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Abstract: Allium species are revered worldwide as vegetables, condiments, and spices as well
as the therapeutic agents in traditional medicine. The bioactive compounds in alliums mainly
include organosulfur compounds, polyphenols, dietary fibers, and saponins. Flavonoids, particularly
flavonols from alliums, have been demonstrated to have the antioxidant, anticancer, hypolipidemic,
anti-diabetic, cardioprotective, neuroprotective, and antimicrobial activities. However, flavonols are
mostly characterized from onions and have not been comprehensively reviewed across different
species. This article therefore focuses on flavonol profiles from different Allium species, their health
effects, underlying molecular mechanisms, and bioavailability. Intriguingly, the functional health
effects of flavonols were mainly ascribed to their antioxidant and anti-inflammatory activities
involving a cascade of multiple signaling pathways. Although the Allium-derived flavonols offer
tremendous potential in preventing chronic disease risks, in-depth studies are needed to translate
their clinical application.
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1. Introduction

Chronic diseases pose a huge burden on global health care system and economy accounting
for nearly seventy percent of pre-mature mortality en masse [1]. According to the World Health
Organization (WHO), poor dietary habits which include consumption of foods with low-nutrient
density and high in fat, sugar, and salt as well as overall calories, are one of the major contributors
to the leading causes of chronic illness and related deaths [1,2]. We emphasize that the dietary
co-administration of the antioxidant-rich foods along with clinical treatments may ameliorate chronic
illnesses mediated by heightened free radicals in the body. It has particularly been observed that people
with chronic illnesses are more vulnerable to clinical complications and deaths by novel severe acute
respiratory syndrome coronavirus (SARS-CoV-2) infections [3-5]. The on-going coronavirus disease
(CoVID-19) pandemic has forced people across the globe to rethink their nutritional habits, switching
to antioxidant-rich foods to avoid chronic illness with stronger immunity [6,7]. Antioxidant-rich foods
reportedly enhance the T-cell subsets, interleukin production, and natural killer cells necessary to ward
off influenza-like infections [7,8]. Regular consumption of Allium herbs is traditionally considered
beneficial for human health owing to their rich contents of antioxidant compounds. The genus Allium
(Amaryllidaceae) is one of the largest monocot genera comprising approximately 915 species including
culinary herbs like garlic, onion, shallot, leek, chives, and scallions [9]. The main bioactive constituents
in alliums include organosulfur compounds (OSCs) and polyphenols [10]. However, the complex
chemistry of OSCs, due to their highly-volatile and thermally-unstable nature, likely impairs their
health benefits [10-13]. In this context, allium polyphenols, with relatively higher stability than
OSCs and associated antioxidant functions have emerged as more viable bioactive constituents in
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Allium species. A range of health-modulating effects of Allium-derived polyphenols, in particular,
flavonols, are attributed to their antioxidant activity which governs their functional properties
including anti-inflammatory, antimicrobial, antiglycemic, and anticancer effects [14-16]. Though
various Allium species are rich source of dietary flavonols, most studies have focused on the onion.
The present review highlights the current knowledge about well-characterized flavonols from different
Allium spp., their established health effects, and the associated subtle mechanisms based on their
antioxidant properties as well as bioavailability.

2. Flavonoids in Allium: Structural Properties

The major polyphenolic compounds in alliums include flavonoids, phenolic acids, and lignans
(http://phenol-explorer.eu/) [17] (Figure 1). Flavonoids are the largest class of polyphenols followed
by phenolic acids in alliums, while lignans are a minor polyphenol class [17]. Flavonoids have a
characteristic 15-carbon (C6-C3-C6) skeleton, which consists of two phenyl rings (A and B) and a
heterocyclic ring (C) [18,19]. They are classified into different subclasses (flavonols, flavanols, flavanones,
flavones, anthocyanins, and isoflavones) based on the degree of unsaturation and oxidation of the
C-ring. Among different subclasses, further division is based on the number and nature of substituent
groups attached to their heterocyclic rings [18,19]. Flavonols and anthocyanins are the main subclasses
of flavonoids present in alliums, though the latter have been found only in red onions [20,21]. Notably,
the flavonol content in different Allium spp. ranges from 7 to 1917 mg/kg fresh weight (Table 1). Herein,
we intended to give a comprehensive detail of the flavonol constituents and related bioactivities
from alliums.

Allium polyphenols

Phenolic acids Flavonoids | | Lignans

Lariciresinol
Matairesinol
Pinoresinol
Secoisolariciresinol

Hydroxybenzoic Hydroxycinnamic
acid derivatives acid derivatives
Gallic acid Caffeic acid
p-Hydroxybenzoic acid p-Coumaric acid
Protocatechuic acid Ferulic acid
Syringic acid
y
Flavonols | [ Flavones | l Flavanols | |Flavanones| | Anthocyanins
Quercetin Luteolin Catechin Naringenin Cyanidin
Kaempferol Apigenin Epicatechin Hesperidin Delphinidin
Isorhamnetin Chrysoeriol
Myricetin Baicalein
Fisetin
Morin

