equilibrium if b2 > 0, b1 < 0
and b2

1 − 4b0b2 > 0.

Remark 2. Moreover, a transcritical bifurcation occurs when b2 = 0; i.e., R0 = 1 and b1 < 0 with
b2

1 − 4b0b2 = 0 (the point where two positive endemic equilibrium coincide with each other and
leave the stable disease-free equilibrium point.)

3.4. Stability of Equilibrium Points

In this section, we discuss the local and global stability of the equilibrium points.
For the stability of disease-free equilibrium, we have the following theorem.

Theorem 4. The disease-free equilibrium P̄( Π
µ1

, 0, 0, 0) is locally asymptotically stable for R0 < 1;
when R0 > 1, the disease-free system becomes unstable.

Proof. To verify the local asymptotic stability at P̄, we compute the Jacobian matrix of (2)
around P̄ as given below

JP̄ =


−µ1 0 − β π

µ1
0

0 −µ2
β π
µ1

0

0 p −µ3 0

0 α
θ 0 −µ4

. (25)
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The characteristic equation from det(JP̄ − λI4) = 0 is∣∣∣∣∣∣∣∣∣∣∣∣

λ + µ1 0 β π
µ1

0

0 λ + µ2 − β π
µ1

0

0 −p λ + µ3 0

0 − α
θ 0 λ + µ4

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

that is,

(λ + µ1)(λ + µ4)

(
λ2 + (µ2 + µ3)λ +

1
µ1

(µ1µ2µ3 − π β p)
)
= 0,

with two eigenvalues λ1 = −µ1 < 0 and λ2 = −µ4 < 0; the rest of the spectrum is given
by the roots of the transcendental equation

λ2 + a1λ + a2 = 0,

where a1 = µ2 + µ3, a2 = µ2µ3(1− R0). Here, a1 = µ2 + µ3 > 0 and a2 > 0 if R0 < 1,
which suggest that the two roots are negative real roots or have negative real parts. Hence,
the disease-free equilibrium is locally asymptotically stable if R0 < 1, and unstable if
R0 > 1.

We have already proven that when R0 < 1, the disease-free equilibrium P̄ is locally
asymptotically stable. Now, we verity the global stability of P̄. For this purpose, we
construct the Lyapunov function following [42,43]. We have the following theorem for the
global stability of P̄.

Theorem 5. The disease-free equilibrium P̄ is globally asymptotically stable if R0 < 1 and it is a
unique equilibrium. Otherwise, P̄ is unstable and a unique endemic equilibrium P∗ exists.

The proof of Theorem 5 is provided in Appendix A.
Now, we analyze the transcritical bifurcation between the disease-free and the endemic

equilibrium points. We have the following theorem for this analysis.

Theorem 6. The system exhibits forward transcritical bifurcation when R0 = 1.

Proof. To prove this theorem, we use the approach used by Castillo-Chavez and Song,
2004 [44] of applying the center manifold theory to analyze the dynamics of Model (2). The
variables of Model (2) are transformed as x1 = ES, x2 = EI , x3 = V, x4 = A, and the total
population n = ∑4

i=1 xi. Now, we define X = (x1, x2, x3, x4)
T such that Model (2) can be

rewritten as dX
dt = F(x), where F = ( f1, f2, f3, f4) Hence, Model (2) becomes:

f1 =
dx1

dt
= Π− βx1x3 − µ1x1,

f2 =
dx2

dt
= βx1x3 − µ2x2,

f3 =
dx3

dt
= px2 −

(
µ3 + rx4

)
x3,

f4 =
dx4

dt
=

αx2

x3 + θ
− µ4x4.

(26)

At R0 = 1, we choose the bifurcation parameter β̃ such that

β̃ = β∗ =
µ1µ2µ3

Πp
. (27)
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Then, the Jacobian matrix of Equation (26) at the disease-free equilibrium P̄ is given by

JP̄ =


−µ1 0 − β∗ π

µ1
0

0 −µ2
β∗ π
µ1

0

0 p −µ3 0

0 α
θ 0 −µ4

. (28)

To compute the right eigenvectors, w = (w1, w2, w3, w4)
T , we consider the system

Jw = 0

−µ1w1 −
β π w3

µ1
=0,

−µ2w2 +
β π w3

µ1
=0,

pw2 − µ3w3 =0,
α w2

θ
− µ4w4 =0.

