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Abstract: The emergence of antibiotic resistance in bacterial species is a major threat to public health 

and has resulted in high mortality as well as high health care costs. Burkholderia mallei is one of the 

etiological agents of health care-associated infections. As no licensed vaccine is available against the 

pathogen herein, using reverse vaccinology, bioinformatics, and immunoinformatics approaches, a 

multi-epitope-based vaccine against B. mallei was designed. In completely sequenced proteomes of 

B. mallei, 18,405 core, 3671 non-redundant, and 14,734 redundant proteins were predicted. Among

the 3671 non-redundant proteins, 3 proteins were predicted in the extracellular matrix, 11 were pre-

dicted as outer membrane proteins, and 11 proteins were predicted in the periplasmic membrane.

Only two proteins, type VI secretion system tube protein (Hcp) and type IV pilus secretin proteins,

were selected for epitope prediction. Six epitopes, EAMPERMPAA, RSSPPAAGA, DNRPISINL,

RQRFDAHAR, AERERQRFDA, and HARAAQLEPL, were shortlisted for multi-epitopes vaccine

design. The predicted epitopes were linked to each other via a specific GPGPG linker and the

epitopes peptide was then linked to an adjuvant molecule through an EAAAK linker to make the

designed vaccine more immunologically potent. The designed vaccine was also found to have fa-

vorable physicochemical properties with a low molecular weight and fewer transmembrane helices.

Molecular docking studies revealed vaccine construct stable binding with MHC-I, MHC-II, and

TLR-4 with energy scores of −944.1 kcal/mol, −975.5 kcal/mol, and −1067.3 kcal/mol, respectively.

Molecular dynamic simulation assay noticed stable dynamics of the docked vaccine-receptors com-

plexes and no drastic changes were observed. Binding free energies estimation revealed a net value

of −283.74 kcal/mol for the vaccine-MHC-I complex, −296.88 kcal/mol for the vaccine-MHC-II com-

plex, and −586.38 kcal/mol for the vaccine-TLR-4 complex. These findings validate that the designed

vaccine construct showed promising ability in terms of binding to immune receptors and may be

capable of eliciting strong immune responses once administered to the host. Further evidence from

experimentations in mice models is required to validate real immune protection of the designed

vaccine construct against B. mallei.

Keywords: Burkholderia mallei; multi-epitopes vaccine; molecular dynamics simulation; TLR-4 

1. Introduction

Antibiotic resistance by bacterial pathogens is an emerging public health problem 

that affects medical care all over the world. Antibiotics play an important role in the fight 
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against infectious diseases. In the last few decades, antimicrobials have been misused, 

which has resulted in the evolution of novel resistance mechanisms and increased spread 

of multi-drug resistance pathogens [1]. Among antibiotic resistant pathogens, Burkholderia 

mallei is an emerging bacterial pathogen that needs immediate attention [2]. B. mallei is a 

Gram-negative, pathogenic bacterium belonging to the Burkholderiaceae family. Morpho-

logically it is a bipolar and obligatory aerobe [3]. It is considered a sub-species of B. pseu-

domallei due to its genome homology as determined by multi-locus sequence typing. B. 

pseudomallei is the causative agent of melioidosis, which is a severe infection of humans 

and animals that targets the skin and cause acute septicemia. B. mallei causes glanders in 

horses, mules, and donkeys; these solipeds also serve as a reservoir for transmission of 

infection into humans [4]. Glanders transmission occurs by direct and indirect contact 

with fomites. Humans are also infected by close contact with infected animals or labora-

tory cultures. Zoonotic infection is characterized by septicemia, chronic infection of the 

skin, and pneumonia [5]. B. pseudomallei and B. mallei show resistance to several antibiot-

ics, and their mechanism of resistance has also been determined. B. mallei is mainly re-

sistant to ciprofloxacin, co-amoxiclav, chloramphenicol, avibactam, and rifampin. The 

mechanism of ceftazidime resistance involves the loss of penicillin-binding protein and a 

mutation in genes that codes for beta-lactamase enzyme [6]. 

The immunity against B. mallei depends on the activation of innate immune response; 

the mechanism of activation of adaptive response against B. mallei remains unclear in 

glanders infection. The mechanism of the innate immune response against B. mallei in-

cludes both cellular and non-cellular or acute phase pathways [7]. Cellular pathways com-

prise intracellular ubiquitination and actin–cytoskeleton rearrangement. Signaling mole-

cules of the immune system including interferon, tumor necrosis factor, and Toll-like re-

ceptors play vital roles in the activation of innate immune responses. Modifications in B. 

mallei lipopolysaccharide (LPS), particularly in the lipid A portion, induce immune re-

sponses via TLR-4 activations that assist in persistent infection [8]. 