Figure 1. Polyphenolic compounds in the genus Allium.
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Table 1. Flavonol contents of some common edible Allium species.
Common Name Scientific Name Plant Part Total Flavonol Content References
Red Onion
b A. cepa Bulb 415-1917 mg/kg FW. [22]
Yellow onion
L; A. cepa Bulb 270-1187 mg/kg FW. [22]
i
White onion
A. cepa Bulb 7 mg/kg FW. [23]
.
P -
Italian shallot
e d 1;{ A. ascalonicum Bulb 1023 mg/kg EW. [23]
<
French shallot
‘J A. ascalonicum Bulb 1167 mg/kg FW. [23]
Leek
A A. porrum Bulb 246 mg/kg EW. [24]
Garlic
/i: y A. sativum Cloves 16.19 mg/kg D.W. [25]
Ramson bear’s Green leaves  1856.31 mg/100 g D.W.
garlic A ) Yellow leaves  2362.96 mg/100 D.W. [26]
% - st Stalks 206.07 mg/100 g D.W.
—— Seeds 73.14 mg/100 g D.W.
Ramps Leaves 11.81 mg/g D.W.
% $ A. tricoccum Stem 0.0382 mg/g D.W. [27]
& Bulb -
Chinese chives A odorum
% (A. tuberosumm) Leaves 160 mg/kg D.W. [28]
Welsh onion
. A. fistulosum Leaves 2329 mg/kg D.W. [28]
Yellow flowered
g?,l_«_hc A. flavum subsp. flavum Aerial parts 44-264 mg/g D.W. [29]
%Y Bulb 0.77-832 ug/g D.W.
Keeled garlic
5 %;: A. carinatum Whole plant 11.14 mg/g D.W. [30]

F.W.: Fresh weight; D.W.: Dry weight.

Flavonols

Flavonols, the most abundant class of flavonoids in alliums [22-24], contain a 3-hydroxyflavone
backbone (IUPAC name: 3-hydroxy-2-phenylchromen-4-one) [18,19]. Their diversity arises from
the different positions of the phenolic -OH groups. Quercetin, kaempferol, isorhamnetin, myricetin,
fisetin, and morin are the major flavonol aglycone representatives in alliums (Figure 2). At least 52
different kinds of flavonols have been identified from different Allium spp. (Table 2). Most of these
flavonols exist as their glycosylated derivatives in nature, where sugars are attached through oxygen
at 3, 4/, and/or 7-positions of the aglycones. Glucose is the most common sugar moiety; however,
rhamnose, galactose, xylose, and glucuronic acid have also been identified (Table 2). Generally, flavonol
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glycosides have significantly lower antioxidant capacity than their respective aglycones [31]. Chemically,
the antioxidant activity of flavonols is owed to their phenolic hydroxyl group via donation of hydrogen
atom to free radicals [32]. The hydroxyl groups in B-ring (4’-position) and C-ring (3-position) have
higher hydrogen donation ability than the A-ring hydroxyl groups [31]. The concentration (Table 1)
and type (Table 2) of flavonols vary widely among species, cultivars, and parts of the plant. In addition,
post-harvest practices [33] and seasons [34] are also reported to affect the flavonol concentration in
alliums. Major flavonols found in onion cultivars are the derivatives of quercetin while kaempferol and
isorhamnetin derivatives are lesser abundant [22-24]. Quercetin 3,4’-glucoside (3,4’-Qdg) and quercetin
4’-glucoside (4’-Qmg) account for more than 90% of flavonols in onion [23,24]. In general, the levels of
flavonols are higher in yellow onions than red onions [24]. Sweet onion contains two-three-fold higher
isorhamnetin 4’-glucoside than red onion cultivars [35]. In chives, leeks, and scallions, kaempferol
glycosides are the major flavonols [24,27,36]. Although several Allium flavonoids are characterized,
the associated in vivo mechanisms are not fully understood owing to their cryptic catabolism following
the dietary uptake. Below we discuss the health effects and associated functional mechanisms of
Allium-derived flavonols based on the state-of-the-art literature and available metadata information.

Quercetin

Fisetin Morin

Myricetin
Figure 2. Chemical structure of the major representatives of flavonol aglycones in Allium spp.

Table 2. Different kinds of flavonols and their glycosides identified in Allium species.