(29)

From Equation (29), we obtain

w1 = − β∗Π
µ2

1
w3, w2 =

β∗Π− µ1µ3

µ1(p− µ2)
w3, w4 =

α

θµ4

(
β∗Π− µ1µ3

µ1(p− µ2)

)
w3.

Next, we compute the left eigenvector, v = (v1, v2, v3, v4) from vJ = 0 and the system
becomes

−µ1v1 =0,

−µ2v2 + pv3 +
α

θ
v4 =0,

− β∗Π
µ1

v1 +
β∗Π
µ1

v2 − µ3v3 =0,

−µ4v4 =0.

(30)

From Equation (30), we obtain

v1 = v4 = 0, v2 =
µ1(µ3 − p)
β∗Π− µ1µ2

v3,

where v3 is calculated to ensure that the eigenvectors satisfy the condition vẇ = 1. Since
the first and fourth component of v are zero, we do not need the derivatives of f1 and f4.
From the derivatives of f2 and f3, the only ones that are nonzero are the following:

∂2 f1

∂x1∂x3
=

∂2 f1

∂x3∂x1
= −β∗,

∂2 f2

∂x1∂x3
=

∂2 f2

∂x3∂x1
= β∗

∂2 f3

∂x3∂x4
=

∂2 f3

∂x4∂x3
= −r,

∂2 f4

∂x2∂x3
=

∂2 f4

∂x3∂x2
= − α

θ2

with
∂2 f1

∂x3∂β∗
= −Π

µ1
,

∂2 f2

∂x3∂β∗
=

Π
µ1

All the other partial derivatives are zero. The direction of the bifurcation at R0 = 1 is
determined by the signs of the bifurcation coefficients a and b, obtained from the above
partial derivatives, given respectively by:
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a =w1v1v3
∂2 f1

∂x1∂x3
+ w1v3v1

∂2 f1

∂x3∂x1
+ w2v1v3

∂2 f2

∂x1∂x3
+ w2v3v1

∂2 f2

∂x3∂x1

+ w3v3v4
∂2 f3

∂x3∂x4
+ w3v4v3

∂2 f3

∂x4∂x3
+ w4v2v3

∂2 f4

∂x2∂x3
+ w4v3v2

∂2 f4

∂x3∂x2

=− w1(v1v3 + v3v1)β∗ − w2(v1v3 + v3v1)β∗ − w3(v3v4 + v4v3)r− w4(v2v3 + v3v2)
α

θ2

<0

and

b =w1v3
∂2 f1

∂x3∂β∗
+ w2v3

∂2 f2

∂x3∂β∗

=
pΠ

µ1µ2
w2v3 > 0.

Therefore, Model (2) exhibits forward bifurcation at R0 = 1.

Remark 3. In case of reinfection, the global stability of the endemic equilibrium P∗ is not guaranteed
when R0 > 1; this is due to some external factors. In the next subsection, we deal with the global
stability of Model (2) at the endemic equilibrium point P∗ when R0 > 1.

Now, we study the stability of P∗.

Theorem 7. Model (2) is locally asymptotically stable at P∗ if R0 > 1; otherwise, it is unstable.

Proof. At the endemic equilibrium P∗, the Jacobian matrix of Model (2) is given by:

J(P∗) =


−β V∗ − µ1 0 −β Es∗ 0

β V∗ −µ2 β Es∗ 0

0 p −A∗r− µ3 −rV∗

0 α
V∗+θ − α Ei∗

(V∗+θ)2 −µ4

 (31)

The characteristics in λ at the endemic equilibrium P∗ are given by

λ4 + σ1λ3 + σ2λ2 + σ3λ + σ4 = 0. (32)

where

σ1 =rA + Vβ + µ1 + µ2 + µ3 + µ4,

σ2 =
(

β (Ar + µ2 + µ3 + µ4)V3

+ (2 β (Ar + µ2 + µ3 + µ4)θ + (Ar + µ1 + µ3 + µ4)µ2 + (Ar + µ1 + µ3)µ4 − pEs β + µ1(Ar + µ3))V2