A vaccine is an alternative way to reduce the spread of infectious disease. In several 

infectious cases, conventional vaccinology fails to make a good vaccine against pathogens 

that are unable to be grown in vitro [9]. A conventionally developed vaccine also lacks 

potency against antigenically variable strains [10]. Additionally, culture base vaccine for-

mulation is very costly, time-consuming, and requires many laboratory resources [11]. In 

the recent past, bioinformatics and genomics have proved successful in the prediction of 

possible vaccine candidates in bacterial genomes [12]. Advances in bioinformatics, im-

munoinformatic, and reverse vaccinology pipelines are now commonly used in the area 

of vaccine candidate’s prioritization and vaccine designing [13]. Reverse vaccinology (RV) 

is a methodology employed for the prediction of good vaccine targets from a pathogen’s 

genome [14] and has been successfully used in the development of meningococcal 

serogroup B (4CMenB) [15]. Pan-genomic reverse vaccinology (PGRV) in particular is 

more efficient compared to pasture base vaccinology as PGRV predicts vaccine targets 

from the core proteome, which are considered promising broad-spectrum targets [16]. 

As B. mallei is an emerging bacterial pathogen and its antibiotic resistance pattern is 

expanding, urgent efforts are needed to devise new therapeutic strategies against this 

pathogen. Additionally, no vaccine is yet available which may further limit effective ther-

apy against the bacteria. In this research, we applied RV and immunoinformatics ap-

proaches to design an in silico based multi-epitopes-based vaccine construct against B. 

mallei. In this process, the pathogen core proteome was identified, followed by prediction 

of potential vaccine proteins by considering multiple vaccine filters. The vaccine targets 

were then subjected to epitope mapping to predict potential B and T-cell epitopes. A chi-

meric vaccine containing multiple epitopes was then constructed. Biophysics techniques 

were then applied to the vaccine to understand its binding and dynamics behavior with 

immune receptors such as TLR-4, MHC-I, and MHC-II. The designed vaccine construct 

may be helpful for experimental scientists to develop an effective vaccine against B. mallei. 
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2. Research Methodology 

The methods used for designing of a multi-epitope-based vaccine construct against 

B. mallei are schematically presented in Figure 1.  

  

Figure 1. Schematic representation of research methodology followed for vaccine construction 

against B. mallei. 

2.1. Complete Proteome Extraction, BPGA Analysis, and Subtractive Proteomics Filters  

The study was initiated by retrieval of the complete proteome of the pathogen strains 

from the National Center of Biotechnology Information (NCBI) [17]. Then, bacterial pan-

genome analysis (BPGA) (http://pgaweb.vlcc.cn/ (accessed on 2 March, 2022)) was per-

formed in order to retrieve core sequences. The core sequences were further processed 

with a redundancy check using the CD-HIT online webserver [18]. In CD-HIT analysis, 

all the duplicated proteins were removed and non-redundant proteins were further pro-
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cessed for subcellular localization analysis using the online webserver PSOSRTb [19]. Af-

ter subcellular localization analysis, virulent factor data base (VFDB) analysis was per-

formed using the VFDB online webserver [20]. Only proteins with bit score ≥ 100 and 

sequence identity ≥ 30% were chosen. Next, transmembrane helices were checked and 

those proteins with >1 transmembrane helices were discarded [21]. Next, antigenicity 

analysis was performed through the Vaxijen 2.0 webserver [22] considering a 0.6 thresh-

old value. Only antigenic proteins were used in allergenicity and water solubility analysis. 

The allergenicity check was performed using AllerTOP 2.0 [23] while the solubility check 

was conducted through the InnovaGen 2.0 (https://pepcalc.com/peptide-solubility-calcu-

lator.php (accessed on)) webserver. Furthermore, physicochemical analysis was evalu-

ated using ProtParam Expasy online webserver [24]. Homology analysis was performed 

against Human proteome (taxonomic id: 9606) and probiotic bacteria such as Lactobacillus 

rhamnosus (taxonomic id: 47715), L. johnsonii (taxonomic id: 33959), and L. casei (taxonomic 

id: 1582). Homology proteins were discarded when showing identify of ≥ 30% [25]. This 

is vital to avoid auto-immune responses.  

2.2. Epitopes Selection Phase 

In the epitopes selection phase, first B-cells epitopes were predicted using the IEDB 

online webserver [26]. Further, predicted B-cells epitopes were used for T-cells epitopes 

prediction [15]. Prediction of MHC-I and MHC-II alleles were predicted using a reference 

set of MHC molecules given at the IEDB server (http://tools.iedb.org/mhci/ (accessed on) 

for MHC-I and http://tools.iedb.org/mhcii/ (accessed on) for MHC-II). The predicted 

epitopes were further selected for antigenic probability test [27]. Additionally, allergic, 

less water soluble and toxic epitopes were filtered out using AllerTOP 2.0, InnovaGen 

(https://pepcalc.com/peptide-solubility-calculator.phpand (accessed on)) and ToxinPred 

tool (http://crdd.osdd.net/raghava/toxinpred/ (accessed on)), respectively. The final set of 

epitopes was considered for multi-epitopes vaccine construct design. Moreover, popula-

tion coverage analysis was performed using IEDB server (https://www.iedb.org/ (ac-

cessed on)). For comparative analysis, outer membrane protein A (ompA) of Escherichia 

coli was used as a positive control. The entry name of ompA in uniport is P0A910. OmpA 

is a potential antigen against the bacterial pathogen and has been extensively evaluated 

experimentally (doi.org/10.3389/fimmu.2020.01362 accessed on 15 March 2022).  