S. No. Flavonol Aglycones/Glycosides Plant Species References
1 Quercetin (Que) A. cepa [22]
2 Que-3-O-glucoside 1‘2; ;ZZ’; ”; n‘:‘ Z?tﬂ'ﬁ’s omon | 116:22,29,37,38]
3 Que-4’-O-glucoside A. cepa [16]
4 Que-3,4"-O-diglucoside A. cepa, A. tuberosum [16,22,36]
5 Que-3-O-rutinoside A. cepa, A. chinense [22,39]
6 Que-7-O-glucoside A. cepa [22]
7 Que-7-O-rhamnoside A. cepa [22]
8 Que-7,4’-O-diglucoside A. cepa [22]
9 Que-3,7-O-diglucoside A. cepa [22]
10 Que-3,7,4’-O-triglucoside A. cepa [16,22]
11 Que-3-O-rthamnoside A. cepa, A. fistulosum [22]
12 Que dimer A. cepa [22]
13 4’-Glucoside of que dimer A. cepa [22]
14 Que trimer A. cepa [22]
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Table 2. Cont.
S. No. Flavonol Aglycones/Glycosides Plant Species References
15 Quercetin sophoroside glucuronide A. tricoccum [27]
16 Que hexoside glucuronide A. tricoccum [27]
17 Que sophoroside A. tuberosum [40]
18 Que-3-O-B-p-xylopyranoside A. sativum [37]
19 Kaempferol (Kae) A. cepa, A. tuberosum [36,41,42]
A. cepa, A. sativum,
20 Kae-3-O-glucoside A. flavum, A. ursinum, [22,29,37,38,43]
A. macrostemon
21 Kae-4’-O-glucoside A. cepa [22]
22 Kae-7,4’-O-diglucoside A. cepa [22]
23 Kae-7-O-glucoside A. triquetrum [44]
24 Kae-3,4’-O-diglucoside A. cepa, A. tuberosum, [22,36,38]
A. macrostemon
25 Kae-3,7-di-O-rhamnoside A. roseum [45]
26 Kae-3,7-di-O-glucoside A. macrostemon [38]
27 Kae-3-O-glucuronide-7-O-rhamnosylglucoside  A. roseum [46]
28 Kae-3-O-rutinoside A. roseum, A. tuberosum, [36,44,46]
A. triquetrum
29 Kae-3-O-glucoside-7-O- glucuronide A. roseum [46]
30 Kae-7-O-glucuronide A. roseum [46]
31 Kae-3-O-glucuronide A. roseum [46]
32 Kae-7-O-(6"-malonyl)-glucoside A. roseum [46]
33 Kae-3-O-sophoroside A. tuberosum, A. tricoccum [27,36]
Kae-3-O-p-p-glucosyl-(1
34 2)-O-ocL-xylopyranoside A. tuberosum [36]
3-O-B-p-(2-O-feruloyl)-glucosyl-7,4’-di-
s O-pB-p-glucosylkaempferol A- tuberosum (6]
3-O-B-sophorosyl-7-O-f3-p-
36 (2-O-feruloyl)-glucosylkaempferol A- tuberosum [0
37 Kae-3-O-neohesperidoside A. ursinum [43]
38 Kae-3-O-flneohesperidoside-7-O-[2-O- . A ursinum [43]
(trans-p-coumaroyl)]-fl-p-glucopyranoside,
Kae-3-O-fl-neohesperidoside-7-O-[2-O- )
39 (trans-feruloyl)]-fl-p-glucopyranoside A ursiniim 431
Kae-3-O-fl-neohesperidoside-7-O-[2-O-
40 (trans-p-coumaroyl)-3-O-fID-glucopyranosyl- A. ursinum [43]
1-fl-p-glucopyranoside
Kae-3-O-[2-O-(trans-p-coumaryl)-f3-p-
4 galactopyranosyl]-(1—4)-O-3-p-glucopyranoside A-porrum 471
Kae-3-O-[2-O-(trans-p-coumaryl)-3-p- .
2 glucopyranosyl]-(1—6)-O-B-p-glucopyranoside A- porrum,A. triquetrum [4447]
43 Kae-3-O-(2-O-trans-p-feruloyl)glucoside A. triquetrum [44]
44 8-hydroxykaempferol 8-O-glucoside A. triquetrum [44]
Kae-3-O-[2-O-(trans-p-coumaroyl)-3- )
5 O-B-p-glucopyranosyl]--p-glucopyranoside A- triquetrum [44]
46 Isorhamnetin (Iso) A. cepa [48]
47 Iso-4’-O-glucoside A. cepa [16,22]
48 Iso-3-O-glucoside A. cepa, A. vineale, [22,38,49]
A. macrostemon
49 Iso-3,4’-O-diglucoside A. cepa; A. tuberosum [16,22,40]
50 Iso-4’-O-galactoside A. cepa [16]
51 Myricetin A. cepa [41]
52 Fisetin A. cepa [41]
53 Morin A. cepa [50]

Que: Quercetin; Kae: Kaempferol; Iso: Isorhamnetin.
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3. Health Benefits of Allium Flavonols

3.1. Anticancer Effects

It has been widely accepted that dietary flavonoids lower cancer-related mortality [51-53].
Several pre-clinical studies evidenced that Allium-derived flavonols play an important role to delay
cancer development and progression via multitude of mechanisms including anti-proliferation,
induction of cell cycle arrest and apoptosis, as well as modulation of immunity and oxidative
stress (Table 3). Flavonols extracted from A. cepa are reported to induce apoptosis in human
leukemia cells (U937, THP-1, and K562) [16]. The onion extracts primarily contain eight flavonols
including (1) quercetin 3,7 4’-triglucoside; (2) quercetin 7,4’-diglucoside; (3) quercetin 3,4’-diglucoside;
(4) isorhamnetin 3,4’-diglucoside; (5) quercetin 3-glucoside; (6) quercetin 4’-glucoside; (7) isorhamnetin
4’-galactoside; and (8) isorhamnetin 4’-glucoside [16]. Considering its anticancer mechanisms,
it has been observed that the onion flavonols activate caspases (caspase-3, -8, and -9) during apoptosis
through both the cell death receptor (DR)-mediated extrinsic and mitochondria-mediated intrinsic
pathways [16]. The extrinsic pathway involves the up-regulation of TNF-related apoptosis-inducing
ligands (TRAIL) while the intrinsic pathway involves the downregulation of cellular anti-apoptotic
proteins like cellular inhibitor of apoptosis protein-1 (cLAP-1), FLICE-like inhibitory protein (c-FLIP),
and B-cell lymphoma extra large protein (Bcl-xL) [16]. A cross talk between the death receptor- and
mitochondria-mediated caspase activation was also suggested by the authors following the flavonol
interventions [16]. Reportedly, the onion extract triggers a molecular cascade leading to cancer cell
apoptosis through extrinsic pathway, activating caspase 8 which promotes the cleavage of “Bid”,
an apoptotic B-cell lymphoma-2 (Bcl-2) family protein [16]. The translocation of Bid to mitochondria
results in the disruption of mitochondrial membrane potential (MMP, A¥Ym) and thus signals the release
of cytochrome ¢ (cyt ¢), and thereby initiating the mitochondria-mediated caspase activation [16].
In addition, the cancer cell apoptosis induced by onion-derived flavonols is partly mediated through the
inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway [16]. Nonetheless, how these
two pathways are interrelated remains elusive.