+
(

β (Ar + µ2 + µ3 + µ4)θ
2 + ((2 Ar + 2 µ1 + 2 µ3 + 2 µ4)µ2 + (2 Ar + 2 µ1 + 2 µ3)µ4 − 2 pEs β + 2 µ1(Ar + µ3))θ − Eirα

)
V

+ ((Ar + µ1 + µ3 + µ4)µ2 + (Ar + µ1 + µ3)µ4 − pEs β + µ1(Ar + µ3))θ
2),

σ3 =((Ar + µ2 + µ3)µ4 + µ2(Ar + µ3))β V3

+ (2 ((Ar + µ2 + µ3)µ4 + µ2(Ar + µ3))β θ + ((Ar + µ1 + µ3)µ2 − pEs β + µ1(Ar + µ3))µ4 + µ1(Ar + µ3)µ2 − (α (Ei − Es)r + pEsµ1)β)V2

+
(
((Ar + µ2 + µ3)µ4 + µ2(Ar + µ3))β θ2 + (((2 Ar + 2 µ1 + 2 µ3)µ2 − 2 pEs β + 2 µ1(Ar + µ3))µ4 + 2 µ1(Ar + µ3)µ2 − 2 Es(pµ1 − 1/2 rα)β)θ − Eirα (µ2 + µ1)

)
V

+ (((Ar + µ1 + µ3)µ2 − pEs β + µ1(Ar + µ3))µ4 + (µ2(Ar + µ3)− pEs β)µ1)θ
2

σ4 =µ2µ4 β (Ar + µ3)V3

+ ((2 (β θ + 1/2 µ1)(Ar + µ3)µ2 − pβ Esµ1)µ4 − rβ α (Eiµ2 − Esµ1))V2

+ (((β θ + 2 µ1)(Ar + µ3)µ2 − 2 pβ Esµ1)θ µ4 − rα µ1(−β θ Es + Eiµ2))V

+ (µ2(Ar + µ3)− pEs β)µ4µ1θ2
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Clearly, σ1 > 0. Thus, using the Routh–Hurwitz criteria, we can say that the equilib-
rium P∗ of Model (2) is locally asymptotically stable if the following relations are true:

σ2 > 0, σ3 > 0, σ4 > 0, σ1σ2 − σ3 > 0 (33)

σ1σ2σ3 − σ2
3 − σ4σ2

1 > 0. (34)

We now analyze the global stability of Model (2) for the endemic equilibrium point
P∗ when R0 > 1. To show this, we use a Dulac function. We prove the global stability of
endemic equilibrium in the following theorem.

Theorem 8. When R0 > 1, Model (2) is globally asymptotically stable at the endemic equilibrium
point P∗.

The proof of the above theorem is given in Appendix B.

4. Dynamics of the System with Impulsive Drug Dosing
4.1. Dynamics of the Drug

To analyze the dynamics of the drug dosing, we first analyze the following sub-system.

dD
dt

= −µ5D, t 6= tn

∆D = ω, t = tn (35)

where ∆ = D(t+n )−D(t−n ). Let τ = tk+1− tn be the period of the drug dosing. The solution
of Equation (35) is

D(t) = D(t+n )e
−µ5(t−tn), for tn < t ≤ tk+1. (36)

In the presence of impulsive dosing, we can obtain the recursion relation at the
moments of impulse, as written below:

D(t+n ) = D(t−n ) + ω.

Thus, the concentrations of the drug before and after the impulse are obtained respec-
tively as

D(t+n ) =
ω(1− e−kτµ5)

1− e−τµ5
(37)

and

D(t−k+1) =
ω(1− e−kτµ5)e−τµ5

1− e−τµ4
. (38)

Thus, the limiting value of the drug concentration before and after one cycle are

lim
k→∞

D(t+n ) =
ω

1− e−τµ5
and lim

k→∞
D(t−k+1) =

ωe−τµ5

1− e−τµ5

and

D(t+k+1) =
ωe−τµ5

1− e−τµ5
+ ω =

ω

1− e−τµ5
,

respectively.
We now require the following definitions and lemmas for this study [45,46]:

Definition 1. Let Λ ≡ (ES, EI , V, A, D), B0 = [B : R5
+ → R+]; then, we say that B belongs to

class B0 if the following conditions hold:
(i) B is continuous on (tn, tk+1]× R5

+, n ∈ N, and for all Λ ∈ R5,
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lim(t,µ)→(t+n ,Λ) B(t, µ) = B(t+n , Λ) exists;
(ii) B is locally Lipschitzian in Λ.