2.3. Multi-Epitopes Vaccine Construction Phase 

Multi-epitopes vaccine construct was designed from selected epitopes [28]. The 

epitopes were connected to each other’s by the “GPGPG” linker and additionally linked 

to cholera toxin-B subunit adjuvant via another “EAAAK” linker to make the vaccine 

more immune potent [29]. Physicochemical properties of the designed vaccine were as-

sessed by ProtParam online webserver [30]. The 3D structure was modeled through 

scratch predicted tool [31]. Moreover, the vaccine loops were refined using the refinement 

tool of the galaxyWeb webserver [32]. To further retain the structure stability, disulfide 

bonds were created by Design 2.0 online webserver [33]. Next, secondary structures and 

Ramachandran plot analysis were performed using PDBsum generate algorithm [34]. As 

stated above, OmpA was used as a positive control to cross-check the predictions made 

for the designed vaccine candidate.  

2.4. Molecular Docking Study 

Interactions between the vaccine and immune cell receptors were evaluated through 

docking. In molecular docking, the binding efficiency of vaccine construct with immune 

cell receptors (MHC-I, MHC-II, and TLR-4) [35] was analyzed. Before docking, first we 

retrieved the immune receptor’s 3D structure from the Protein Data Bank (PDB) using a 

http://tools.iedb.org/mhci/
http://tools.iedb.org/mhcii/
http://crdd.osdd.net/raghava/toxinpred/
https://www.uniprot.org/uniprotkb/P0A910/entry
https://doi.org/10.3389/fimmu.2020.01362
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specific 4-digit code. Cluspro 2.0, which is an online docking software, was used for dock-

ing purposes [12,36]. The docking procedure was performed blindly, and the one with 

lowest energy score was selected for simulation studies.  

2.5. Molecular Dynamic Simulation  

The docked complexes with the least binding energy score were considered for mo-

lecular dynamic simulation analysis which was performed through AMBER20 software 

[37]. The simulation analysis was completed in three phases: pre-processing phase, simu-

lation, and trajectories analysis phase [38]. Preprocessing of the complexes was conducted 

via the Antechamber program. The FF14Sb was used as a force field. Energy minimization 

was performed for 1500 steps using the steepest descent and conjugate gradient algo-

rithms. The systems were heated up to 310 K, equilibrated, and simulated for 100 nano-

seconds. Temperature control during the simulation was achieved using Langevin algo-

rithm while hydrogen bonds were constrained through SHAKE algorithm. The output 

trajectories analysis consists of root-mean-square deviation (RMSD) [39] and root-mean-

square fluctuation (RMSF) [40]. The simulation plots were generated through XMGRACE 

software (https://plasma-gate.weizmann.ac.il/Grace/ (accessed on)).  

2.6. Binding Free Energies Estimation 

Binding free energies were estimated for top-docked complexes through the 

MMGBSA approach. The net free binding energies estimation was performed to validate 

the docked stability of vaccine-immune receptor complexes. The lesser binding free en-

ergy describes a complex as more stable. A total number of hundred frames were investi-

gated during MMGBSA analysis. 

3. Results 

3.1. Complete Proteome Extraction Phase and Bacterial Pan-Genome Analysis Phase 

The study was commenced with the retrieval of complete five proteomes of the path-

ogen. The accession number of the pathogen strains are: ASM95958v1, ASM393301v1, 

ASM393302, ASM393303v1, and ASM393304v1. The strains have completely sequenced 

genomes and were subjected for bacterial BPGA analysis phase. 

3.2. BPGA Phase and Subtractive Proteomics Filters  

BPGA predicted 18,405 core sequences. Core sequences offer a set of good broad-

spectrum vaccine proteins as they are shared by all strains. The core–pan plot is men-

tioned in Figure 2. The core–pan plot demonstrates the number of gene families in each 

strain. The core sequences were subjected to redundancy analysis that predicted that the 

core sequences consist of 3671 non-redundant proteins and 14,734 redundant proteins. 

Non-redundant proteins have a single presentation in the proteomes and thus could save 

time and computational resources. The redundant proteins were discarded and the non-

redundant proteins were further subjected to subcellular localization analysis. In subcel-

lular localization analysis, 25 surface localized proteins were predicted of which 3 were 

extracellular proteins, 11 proteins were found in outer membrane region, and 11 were 

predicted in periplasmic membrane region. The surface proteins are good vaccine targets 

as they can be easily recognized by the host immune system. The subcellular localized 

proteins were further evaluated for virulence analysis. In extracellular membrane pro-

teins, only two proteins were predicted as virulent while in outer membrane and periplas-

mic membrane proteins, six and two proteins, respectively, were found to have bit scores 

> 100 and bit-score > 30%. In total, 10 virulent proteins were predicted. The virulent pro-

teins can stimulate infection and immune pathways and are considered good vaccine tar-

gets. The virulent proteins were further processed and non-virulent were discarded. 

Transmembrane helices were evaluated but no proteins were found to have more than 

one transmembrane helix. Low number of transmembrane helices proteins ensures easy 



Vaccines 2022, 10, 1580 6 of 22 
 

 

experimental evaluation and can be clone and expressed readily. The proteins were fur-

ther considered for antigenicity analysis and predicted five proteins as probable antigens 

with antigenicity scores of 0.98, 0.69, 0.61, 0.84, and 0.67. Antigenic proteins stimulate 

good immune reactions. The antigenic proteins were further processed for allergenicity 

analysis and predicted three proteins as an allergen. The allergen proteins were discarded 

and the non-allergen proteins were further processed. Water solubility, physicochemical 

properties analysis, and homology analysis were further conducted. In said analysis, no 

poor water soluble, physiochemically unstable, and similar proteins with host and host 

intestinal flora were found. The number of proteins filtered in each step is presented in 

Figure 3. 