Another seminal study by Lee et al. [54] reported that onion-derived flavonols trigger the
“mitochondria mediated and caspase-dependent apoptosis” in AGS human gastric cancer cells
through the inhibition of PI3K/Akt signaling pathways. Besides suppressing the Akt phosphorylation,
the flavonols upregulate the p53 expression and subsequent Bax induction, resulting in reduced MMP
(A¥m) and cyt c release, which is directly linked with the activation of caspase associated molecular
cascade [54]. The authors also reported that the flavonol extracts also suppress the expression of
mitochondpria localized anti-apoptotic Bcl-2, a key regulator of apoptosis [54]. The anti-proliferative
activities of Chinese onion (A. chinense), onion (A. cepa), and Welsh onion (A. fistulosum) extracts
rich in quercetin glucosides (quercetin-3,4’-di-O-glucoside, 3,4’-Qdg and quercetin-4’-O-glucoside,
4’-Qmg) are also reported against liver, colon, and pancreatic cancer cell lines [55]. The authors
observed a notably higher efficacy of 4’-Qmg toward the growth inhibition of cancer cells, as compared
with 3,4’-Qdg. More recently, the subcritical water extracts of A. hookeri roots (30.6 mg of quercetin
equivalent/g) are demonstrated to have a dose-dependent antiproliferative effects against fibrosarcoma
and breast cancer cell lines [56]. During carcinogenesis, host immune system is often subverted by
inflammation which in part due to oxidative stress [57]. The anti-inflammatory and immunomodulatory
effects of flavonol-rich (quercetin and quercetin-4’-O-glucoside) red onion scale extract on prostate
cancer rat model are observed by the suppressed expressions of pro-inflammatory molecules including
interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha (TNF-«) in prostatic tissues [14]. Furthermore,
the attenuation of lipopolysaccharide (LPS)-induced oxidative as well as inflammatory stress in colon
cancer cells (HT-29) has been reported by downregulating TNF-o expression and upregulating the
expression of heme oxygenase-1 (HO-1) and glutathione S-transferase (GSTs) detoxification genes
(i.e., GSTM1, GSTT1, and GSTP1) after onion peel extract (OPE) treatments [50]. Oxidative stress also
acts a major stimulus of angiogenesis (the formation of new blood vessels from existing capillary
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networks) during tumor progression [58]. Seyfi et al. [59] demonstrated significant anti-angiogenic
effects of flavonoid-rich A. ascalonicum (shallot) fraction in vitro, ex vivo, and in vivo models; however,
the underlying mechanism is not investigated.

3.2. Anti-Obesity and Hypolipidemic Effects

Obesity is the underlying cause of several chronic diseases and is characterized by the excessive
accumulation of adipose tissues (body fat) when energy intake surpasses the energy expenditure [60].
Obesity is a complex health issue that arises from a combination of causes and individual factors such
as behavior and genetics. Behaviors can include physical activity, dietary patterns, medication use,
and exposures to various environmental factors. Additional contributing factors include the food
and physical activity environment, education and skills, and food marketing as well as promotion.
Allium derived flavonol-rich extracts inhibit adipogenesis and intracellular lipid accumulation in
cultured adipocytes and diet-induced obese animal models (Table 3). Several mechanistic studies
suggested that quercetin-rich OPE induces lipolysis through the downregulated expression of
transcriptional factors, including peroxisome proliferator-activated receptor-gamma (PPAR-y) and
CCAAT-enhancer binding protein alpha (C/EBP«x) [61-63]. In addition, the genes associated with
lipid metabolism including lipoprotein lipase (LPL), adipocyte fatty acid-binding protein (AFABP)
and carnitine palmitoyltransferase 1« (CPT-1«) are also affected following OPE exposure [62,63].
Recent studies also have shown that autophagy plays an important role in adipogenesis and lipid
metabolism. Allium-derived flavonols positively regulate autophagy via activation of AMP-activated
protein kinase (AMPK) in cellular and animal models [64,65]. AMPK also plays an important role in
the development and maintenance of brown and beige adipose tissue [66]. Recently, flavonol rich
(quercetin and isoquercetin) OPE demonstrated browning effect on white adipose tissue through an
AMPK-dependent pathway in mice adipose tissue and in cultured adipocytes [64]. The AMPK activation
regulates the expression of brown adipocyte-specific genes such as uncoupling protein-1 (UCP-1),
peroxisome proliferator-activated receptor gamma coactivator 1-« (PGClx) and cell death-inducing
DNA fragmentation factor-alpha-like effector A (CIDEA) [64].
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Table 3. Allium derived flavonols for chronic disease prevention in pe-clinical and clinical studies.

P:;Z:tsg::é(;s Major Identified Flavonol(s) Stu:r)‘f dsl};slﬁftli’ ‘Elose, Activity Biological Effects Molecular Targets References
- Inhibits proliferation
- Reducelg oxidative T LDH release; |
A. cepa Quercetin, quercitrin, kaempferol, In vitro: HT-29, Anticancer Stress HO-1; | TNF-«; | 150]
(peel) and morin 50-250 pg/mL for 24 h GSTs, GSTM1, GSTT1,
- Reduces
. . and GSTP1
inflammation
Quercetin 3,7,4’-triglucoside,
quercetin 7,4’- diglucoside, A .
quercetin 3,4’-diglucoside, o hibi ! CasPa.se .3' 8. afld ?
A. cepa isorhamnetin 3,4/-diglucoside In vitro: THP-1, K562, - Inhibits cell activity; T Bid; |
) . . . and U937, 20-100 png/mL Anticancer roliferation Bcl-xL; T DR5 TRAIL; [16]
(bulb) rcetin 3-gl id. rcetin p
v quZ ’fglucos?dzciossorli;r(r];i t?ﬁ for 48 h - Induces apoptosis 1 Survivin; | cIAP-1;
4’-galactoside, and isorhamnetin | PIBK/Akt
4’-glucoside
TPAPR; |
A. cepa In vitro: AGS, . ] Inh.lblts Fell ProFa.s,p ase-?); ! Bcl.-2;
(bulb) -do- 1-100 pg/mL for 48 h Anticancer proliferation T Bid; T Bax; T p53; | [54]
- Induces apoptosis MMP (A Ym); |
PI3K/Akt
p;;;;;‘;fi\?;ﬁf;glia - Inhibits proliferation
A. cepa Que/rcetm and . model of Wistar rats, 75, Anticancer - Induces apoptosis LIL-6; | IL-8; | [14]
(scale) quercetin-4’-3-O-p-glucoside - Reduces TNF-«; | IGF-1
150, or 300 mg/kg/d orally . -
for 30 d inflammation
A cepa Quercetin, In vitro: ACHN, Panc 1,
. P uercetin-3,4’-O-diglucoside, and Calu 1, H460, and HCT Anticancer - Inhibits proliferation n.r. [67]
(solid waste) ! & P
quercetin-4’-O-monoglucoside 116, 1-5 mg/mL for 24 h
A. cepa var. proliferum . In vitro: HepG2, . - Inhibits proliferation
(stems) Isorhamnetin and kaempferol 20-100 mg/mL for 72 h Anticancer - Induces apoptosis n.r. [68]
In vivo: Hyperlipidemia _ Improves lipid
A cepa colon tumor model of Antih lipidemi taboli
- cep Rutin BALB/C nu/nu mice, nihyperipideric metabousm nr. [69]
(n.r) 100-300 mg/kg/d and anticancer - Inhibits tumor
& proliferation