Lemma 1. Let Z(t) be a solution of the system (4) with Z(0+) ≥ 0. Then, Zi(t) ≥ 0, i = 1, . . . , 5
for all t ≥ 0. Moreover, Zi(t) > 0, i = 1, . . . , 5 for all t > 0 if Zi(0+) > 0, i = 1, . . . , 5.

Lemma 2. There exists a constant γ such that ES(t) ≤ γ, EI(t) ≤ γ, V(t) ≤ γ D(t) ≤ γ for
each and every solution Z(t) of Model (4) for all sufficiently large t.

Lemma 3. Let assume that B ∈ B0 and also let

D+B(t, Z) ≤ j(t, B(t, Z(t))), t 6= tn,

B(t, Z(t+)) ≤ Φn(B(t, Z(t))), t = tn,

where j : R+ × R+ → R is a continuous function in (tn, tk+1] for e ∈ R2
+, n ∈ N, the limit

lim(t,V)→(t+n ) j(t, g) = j(t+n , x) exists, and Φi
n(i = 1, 2) : R+ → R+ is non-decreasing. Let y(t)

be a maximal solution of the following impulsive differential equation:

dx(t)
dt

= j(t, x(t)), t 6= tn, (39)

x(t+) = Φn(x(t)), t = tn, x(0+) = x0,

existing on (0+, ∞). Then, B(0+, Z0) ≤ x0 implies that B(t, Z(t)) ≤ y(t), t ≥ 0 for any
solution Z(t) of Model (4). If j satisfies additional smoothness conditions to ensure the existence
and uniqueness of solutions for (39), then y(t) is the unique solution of (39).

The lemmas provided above give the following result:

Lemma 4. Model (35) has a unique positive periodic solution D̃(t) with period τ and can be
written as

D̃(t) =
ω exp(−µ5(t− tn))

1− exp(−τµ5)
, tn ≤ t ≤ tk+1, D̃(0+) =

µ5

1− exp(−τµ5)
. (40)

In the above section, we discussed perfect drug dosing. Now, we discuss imperfect
drug dosing in the following subsection.

4.1.1. Impact of Imperfect Drug Dosing

Suppose a COVID-19 patient during the treatment stage takes a drug holiday after
taking n = n1 doses. Let us assume a positive quantity D1, which denotes the minimum
difference between the concentration of the drug after n = n1 doses and the normal
concentration of drug D2.

Our consideration is based on the assumption that a patient usually misses his perfect
drug dose when he achieves the almost cured stage. Thus, COVID-19 patients can take a
drug holiday after taking n1 doses when the difference between the drug concentrations
after n = n1 doses and normal threshold Ã is less than a chosen small positive number, D1.
Thus, we must have

D(t+n1
) ≥ D2 − D1. (41)

A patient may take a drug holiday once the drug concentration reaches a periodic
orbit. Suppose h1 doses are subsequently missed; then, we impose the condition that the
drug concentration reach a high level and the patient can realize that the further treatment
is highly needed.

Now, we assume that the difference between the present drug concentration and its
possible maximum response is less or equal to a small positive number (ε). Therefore,
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the inequality D(t−n1+h1
) ≥ Dmax − ε allows us to find the maximum number of doses a

patient can miss.
Suppose a patient has missed h1 doses. Now, in order to keep the drug concentration

above D2 after n2 doses are taken, a new condition must be applied that forces the drug
concentration level to D3 away from the D2. The condition is that the following that must
be satisfied:

D(t+n1+h1+n2
) ≥ D2 − D3. (42)

From (A4), n2 can be determined. However, the calculations for determining n2 are
complicated. One can see [47] for detailed analysis. We determine n2 from numerical
simulations.