 

Figure 2. Core-pan plot illustrating the number of gene families in each genome. The pan and core 

gene families can be differentiated by different colors. 

 

Figure 3. Numbers and categories of proteins filtered in each phase of subtractive proteomics. 
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3.3. Epitopes Prediction and Prioritization Phase  

In epitopes prediction and prioritization phases, only two proteins; 

core/3507/1/Org1_Gene1451 (type VI secretion system tube protein (Hcp) and Query = 

core/426/1/Org1_Gene4503 (type IV pilus secretin PilQ) were shortlisted for the epitope 

selection phase. From the first protein only one epitope was predicted, and from the sec-

ond protein five B-cell epitopes were predicted, as shown in Table 1. 

Table 1. Predicted B-cells epitopes. 

Target Proteins Predicted B-Cells Epitopes 

core/3507/1/Org1_Gene145(

type VI secretion system 

tube protein Hcp  

ASQPGAMASGSGGNAGKASF 

KQYWQQNDNGGKGAEVSVGWNIKE 

core/426/1/Org1_Gene4503 

(type IV pilus secretin PilQ 

protein) 

EAVASLPPLPVGAPFGWSASASVGAAGRAPLPE-

AAAPQWRFDSARDPVAGAPSPDVDG-

GAPAAEFAGEAMPERMP 

AAPTAEPARSTSADAGTSSAVASAGLQAQ 

EAALEGPPVPLAPAQRMSDESDEHRSSP-

PAAGAVSTASVAGTGTETGDPSGDNRPISINLQQAS 

VAELAERERQRFDAHARAAQLEPLASRG  

LAGSAGQRILSKRGSVLA 

RGFSRNLGARLALRAPDAGERATGIVAGRN-

GTLAELAARPISGFDAATAGLTLFAARASRL 

SDDRDDVTRVPLL  

3.4. T-Cells Epitopes Prediction  

In the T-cells epitopes prediction phase, both MHC-I epitopes and MHC-II epitopes 

were predicted. The selection of epitopes was based on lower percentile score. The pre-

dicted epitopes that were prioritized are mentioned in Table 2. The listed epitopes are B-

cell derived T-cell epitopes, which can stimulate both humoral and cellular immunity at 

the same time.  

Table 2. T-cells epitopes with lowest percentile score. 

Major Histocompatibility Com-

plex II (MHC-II) 
Percentile Score 

Major Histocom-

patibility Com-

plex I(MHC-I) 

Percentile Score 

ASQPGAMASGSGGN 6 ASQPGAMAS 3.5 

AMASGSGGNAGKASF 8 ASGSGGNAGK 0.7 

GGKGAEVSVGWNIK 26 KGAEVSVGWN 2.8 

QYWQQNDNGGKGAEV 34 DNGGKGAEV 4.2 

KQYWQQNDNGGKGAE 32 KQYWQQNDN 9.3 

PVGAPFGWSASASVGA 18 APFGWSASA 0.25 

GAAGRAPLPEAAAPQWR 13 LPEAAAPQW 0.01 

FDSARDPVAGAPSPDVDGG 10 DSARDPVAGA 0.29 

DGGAPAAEFAGEAMPERMPAA 0.58 AMPERMPAA 0.06 

DAGTSSAVASAGLQAQEAALE 8.16 GLQAQEAAL 0.48 

GPPVPLAPAQRMSDESDE 23 VPLAPAQRM 0.01 

ESDEHRSSPPAAGAVSTAS 8.56 RSSPPAAGA 0.33 

SGDNRPISINLQQAS 5.4 DNRPISINL 0.49 

AERERQRFDAHARA 15 RQRFDAHAR 0.21 

HARAAQLEPLASRG 22 AQLEPLASR 0.6 

AGQRILSKRGSVLA 2.7 ILSKRGSVL 0.7 
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RGFSRNLGARLALR 0.01 RGFSRNLGAR 0.4 

APDAGERATGIVAGRNG 79 ERATGIVAGR 0.6 

TLAELAARPISGFD 20 LAARPISGF 0.49 

AGLTLFAARASRL 0.68 TLFAARASR 0.01 

SDDRDDVTRVPLL 19 DDVTRVPLL 1.3 

3.5. Epitopes Screening Phase  

Furthermore, the predicted epitopes were further screened for DRB*0101 binding af-

finity, antigenicity and allergenicity, water solubility, and toxicity. Only good DRB*0101 

binders, probable antigenic, non-allergenic, and highly water-soluble epitopes were 

shortlisted for multi-epitope-vaccine designing. The DRB*0101 allele is the most abundant 

allele in humans and any antigen that binds to this allele has higher chances of presenta-

tion to the immune system and thus generates strong immunological reactions. Usually, 

epitopes with IC50 value less than 100 nM are considered strong binders. The shortlisted 

epitopes are tabulated in Table 3. For comparative purpose, ompA protein was used to 

cross-validate the predictions made for the epitopes. The ompA antigenic score is 0.6681; 

non-allergen, water soluble, and excellent DRB*0101 binder score is 0.86.  