intragastrically for 3 wk
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Table 3. Cont.

9 of 35

P:;Z:tsg::é(;s Major Identified Flavonol(s) Stu:r)‘f dsl};slﬁftli’ ‘Elose, Activity Biological Effects Molecular Targets References
A. cepa . In vivo: HFD-fed SD rats, . . - Reduces mesenteric T Adiponectin; |
(peel) Quercetin 0.2% in diet for 8 wk Antiobesity fat PPAR-y [61]
- Attenuates lipid
In vitro: 3T3-L1, ] I;“Ztab"hsn(; | AP-2; 7 CPT-1a; 1
A conn 25-100 ug/mL for 24 h ev\‘,‘;eshto y FABP4; | PPAR-y
(.eerlj) Quercetin In vivo: HFD-fed SD rats, Antiobesity -Red Cesga dipose 1| C/EBP-«; | FAS; | [62]
P 0.36% or 0.72% in diet for S ap ACC
8 wk .. T CPT-1¢; T UCP-1
- Improves lipid
metabolism
scoumuton L GPDH actviy;
A. cepa . In vitro: 3T3-L1, . . PPAR-y; | C/EBP-x
(peel) Quercetin 14 pg/mL for 24 h Antiobesity -.Reduces. L AP2; | LPL; 1 ATGL; [63]
adipogenesis 1 HSL
- Induces lipolysis
| PPAR~y; | ACC; |
In vitro: 3T3-L1, - Ind di " FAS; 1 PRDM16; 7
50-150 pug/mL for 11 d n ‘gigivii;%“y ¢ UCP1; | FGF21; 1
A. cepa . . . (onday 5,7, and 9) . . TBX1; | CIDEA; T
(peel) Quercetin and isoquercetin In vivo: HFD-fed Antiobesity ac—ﬁRidlelflisSiS PGCla; 1 CPT1-a [64]
C57BL/6 mice, 0.5% in Redu B s LACC; T PRDMI6; 7
diet for 8 wk uces Hpog UCP1; 1 FGF21; 1
CIDEA; T PGClx
Randomized,
double-blind, - Reduces waist and
A. cepa . placebo-controlled study: . . hip circumferences 1 ROS; T SOD activity
(peel) Quercetin Obese women, 100 mg/d Antiobesity - Reduces oxidative (70l
(50 mg bis in die) orally stress
for 12 wk
In vivo: HFD-obese - Reduces body T AMPK (AMPKa1
A. fistulosum . C57BL/6 ] mice, . . weight and AMPK«2); T
(bulbs and roots) Quercetin 100 mg/kg/d orally for Antiobesity - Improves lipid and ~ Adiponectin; T UCP2; (631
6 wk glucose metabolism | PPAR-y
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Table 3. Cont.
Plant Species . - Study System, Dose, .. . .
(Part Used) Major Identified Flavonol(s) and Duration Activity Biological Effects Molecular Targets References
- Reduces oxidative
stress
. . In vivo: HFD-fed Wistar - Improves lipid
1?' SZF{)‘I nggﬁgnlil%)):izi ?Sic';tm rats, 0.21% (Q) or 0.36% Antiobesity metabolism nr. [71]
P & & (Q+Qmg) in diet for 4 wk - Increases gut
microbial enzyme
activity
A. chinense In vivo: HFD-fed Wistar - Improves lipid
) Quercetin and rutin rats, 0.09 or 0.18% per day  Anti-hyperlipidemic P P nr. [39]
(bulbs) metabolism
orally for 12 wk
- Reduces
post-prandial blood
A cepa In vivo: OGTT in SD rats, glucose
P Quercetin 0-500 mg/kg, single oral Antidiabetic - Inhibits nr. [72]
(skin)
dose carbohydrate
hydrolases (sucrase
and maltase)
- Increases IAUC
- Reduces blood
glucose
. - Reduces fasting
In vivo: blood glucose 7 INSR and GLUT4
A. cepa . HFD/STZ-diabetic SD Antidiabetic and & -
Quercetin o i s . - Increases glycogen T SOD activity; | [73]
(peel) rats, 0.5 or 1% in diet antioxidant
levels MDA level; | IL-6
for 8 wk -
- Reduces oxidative
stress
- Reduces
inflammation
In vivo: Alloxan-diabetic
A. cepa Kaempferol-B-O-ﬁ-D-6{y- coumaroyl} Wistar rats, 25 mg/kg Antidiabetic - Reduces blood nr [74]
(bulb) glucopyranoside glucose