4.2. Dynamics of the Impulsive System (4)

Using the result in Lemma 4, we establish the following theorem.

Theorem 9. The disease-free periodic orbit (ẼS, 0, 0, Ã, D̃) of Model (2) is locally asymptotically
stable if

R̃0 < 1 (43)

where

R̃0 =
µ2

pβ τ

∫ τ

0

(µ3 + rÃ)

ẼS
dt.

Proof. Let the disease-free periodic solution of Model (4) be denoted by P̃(ẼS, 0, 0, Ã, D̃),
where

D̃(t) =
ω exp(−µ5(t− tn))

1− exp(−τµ5)
, tn ≤ t ≤ tk+1,

with the initial condition D(0+) as in Lemma 4.
We now test the stability of the disease-free equilibrium point. The variational matrix

M(t) at the disease-free periodic orbit P̃(ẼS, 0, 0, Ã, D̃) is calculated as

M(t) = [mij] =



−µ1 0 0 − βẼS 0

0 −µ2 βẼS 0 0

0 p −µ3 − rÃ 0 0

0 α
θ 0 − µ4 ζ

0 0 0 0 − µ5


.

The monodromy matrix P of the variational matrix M(t) is

P(τ) = In exp
(∫ τ

0
M(t)dt

)
,

where In is the identity matrix.
The monodromy matrix can be rewritten as P(τ) = diag(σ1, σ2, σ3, σ4), where

σi, i = 1, 2, 3, 4, are the Floquet multipliers, determined as

σ1 = exp(−µ1τ), σ2,3 = exp
(∫ τ

0

1
2

[
−A±

√
a2 − 4b

]
dt
)

,

σ4 = exp(−µ4τ), σ5 = exp(−µ5τ).
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Here, a = µ2 + µ3 + Ã and b = µ2(µ3 + Ã) − pβẼS. It is noted that σ1,4,5 < 1.
Furthermore, we check that a2− 4b > 0. Now, if b ≥ 0 holds, then we obtain σ2,3 < 1. Thus,
according to Floquet theory, the disease-free periodic orbit P̃(ẼS, 0, 0, Ã, D̃) of Model (4) is
asymptotically stable if the conditions given in (43) are true.

There exists another periodic orbit P(ẼS, ẼI , Ṽ, Ã, D̃) of impulsive Model (4). We
analyze its dynamics through numerical simulation.

5. Numerical Simulation

In this section, we study the mathematical models (2) through numerical simulation.
The values of the model parameters used in the numerical simulations are taken from
Table 1; some are varied for to study different dynamical regimes.

For the dynamical simulation of the model without drugs (i.e, Model (2)), we take the
initial conditions as: H(0) = 4× 105 cells mL−1, I(0) = 5× 10−4 cells mL−1, V(0) = 300
RNA copies mL−1, and A = 0 molecules mL−1.

Figure 2 describes the forward bifurcation of Model (2) using Theorem 6 and the
parameters value in Table 1. When R0 > 1, the endemic equilibrium exists. The disease-free
state loses its stability when R0 > 1.
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Figure 2. (a,b) Forward bifurcation diagram of Model (2) using Theorem 6. Red curves represent
stable disease-free equilibria (DFE) and the black-dashed line denotes stable endemic equilibria (EE).

The disease-free equilibrium is stable when R0 < 1, while the endemic equilibrium
starts to rise with R0 > 1 (Theorem 4). Figure 3 represents a region of stability of the
equilibrium points in parametric planes. In Figure 3a, as both β and p increase from lower
to higher values, the disease equilibrium becomes unstable in the region where R0 > 1,
and the endemic state becomes feasible. In Figure 3b, we observe that as the clarence rate
of the viral load is increased, the area of stability of the disease-free state is increased. This
can be accomplished using drug dosing.

Figure 3. Region of stability of disease-free equilibrium (DFE) and endemic equilibrium (EE) shown
in (a) β− p, (b) β− µ3 parameter planes. Color represents the value of R0. DFE is stable for R0 < 1
and unstable for R0 > 1. EE exists and is stable for R0 > 1.
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Table 1. Short descriptions and values of the parameters of Models (2) and (4).