Table 3. Selected proteins and their good vaccine candidate properties. 

Selected 

Epitopes  

Predicted 

IC50 Value 

(nM) Score 

Antigenicity Allergenicity 
Water Solu-

bility 
Toxicity 

EAMPERMPAA 6.28 0.7304 

Non-allergen 
Good water 

soluble  
Non-toxin 

RSSPPAAGA 6.41 0.8995  

DNRPISINL 17.38 1.1305  

RQRFDAHAR 9.27 0.8286  

AERERQRFDA 23.55 0.8414  

HARAAQLEPL 4.72 1.1458  

3.6. Population Coverage Analysis 

The selected epitopes were screened for population coverage analysis. This analysis 

revealed that the selected epitopes have the efficacy to cover 99.74% of world population. 

Countries wise, the vaccine has coverage of 97.83% of the Chinese population and 96.35% 

of the Indian population. Population coverage of the vaccine epitopes for different coun-

tries is shown in Figure 4.  
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Figure 4. Population coverage analysis of selected vaccine epitopes. 

3.7. Multi-Epitopes Vaccine Construction and Processing 

Multi-epitope-vaccine construct was designed so that the vaccine would have good 

immune potency compared to a single epitope vaccine. In multi-epitope-vaccine design-

ing phase, the shortlisted epitopes were connected through GPGPG linkers and the gen-

erated peptide was linked to cholera toxin B subunit adjuvant (CTBS) by another 

“EAAAK” linker. Linkers allow efficient separation of the epitopes. The designed vaccine 

construct was subjected to physicochemical properties analysis. The server predicted that 

the designed vaccine construct comprises 211 amino acids. The molecular weight of the 

molecule is 22.64 kDa, theoretical PI value is 9.27, and instability index is 39.85 (stable). 

Furthermore, aliphatic index of the vaccine is 70.05 and grand average of hydropathicity 

(GRAVY) is −0.428. The control ompA molecule has a molecular weight of 37.2 kDa, a 

theoretical pI value of 5.99, an instability index of 21.44, and a GRAVY score of −0339. All 

these values indicate ompA as potential vaccine target. The results of ompA are similar to 

that of the vaccine molecule designed in this study; therefore, we can predict the vaccine 

is a potential vaccine candidate for experimental evaluation.  

3.8. Structure Prediction and Loops Refinement  

The 3D structure of the vaccine was predicted using sequences of the multi-epitope-

vaccine construct. The vaccine construct comprises cholera toxin B subunit adjuvant, 

EAAK, and GPGPG linkers and selected epitopes. The 3D structure is presented in Figure 

5 while the schematic representation is shown in Figure 6. Furthermore, the loops present 

in the vaccine structure were further refined in order to maintain the structure’s stability. 

The galaxyWeb webserver generated 10 refine models based on RMSD, MolProbity, clash 

score, poor rotamers, Rama favored residues percentage, and GALAXY energy (Table 4) 
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Figure 5. The 3D structure of multi-epitopes vaccine. Each segment is properly labeled in the fig-

ure. 

 

Figure 6. Schematic representation of multi-epitopes vaccine. 
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Table 4. Top refine models generated by GalaxyWeb webserver. 

Model RMSD Mol Probity 
Clash 

Score 
Poor Rotamers Rama Favored 

GALAXY 

Energy 

Initial 0.000 3.689 124.8 6.6 91.4 28,723.56 

MODEL 1 3.679 1.487 2.9 0.0 93.8 −3390.36 

MODEL 2 3.058 1.594 3.7 0.0 93.3 −3373.64 

MODEL 3 2.887 1.548 2.6 0.0 91.4 −3361.08 

MODEL 4 0.992 1.654 3.4 0.0 90.9 −3353.07 

MODEL 5 3.741 1.691 4.0 0.6 91.4 −3352.74 

MODEL 6 1.194 1.521 3.7 0.0 94.7 −3348.47 

MODEL 7 2.506 1.642 4.3 0.0 93.3 −3344.80 

MODEL 8 0.939 1.406 2.9 0.0 95.2 −3343.12 

MODEL 9 0.929 1.466 3.1 0.0 94.7 −3341.38 

MODEL 10 3.104 1.494 3.4 0.0 94.7 −3339.60 

3.9. Disulfide Engineering and In-Silico Codon Optimization  

Disulfide engineering analysis reported 16 amino acid residues that could be re-

placed by cysteine amino acid. The mutated pair of amino acids are represented by yellow 

colored stick in the vaccine structure (Figure 7) and tabulated in Table 5. Next, the codon 