single oral dose
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Table 3. Cont.
Plant Species . e Study System, Dose, .. . .
(Part Used) Major Identified Flavonol(s) and Duration Activity Biological Effects Molecular Targets References
In vitro: Xenopus laevis
oocytes, 1-15 mg/mL for
A cepa Quercetin and quercetin glycosid. 30 min Antidiabeti - Reduces glucose L SGLT1 [75]
(n.r) uercetin and quercetin giycosides In vivo: OGTT in HFD abetic uptake
fed C57BL/6N mice, 14
mg single oral dose
- Reduces oxidative
In vivo: Alloxan-diabetic stress
A. tuberosum . . Wistar rats, 1 . - Reduces fasting T GSH; 7 SOD and
(leaves) Kaempferol glycoside derivatives 100-400 mg/kg/d orally Antidiabetic blood glucose CAT activities (361
for30d - Improves lipid
metabolism
- Reduces renal
oxidative stress
- Reduces
inflammation
- Reduces blood
In vivo: glucose 7 GSH; T CAT and
A. tuberosum . HFD/STZ-diabetic Wistar .1 . - Improves renal and SOD activities; |
(leaves) Kaempferol glycoside rats, 100 or 400 mg/kg/d Antidiabetic serum lipid profiles ~ TGF-1; | TNF-c; | 76l
orally for 40 d - Reduces serum IL-6; | IL-1P3
creatinine
- Reduces blood urea
nitrogen
- Reduces urinary
albumin levels
Randomized, - Lowers blood
double-blind, pressure
A. cepa . placebo-controlled . . - Improves lipid & Inflammatory
(peel) Quercetin parallel design: Healthy Cardioprotective profiles markers (771
smokers, 100 mg/d - Lowers blood
for 10 wk glucose
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Plant Species . o Study System, Dose, - . .
(Part Used) Major Identified Flavonol(s) and Duration Activity Biological Effects Molecular Targets References
. . . . . - Atherogenic index
A. cepa Quercetin, quercetin 4’-glucoside, In vivo: HFD-fed Wistar . . :
. . , 3 . o o 1s Cardioprotective - Lowers incremental nr. [78]
(outer skin) and quercetin 3,4’-diglucoside rats, 5% in diet for 18 wk .
elastic modulus
In vitro: HUVEC, 50 and
A. cepa . 100 pug/mL for 1 h . . - Delays arterial | Tissue factor; | JNK
(peel) Quercetin In vivo: SD rats, 2 or Cardioprotective thrombus formation and ERK (MAPK) [79]
10 mg/d orally for 6 wk
A cepa Epidemiologic study: ;i?ﬁg?lﬁil
A Quercetin Healthy men, 4.3 g/d Cardioprotective postpran nr. [80]
(peel) flow-mediated
orally for 30 d dilation
Randomized
double-blind, - Improves
placebo-controlled flow-mediated
A. cepa . prospective trial: Healthy . . dilation
(peel) Quercetin overweight and obese Cardioprotective - Improves circulating e [81]
individuals, 100 mg/d endothelial
(50 mg twice daily) orally progenitor cell count
for 12 wk
Quercetin Randomized
. - . double-blind,
quercetin hexoside 1, quercetin
. . placebo-controlled . .
hexoside 2, quercetin . tive trial: - Lowers systolic © Biomarkers of
A. cepa(peel) dihexoside, PToSpeciive ta Cardioprotective ambulatory blood inflammation and [82]
. . Overweight-to-obese . .
methylquercetin hexoside, . ith pressure endothelial function
k ferol. and patients wit
aempferol, an h .
methyl quercetin (pre-hypertension,
162 mg/d for 6 wk
- Inhibits platelet | TXA2 production; |
. . TXAS and COX-1
A. cepa . In vitro: SD rat platelets, . . aggregation A
(peel) Quercetin 50-500 pg/mL for 3 mi Cardioprotective -Red idati activity; | [83]
pee pg/mL for 3 min e ucse; :szl ative Intracellular Ca2*; 1

cAMP
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Table 3. Cont.
Plant Species . o Study System, Dose, - . .
(Part Used) Major Identified Flavonol(s) and Duration Activity Biological Effects Molecular Targets References
In vivo: Wistar rats - Lowers blood
A. cepa Quercetin, quercitrin, isoquercitrin, ) ’ . . pressure parameters T SOD and CAT
(tunic) rutin, and kaempferol 10 mg/kgl/j,dorally for Cardioprotective - Reduces oxidative  activity; T GSH levels 421
stress
Quercetin, In vitro: SD Rat } .
I(Ablif{)?;l quercetin-3,4’-O-diglucoside, and platelet-rich plasma, 1-5 Cardioprotective h;hlbrlzs ;)tliaz)trellet n.r. [84]
quercetin-4’-O-monoglucoside mg/mL for 5 min 881¢8
In vitro: A549 and e
HepG215-125 pg/mL for ; Reduie;e‘::datwe
A. flavum Quercetin, kaempferol, isorhamnetin, Inzii}\:o Anticancer - Reduces 150D and CAT
and A. carinatum rutin, quercetin 3-O-glucoside, and e Cardioprotective and cardiovascular and .. [30]
. Doxorubicin-induced . . activity
(whole plant) kaempferol-3-O-glucoside, . ! myeloprotective morphological
toxicity in zebrafish >
abnormalities
embryos, 1-60 ug/mL for . . .
9% h - Anti-angiogenesis
In vivo: - Reduces lipid
Ischemia/reperfusion peroxidation
A. cepa . induced injury in gerbil . - Attenuates l
(bulb) Quercetin hippocampus, 50 or Neuroprotection activations of 4-hydroxy-2-nonenal (8]
100 mg/kg/d orally for 15 astrocytes and
d microglia
A. victorialis . . In vitro: LPS-activated . - Anti-inflammatory .
(leaves) Kaempferol and quercetin glycosides BV-2 cells, 20 uM for 24 h Neuroprotection offects 1 NO production [86]
In vitro: L ROS; | Ca?* influx;
A ce | : d d T MMP (AY¥y,); | Bid
e Quercetin g'utamate-mediate Neuroprotection - Reduces apoptosis and Bax [87]
(bulb) oxidative stress in HT22 P pop