Parameters Short Description Value (Unit) References

Π Growth rate of epithelial cells 4× 103 cells mL−1 day−1 [48]

µ1
Natural death rate of

uninfected epithelial cells 0.2 day−1 [11,48]

µ2
Blanket death rate of infected

epithelial cells 0.65 day−1 [11]

β Rate of infection (5–561) ×10−9 [24,31]
mL (RNA copies)−1 day−1

p Growth rate of virus in cells 8.2–525 day−1 [48]
µ3 Virus clearance rate (0–1) day−1 [24]

α
Rate of antibody response

from immune cells 0–1 day−1 [48]

r Viral particles’ rate of
neutralization by antibodies 0–1 mL (molecules)−1 day−1 [48]

θ
Half-maximal simulation

threshold 0.5 (RNA copies) ml−1 [48]

µ4 Antibody clearance rate 0.07 day−1 [48]

ζ
Antibody production rate by

drug 6 molecules day−1 gm−1 Assumed

µ5 Decay rate of drug 0.1 mg day−1 Assumed

Figure 4 shows the solution trajectories with time. For the set of values used, R0 is
greater than one. That means the system is in an endemic state. Now, as the infection rate
is increased, susceptible cells decrease and both the infected cell population and the viral
load increase accordingly (Figure 5).
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Figure 4. (a–d) Numerical solution of Model (2) for the set of parameters in Table 1.
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Figure 5. (a–c) Steady-state values of the populations plotted as function of β. Parameter values are
same as in Figure 4.

Figure 6 shows that the phase trajectories converge to the same point (endemic equi-
librium point), though the initial values are different. From this, we can conclude that the
endemic equilibrium is globally asymptotically stable.
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Figure 6. Phase portraits plotted in ES − EI − V phase-space with different initial conditions and
R0 > 1.

The numerical solution of Model (4) is plotted in Figure 7. The virus population is
increasing, whereas susceptible cell density decreases due to the infection. Without drug
application, the antibody response is low (Figure 7b) and, thus, infected cells or viruses
are increased.

Numerical solutions of the impulsive system for dosing rates (ω = 100 mg) are plotted
in Figure 7 for a fixed impulse interval τ = 7 day. We may conclude that for quick recovery,
higher doses should be taken. Figure 8 plots two different intervals of impulses. We can see
that the lower interval (τ = 7 day) is capable of achieving disease-free periodic orbit sooner
than the higher interval, in τ = 14 days. Additionally, we found that with a higher interval
of impulse (τ = 14 days) with higher dosing (200 mg), the system does not converge to the
disease-free periodic orbit (Figure 8).
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Figure 7. (a,b) Numerical solutions of impulsive Model 4 with treatment (ω = 60, τ = 7) and
without treatment.
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Figure 8. (a,b) Solutions of impulsive Model (4) shown for impulse interval τ = 7 days with dosing
rate ω = 100 mg (blue line), and impulse interval of τ = 14 days with dosing rate ω = 200 mg
(green line).

In Figure 9, we can observe the dynamics of the drug for imperfect drug dosing
corroborated with the Section 4.1.1. In order to show the impact of taking drug holidays,
we find the time at which a SARS-CoV-2 patient can take the required number of doses
and then miss the maximum number of doses. From this figure, we obtain the number
of possible maximum drug holidays during the treatment period for a fixed drug dose
and dosing interval. Taking the drug dose ω = 100 mg and a dosing interval τ = 7 day,
the maximum number of holidays is fourteen days; i.e., two doses can be missed after 9
doses (n1 = 9). This figure also shows that after two consecutive drug holidays (h1 = 2),
if the patient again takes five doses (i.e., n2 = 5), then the antibody response will gain its
previous equilibrium position (periodic orbit).
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Figure 9. Dynamics of the drug with and without drug holidays, taking an impulse interval of
(τ = 7 days) and a fixed drug dosing of ω = 100 mg with two consecutive drug holidays, h1 = 2.