optimization was performed where the reverse translated DNA sequence 

“ATGATCAAACTGAAATTTGGCGTCTTCTTCACCGTCCTGCTGTCTTCTGC TTAC-

GCTCACGGTACCCCGCAGAACATCACCGACCTGTGCGCTGAATACC 

ACAACACCCAGATCTACACCCTGACAAAATCTTCTCTTACAGAATCTCTGGCTG

GTAAACGTGAAATGGCTATCATCACCTTCAAAAACGGTGCTATCTTCCAGGTT-

GAAGTTCCGGGTTCTCAGCACATCGACTCTCAGAAAAAAGCTATCGAAGTATGA

AAGACACCCTGCGTATCGCTTACCTGAC-

GAGCTAAAGTGAAAAACTGTGCGTGAACAACAAAACCCCGCACGCTATCGCTG

CTATCTCTATGGCTAAC-

GAGCTGCTGCTGAAGTATGCCGAAGTATGCCGGCTGCTGGTCCGGGTCCGGGTC

GTTCTTCTCCGCCGGCTGCTGGTGCTGGTCCGGGTCCGGGTGACAAGTCCGATCT

TATCAACTGGGTCCGGGTCCGGGTCGTCAGCGTTTCGAGCTCAGCTCGTGGTCCG

GGTCCGGGTGCTGAAGTGAGCGTCAGAGGTTCGAC-

GCTGGTCCAGGTCCGGGTCACGCTCGTGCTGCTCAGCTGGAACCGCTG” was in-

serted into the pET28a(+) vector. As shown in Figure 8, the DNA sequences are repre-

sented by magenta color. The antigenicity score of disulfide-engineered vaccine is 0.6952, 

indicating a good overall antigenicity of the sequence.  

 

Figure 7. (A) Original structure of vaccine molecule. (B) Mutated structure. 
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Table 5. Amino acid residues that are replaced by cysteine amino acid. 

Pair of Amino Acid Residues Chi3 Value Energy 

PHE9-ALA31 −65.14 5.86 

SER16-THR27 98.73 1.12 

ILE38-LEU41 87.1 2.09 

VAL71-GLY75 125.46 5.24 

TRP109-LYS112 114.42 3.8 

ALA123-ALA153 72.87 3.43 

GLU125-ALA131 115.02 3.97 

ALA128-ALA131 111.84 2.53 

PRO143-PRO149 −66.45 4.67 

PRO155-ASN160 94.44 3.65 

ILE165-ALA196 123.98 8.9 

GLY168-PRO171 −114.69 4.22 

ALA178-ALA187 117.98 7.08 

ALA178-ARG191 −93.98 0.38 

GLY182-GLY186 103.77 0.3 

ASP195-PRO198 99.88 1.93 

 

Figure 8. Cloned pET-28a(+) vector. The magenta color represents inserted DNA sequence. 

3.10. Secondary Structure Prediction, Z-Score Calculation and Ramachandran Plot Analysis  

The secondary structure was predicted using the PDBsum generate tool as shown in 

Figure 9A. Secondary structure of the multi-epitope-vaccine construct revealed that 84 

(39.8%) of the residues are alpha helix, 5 residues have 3–10 helixes (2.4%), and 122 have 
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other helixes (57.8%). The multi-epitope-3D statistics describe that most of the vaccine res-

idues are in favored regions. A total of 10 residues were in additional allowed regions 

(7.0%), 2 were in generously allowed regions (1.4%), 1 was in a disallowed regions (0.7%), 

and 143 were non-glycine and non-proline residues (Figure 9B). The Z-Score of the vaccine 

is −1.65, as shown in Figure 9C.  

 

Figure 9. Structural analysis of the vaccine construct. (A) Secondary structure; (B) Ramachandran 

plot; and (C) Z-score plot. 

3.11. Agreescan3D and CABS-Flex 2.0 Analysis  

The vaccine candidate has a minimal score value of −4.71, a maximal score value of 

3.14, an average score of −0.80, and a total score value of −169.32. The Aggrescan3D super-

imposed structures are shown in Figure 10A. The vaccine candidate was further found in 

10 models that were generated using simulation. The vaccine candidate was found to 

show a maximum RMSF of 6.22 Å  and a minimum RMSF of 0.9 Å . The vaccine candidate 

RMSF plot is presented in Figure 10B. 

3.12. Binding Interaction Analysis  

A docking approach was utilized to check vaccine binding and interactions with the 

immune cell receptors MHC-I, MHC-II, and TLR-4 chosen as the selected immune cell 

receptors, which play important role in antigen presentation and processing. In each case, 

the server generated 10 docked complexes based on the binding energy score as men-

tioned in Tables 6–8. Moreover, intermolecular docked complexes are provided Figure 

11A–C. In the case of the vaccine with MHC-I, the selected complex has a lowest energy 
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of −944.1 kcal/mol; for the vaccine with MHC-II, the selected complex has a lowest energy 

of −933.1 kcal/mol; and in the case of the vaccine with TLR-4, the selected docked complex 

has a lowest energy of −1067.3 kcal/mol. These complexes were considered best for simu-

lation. For MHC-I, the vaccine docked at the active pocket. For MHC-II, the vaccine inter-

acts near the active pocket region and the important epitopes are exposed. 

Table 6. Docking score of vaccine-MHC-I solutions. 