cells, 1-25 uM for 12 h

| MAPKs (ERK, JNK,
and p38)
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Table 3. Cont.
P:;::tsg::é(;s Major Identified Flavonol(s) Stu:r)‘f dsl};slﬁftli’ (Elose, Activity Biological Effects Molecular Targets References
In vitro: BSO-induced . .
A. cepa Quercetin oxidative stress in mouse Neuroprotection - Reduces oxidative l RO?,é,;KDi%'rilease, 58]
(bulb) neocortices, 1-10 mg/mL, P stress o
for 30 min P38MAPK; | PKC-¢
- Improves muscle
In vivo: AlCl3 induced Crizlﬁ;?;tir;iiﬁg Acts as PPARy
A. cepa . injury in Swiss albino . ) 1 agonist
(bulb) Quercetin mice, 50, 100 or 200 Neuroprotection Reducseti eoszldatlve L ROS; 1 GSH, CAT [89]
mg/kg/d orally for 60 d - Reduces | AChE
inflammation
In vitro: HSP cells under - Reduces apoptosis 1 Ki-67; | Bax/Bcl-2; T
A cepa Quercetin 3,4’-O-p-p-diglucoside nutrient deprived Neuroprotection - Alterspceﬁ Adhesion molecules [90]
(bulb) v ! g condition, 0.1-500 uM for urop morpholo (pan-cadherin and
20 h P 8y focal adhesion kinase)
- Improves
In vivo: Cerebral cognitive/sensorimotor
. N functions
A. cepa . ischemia/reperfusion-induced . _ T GSH; 7T SOD activity
(outer scale) Quercetin injury in Swiss Albino Neuroprotection Reduces cerebral 1 TBARS [91]

mice, 85 mg/kg/d for 7 d

infarct size
- Reduces brain
oxidative stress

l: downregulated; 7: upregulated; <: no effect; n.r.: not reported. ACC, Acetyl-CoA carboxylase; AChE, acetylcholinesterase; AFABP, adipocyte fatty acid-binding protein; Akt, protein
kinase B; AICl3, aluminium chloride; AMPK, AMP-activated protein kinase; AP, activator protein; ATGL, adipose triglyceride lipase; Bax, B-cell lymphoma 2 associated X protein;
Bcl-2, B-cell lymphoma; Bcl-xL, B-cell lymphoma extra large; Bid, BH3-interacting domain death agonist; BSO, L-buthionine-S, R-sulfoximine; cAMP, cyclic adenosine monophosphate;
CAT, catalase; C/EBPo, CCAAT-enhancer-binding protein homologous protein alpha; cIAP-1, cellular inhibitor of apoptosis protein-1; CIDEA, cell death-inducing DNA fragmentation
factor-alpha-like effector A; COX, cyclooxygenase; CPT-1¢, carnitine palmitoyltransferase-1a; DR, death receptor; ERK 1/2, extracellular-signal-regulated kinase 1/2; FABP4, fatty acid
binding protein 4; FAS, Fas cell surface death receptor; FGF, fibroblast growth factor; GLUT4, glucose transporter type 4, GPDH, glycerol-3-phosphate dehydrogenase; GSH, glutathione;
GST, glutathione S-transferase; HFD, high-fat diet; HO-1, heme oxygenase-1; HSL, hormone-sensitive lipase; INSR, insulin receptor; IGF-1, insulin-like growth factor 1; IL, interleukin;
JNK, Jun N-terminal kinase; Ki-67, nuclear protein; LDH, lactate dehydrogenase; LPL, lipoprotein lipase; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; MDA,
malondialdehyde; MMP, mitochondrial membrane potential; NF-«B, nuclear factor kappa B; NO, nitric oxide; Nrf2, nuclear related factor 2; OGTT, oral glucose tolerance test; PARP-y,
peroxisome proliferator-activated receptor-gamma; PGClx, PARP-y coactivator 1-alpha; PI3K, phosphatidylinositol 3-kinase; PKC-¢, protein kinase C; PRDM, positive regulatory domain;
3-Qmg, quercetin-3-O-glucoside; 4’-Qmg, quercetin-4’-O-glucoside; 3,4’-Qdg, quercetin-3,4’-di-O-glucoside; ROS, reactive oxygen species; SGLT1, sodium-glucose linked transporter 1;
SOD, superoxide dismutase; STZ, streptozotocin; TBARS, thiobarbituric acid reactive substances; TBX1, T-box 1; TGF-p1, transforming growth factor beta 1; TNF-«, tumor necrosis factor
alpha; TRAIL, TNF-related apoptosis-inducing ligand; TXA2, thromboxane A2; TXAS, TXA2 synthase; UCP, uncoupling protein.
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The high lipid uptake into adipocyte in obese conditions often increases the mitochondrial
substrate load, which subsequently increases electron transport chain activity and ROS-mediated
oxidative stress. These enhanced ROS levels have been associated with increased insulin resistance [92].
Hence, it has also been argued that the anti-obesity effects of onion flavonols may be linked with
reduced insulin resistance [93] and elevated blood antioxidant parameters [70,71,94] following the
dietary interventions. Reportedly, quercetin and its glycoside derivatives isolated from onion waste
improve lipid metabolism in HFD-fed rats through promoting the enzymatic activity of intestinal
microbiota and the antioxidant capacity of blood [71]. In a follow-up study, the authors suggested a
higher efficacy of 4’-Qmg in lowering plasma cholesterol and triglycerides than the 3,4’-Qdg in high-fat
diet (HFD)-fed rats [94].