6. Discussion and Conclusions

In this study, we used classical susceptible or uninfected cells, infected cells, and virus
population in the presence of adaptive immune responses as a functional form. More
attention is given to antibody-response modeling and the role of immune responses against
the invading SARS-CoV-2 virus in our respiratory system, which is the primary target area.

We computed the basic reproduction number R0 for our model. We observed that
the model system has two equilibrium points; one is disease-free equilibrium (P̄) and the
other is endemic equilibrium (P∗). The disease-free equilibrium is stable asymptotically
when the basic reproduction number R0 is below the unity. When R0 is greater than unity,
the disease-free equilibrium becomes unstable and endemic equilibrium becomes feasible.
Here, R0 = 1 is the forward transcritical bifurcation point at which the system switches its
stability from disease-free to endemic equilibrium.

Finally, we studied the effects of taking the drug in impulsive mode and with holidays
during treatment. The numerical simulation of an impulse dosing interval of τ = 7 days
and ω = 100 mg dosing rate can achieve a disease-free state in a short time. This study
also shows that for a short treatment period, instead of taking the drug at every one-day
interval for the entire length of the induction period, it would be better if the patient takes
two one-day drug holidays after taking the first twenty-two doses.

In a nutshell, the proposed impulsive mathematical model is functional. It successfully
describes the dynamics of SARS-CoV-2 within humans. The results obtained from this
study can further guide development of a cost-effective drug regimen for SARS-CoV-2
patients with fewer side effects.
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Appendix A

Proof of Theorem 5 is given below:

Proof. In the absence of SARS-CoV-2, the uninfected epithelial cell ES satisfies the equation

dES(t)
dt

= Π− µ1ES(t). (A1)

The solution of the Equation (A1) is

ES(t) =
Π
µ1
−
(Π

µ1
− ES(0)

)
e−µ1t. (A2)

It follows that ES(t)→ Π
µ1

when t→ ∞. If the initial value satisfies ES(0) < Π
µ1

, then

all the trajectories remain below Π
µ1

. Additionally, if the initial value satisfies ES(0) > Π
µ1

,

then all the trajectories remain above Π
µ1

.

Let us assume ES(t) ≤ Π
µ1

; i.e., initial values are at or below the steady state. This can
be proven in our global asymptotic stability at disease-free equilibrium P̄.

We assume a Liapunov function in the following form

LE (t) = AEI(t) + BV(t), (A3)

where A and B are both positive.
Then, the derivative of Liapunov function is

dLE (t)
dt

= AdEI(t)
dt

+ B dV(t)
dt

,

= A(βESV − µ2EI) + B{pEI −
(
µ3 + rA

)
V},

≤ (A βΠ
µ1
−Bµ3)V + (Bp−Aµ2)EI . (A4)

Let A = 1, B = βΠ
µ1µ2

; then,

dLE (t)
dt

≤ (
pβΠ
µ1µ3

− µ2)EI ,

≤ pβΠ
µ1µ2µ3

(R0 − 1)EI . (A5)

Then, we have dLE
dt ≤ 0 when R0 ≤ 1, and dLE

dt = 0 implies EI = 0 when t → ∞.
Disease-free equilibrium is globally asymptotically stable when R0 ≤ 1 by the Liapunov–
Lasalle theorem [49]. This completes the proof.

Appendix B

Proof of Theorem 8 is given below:

Proof. Let us assume the existence of endemic equilibrium point P∗; the following function
is defined in R4

+. We now consider the Dulac function in the following form [50]:

D =
1

ESEI
. (A6)
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We use (26) for the endemic equilibrium point P∗. Then,

∂(D f1)

∂ES
= − Π

E2
SEI

< 0,

∂(D f2)

∂EI
= − βV

E2
I
< 0, (A7)

∂(D f3)

∂V
= −u3 + rA

EI
< 0 (A8)

∂(D f4)

∂A
= − µ4

ESEI
< 0. (A9)

Then,

∂(D f1)

∂ES
+

∂(D f2)

∂EI
+

∂(D f3)

∂V
+

∂(D f4)

∂A
= − Π

E2
SEI
− βV

E2
I
− u3 + rA

EI
− µ4

ESEI
, (A10)

which is clearly negative. Thus, all solutions of Model (2) tend to one equilibrium point
globally.
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