Cluster Members Representative Weighted Score 

0 51 
Center −773.1 

Lowest Energy −944.1 

1 47 
Center −760.8 

Lowest Energy −824.1 

2 44 
Center −783.9 

Lowest Energy −798.3 

3 35 
Center −753.1 

Lowest Energy −890.3 

4 34 
Center −760.4 

Lowest Energy −904.0 

5 32 
Center −752.1 

Lowest Energy −952.1 

6 32 
Center −833.9 

Lowest Energy −1027.7 

7 30 
Center −841.1 

Lowest Energy −841.1 

8 28 
Center −725.5 

Lowest Energy −860.2 

9 26 
Center −862.9 

Lowest Energy −942.2 

10 25 
Center −722.8 

Lowest Energy −933.1 
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Table 7. Docking score of vaccine-MHC-II solutions. 

Cluster Members Representative Weighted Score 

0 99 
Center −895.4 

Lowest Energy −975.5 

1 79 
Center −920.5 

Lowest Energy −1108.2 

2 71 
Center −938.3 

Lowest Energy −1076.4 

3 62 
Center −937.8 

Lowest Energy −1232.3 

4 34 
Center −990.6 

Lowest Energy −990.6 

5 30 
Center −929.9 

Lowest Energy −1043.2 

6 25 
Center −984.5 

Lowest Energy −989.1 

7 22 
Center −837.2 

Lowest Energy −940.4 

8 18 
Center −838.7 

Lowest Energy −953.3 

9 17 
Center −995.2 

Lowest Energy −995.2 

10 17 
Center −837.4 

Lowest Energy −985.0 
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Figure 10. (A) Superimposed 3D structure. (B) RMSF graph. 
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Figure 11. Binding mode of vaccine with different immune receptors. (A) Vaccine with MHC-I; (B) 

vaccine with MHC-II; and (C) vaccine with TLR-4. 

Table 8. Docking score of vaccine-TLR-4 solutions. 

Cluster Members Representative Weighted Score 

0 89 
Center −859.1 

Lowest Energy −1067.3 

1 50 
Center −888.9 

Lowest Energy −1002.0 
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2 49 
Center −845.6 

Lowest Energy −946.1 

3 45 
Center −859.9 

Lowest Energy −1003.6 

4 35 
Center −915.8 

Lowest Energy −1021.9 

5 28 
Center −871.6 

Lowest Energy −941.0 

6 26 
Center −920.1 

Lowest Energy −966.6 

7 26 
Center −853.4 

Lowest Energy −1032.2 

8 24 
Center −838.6 

Lowest Energy −974.0 

9 24 
Center −906.1 

Lowest Energy −999.5 

10 23 
Center −868.2 

Lowest Energy −971.4 

3.13. Molecular Dynamic Simulation Analysis  

Molecular dynamic analysis is a computer-based simulation for assessing the dy-

namic movement of docked molecules. The molecules and atoms are simulated for a given 

period of time and the dynamics are investigated using variety of statistics tests. Newton’s 

equation of motion is applied to determine movement of atoms and molecules. In this 

analysis, the docked complexes (vaccine-receptors) were analyzed for 100 nanoseconds. 

In simulation time, the important steps are to evaluate the binding efficacy and stability 

mode of the docked molecules. The simulation analysis of vaccine-receptors complexes is 

given in Figure 12. The first analysis which was performed in the simulation was RMSD, 

which was performed based on carbon’s alpha atoms. In the RMSD analysis, it was ob-

served that the vaccine and TLR-4 docked complex showed the best binding affinity fol-

lowed by the vaccine-MHC-I and the vaccine-MHC-II, as shown in Figure 12A. The mean 

RMSD of the vaccine with TLR-4 was 3.5 angstrom, while for the vaccines with MHC-I 

and MHC-II, the average RMSD was 4.5 angstrom and 5.1 angstrom, respectively. Little 

deviations were seen in the systems due to the large size and the presence of loops in the 

structures. Following RMSD, RMSF analysis was performed in order to analyze residue 

level fluctuations. The RMSF plot is given in Figure 12B. The majority of the residues were 

in the stable range; however, the vaccine with TLR-4 showed some high deviations. These 

deviations are due to the vaccine attempting to acquire more stable conformation with the 

receptor. Nevertheless, the vaccine remained in constant contact with TLR-4 throughout 

the entire simulation.  
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Figure 12. Simulation trajectories analysis to evaluate vaccine stability with the immune receptors. 

(A) RMSD. (B) RMSF. 

3.14. Binding Free Energy Calculation 

The binding interactions of docked complexes were also analyzed using the MM-

GBSA method for the binding free energies calculation. In MM-GBSA analysis, different 

energy parameters were calculated. The estimated net binding free is −23.98 kcal/mol, 

−16.84 kcal/mol, and −15.50 kcal/mol for vaccine-TLR-4, vaccine-MHC-I, and vaccine-

MHC-II, respectively. The different energies are mentioned in Table 9. 

Table 9. MM-GBSA binding energy calculation. The energy values are described in kcal/mol. 

Energy Parameter 
TLR-4-Vaccine Com-

plex 

MHC-I-Vaccine 

Complex 

MHC-II-Vaccine 

Complex 

MM-GBSA 

VDWAALS −33.5184 −26.2334 −22.3071 

EEL −153.63 −12.0301 −225.981 

EGB 167.4479 24.8686 235.4421 

ESURF −4.2856 −3.4476 −2.6587 

Delta G gas −187.149 −38.2635 −248.288 

Delta G solv 163.1624 21.421 232.7834 

Delta Total −23.9861 −16.8425 −15.5046 

4. Discussion  

B. mallei is the etiological agent of Melioidosis disease, which is also known as 

Whitmore’s disease [41]. Reports have been documented that suggest the speedy evolu-

tion of antibiotic resistance mechanisms and, due to non-availability of approved vaccine 

against the pathogen, serious efforts are needed to develop novel therapeutic strategies. 

Development of a multi-epitope vaccine is a promising approach as it may prevent the 

pathogen’s spread and overcome its infections. In the current research work, a multi-

epitope-based vaccine was constructed against B. mallei by using RV and immunoinfor-

matics approaches [42]. A previous in silico study conducted by Saba et al. designed a 

multi-epitope-based vaccine against Providencia rettgeri that showed promising potency in 

terms of generating proper immune responses against the targeted pathogen (doi: 

10.3390/vaccines10020189). In the present study, the complete proteome of the pathogen 

was utilized for identification of good vaccine candidates [28]. Complete proteomes were 

utilized in order to make a potent broad-spectrum vaccine candidate against all available 

sequenced strains. Core proteins are present among all the strains, so we retrieved the 

core sequence and processed it for surface localized proteins. Surface localized proteins 
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are exposed to the immune system and can evoke proper immune responses as they con-

tain antigenic determinants [43]; therefore, only surface localized outer membrane, extra-

cellular membrane, and periplasmic membrane proteins were considered to be good vac-

cine candidates. Virulent proteins are mainly involved in the pathogenicity of pathogens 

and simulate effective immune reactions, so virulent proteins were filtered [27]. Multi-

epitope vaccines consist of different B and T-cell epitopes in order to generate both hu-

moral and cellular immune responses in the host body against a pathogen. Epitope pre-

diction and prioritization were completed for screening and targeting of probable anti-

genic epitopes. To increase the antigenicity of the proposed vaccine construct, cholera 

toxin B (CTB) was used as an adjuvant and linked to epitope peptides at the N-terminus 

via the EAAAK linker. CTB is a non-toxic component of the cholera toxin that attaches to 

dendritic cells, B cells, and macrophages. Its optimal immune system access is made pos-

sible by its affinity for the monosialotetrahexosylganglioside (GM1), which is found in a 

wide range of cell types including gut epithelial cells, antigen-presenting cells, macro-

phages, dendritic cells, and B cells. Many different organisms can easily express CTB on 

its own. Different methods can be employed to link this adjuvant to antigens either 

through genetic fusion or chemical manipulation, leading to much improved immune re-

sponses to the antigens (doi: 10.3390/vaccines3030579). The 3D structure modeling and 

validation is important, so the 3D structure was modeled. To retain the structure stability, 

the structure was further refined because structure stability of vaccine candidate is im-

portant. The multi-epitope vaccine showed good physicochemical features in terms of 

thermodynamic feasibility, stability, hydrophilicity, and expression capacity. The multi-

epitope vaccine is non-allergen; thus, harmful responses of the vaccine are not expected. 

The vaccine designed in this study exhibited a high level of antigenicity, which is much 

preferred for immunological applications. In addition, overexpression of this vaccine 

could be undertaken in Escherichia coli K12 strain. To generate immune responses against 

the vaccine antigen, the vaccine should interact with host immune cells. Hence, we con-

ducted a docking study in order to validate the docking potency of vaccine candidates 

with MHC-I, MHC-II, or TLR-4. The same study conducted by Ismail et al. designed of a 

multi-epitope-based vaccine against nosocomial Enterobacteriaceae pathogens by apply-

ing pan-genome based RV method [27]. The findings of this study are new and may speed 

up vaccine designs against B. mallei. This could save money, save time, and save human 

efforts. Therefore, it is strongly suggested to use the designed vaccine construct in in vivo 

and in vitro studies and disclose its real immune protective capacity.  

5. Conclusions 

As concluding remarks, this study has proven the antigenicity of one extracellular 

(type VI secretion system tube protein (Hcp)) and one outer membrane (type IV pilus se-

cretin (PilQ)). The proteins were then subjected to shortlist epitopes for designing a multi-

epitope vaccine construct against B. mallei. The complete proteomes were scanned to iden-

tify immunodominant epitopes that can induce both humoral and cellular immune re-

sponse against the pathogen. By employing several immunoinformatics tools, several 

epitopes were shortlisted for vaccine construction. The designed vaccine construct 

showed stable physicochemical, antigenic, good water soluble, and non-allergenic prop-

erties. The vaccine construct comprises immunogenic and putatively harmless and safe 

epitopes for prophylactics and therapeutic vaccine formulations. The modeled 3D struc-

ture of the designed vaccine constructs further confirmed that the structure is stable. 

Moreover, the designed vaccine successfully binds to the selected immune cells receptors 

(MHC-I, MHC-II, and TLR-4); therefore, it proficiently triggers both the cellular and hu-

moral immune responses against targeted pathogen. It was also observed that the vaccine 

formed strong van der Waals and electrostatic chemical interactions with immune recep-

tors, and thus formed stable complexes, which further increased vaccine epitope presen-

tation and immune response generation. The designed vaccine construct still requires ex-

perimental analysis in order to confirm its potency against B. mallei infections. 

https://doi.org/10.3390%2Fvaccines3030579
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