Some randomized controlled trials (RCTs) have also been investigated toward probing the effects
of quercetin-rich Allium extracts on obesity in human subjects. In a study by Kim and Yim [70],
OPE administration (100 mg/d, 50 mg bis a die) for 12 weeks significantly reduces waist and hip
circumference, and the effects are ascribed to the reduced oxidative stress in obese women. However,
the follow-up study showed no influence on the inflammatory mediators among the obese women [95].

3.3. Anti-Diabetic Effects

Type 2 diabetes is a worldwide epidemic and characterized by the elevated blood sugar levels
due to impaired insulin action and/or secretion [96]. When diabetes is left unmanaged or untreated,
increased blood glucose can damage the heart, blood vessels, eyes, kidneys, and nerves, leading
to disability and premature death [96-99]. Several pre-clinical studies reported antidiabetic effects
of flavonol-rich extracts from different Allium spp. in vitro [72,75] and in vivo [36,72,73] (Table 3).
The ethanolic extract of onion skin (6.04 g quercetin/100 g dried weight of onion skin) is reported to
lower postprandial blood glucose response in diabetic rats and the effects are ascribed to the inhibition of
carbohydrate digestive enzymes including x-amylase, c-glucosidase, and sucrase [72]. Oxidative stress
and inflammation are inter-linked and play a key role in the progression of type II diabetes [99-102].
Thus, the inhibition of oxidative stress might be an effective strategy to delay/prevent diabetes-related
complications [103-106]. Jung et al. [73] reported that the supplementation of quercetin-rich OPE
suppressed the biomarkers of serum oxidative stress (superoxide dismutase (SOD) activity and
malondialdehyde (MDA) formation) and hepatic inflammation (TNF-« and IL-6), as well as improved
the lipid profiles, levels of insulin receptors, and insulin-regulated glucose transporter type 4 (GLUT4)
in HFD/streptozotocin (STZ)-induced diabetic rats. The antidiabetic mechanisms of flavonol may
also be attributed to the insulin signal transduction through modulating the increased expression
and phosphorylation of insulin receptors, insulin receptor substrate, and glucose transporter (GLUT)
proteins [100]. Previously, Schulze et al. [75] also demonstrated the ability of onion extracts containing
mainly the quercetin and its glucoside derivatives to inhibit intestinal “sodium-glucose linked
transporter 1”7 (SGLT1) in vitro. Notwithstanding, the same study failed to elicit any hypoglycemic
effects in vivo in normoglycemic mice and human volunteers, which might be attributed to some
variations in dose efficacy or compound bioavailability.

Kaempferol is another important class of Allium flavonol which displayed promising antidiabetic
potential [107-110]. A kaempferol-3-O-p-p-6(P-coumaroyl) glucopyranoside from onion displayed
blood glucose lowering ability in alloxan-induced diabetic rats and it was comparably higher to a
standard drug [74]. The authors suggested that the antidiabetic effect might be due to the beneficial
effects of kaempferol glycoside on lipid metabolism and hepatic enzymes. Recently, kaempferol
glycoside-enriched butyl alcohol fraction of A. tuberosum is also reported to reduce blood glucose levels
via improving serum lipid profile and antioxidant parameters in alloxan-induced diabetic rats [36].
The antidiabetic effects of Allium flavonols are thought to be mediated by reducing blood glucose,
serum lipids, oxidative stress, and lipid peroxidation, as well as increasing antioxidant enzyme activity
and insulin secretion [36,72-74,76]. Nevertheless, the exact mechanism of hypoglycemic effects of
Allium-derived flavonols is yet to be elucidated.
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3.4. Cardio-Protective Effects

Cardiovascular disease (CVD) is the leading cause of deaths worldwide. A number of recent
meta-analyses of prospective cohort studies have indicated that individuals with the highest flavonoid
intakes have lower relative risk of mortality from CVD and all-causes compared with that of
individuals with the lowest intakes [111-113]. Several studies evidenced the beneficial effects of Allium
flavonols on the cardiovascular system via their regulatory effects on platelet aggregation [83,84,96],
atherogenesis [78], thrombotic activities [79], endothelial function [81], hypertension [77,82], lipid
metabolism [77], and oxidative stress [42] (Table 3). Ingestion of quercetin rich onion soup (69 mg total
quercetin) inhibits platelet aggregation and essential components of the collagen-stimulated platelet
activation pathway in human and may reduce the risk of thrombosis, a common pathology of CVD [114].
Dietary supplementation of onion powder containing high quercetin derivatives (50% 4'Qmg, 30%
quercetin, and 20% 3,4’Qdg) attenuates the risk of atherosclerosis via lowering the atherogenic index
and the incremental elastic modulus in rat models [78]. The oral supplementation of quercetin rich OPE
(2 and 10 mg) demonstrates anti-thrombotic effects in a rat model [79]. The underlying mechanism of
OPE-mediated anti-thrombosis involves the downregulated expression of thrombin-induced tissue
factor, which is partly driven by the inactivation of mitogen-activated protein kinase (MAPK) signaling
pathway, as observed by the reduced phosphorylation of extracellular signal-regulated kinase (ERK)
and c-Jun N-terminal kinase (JNK) [79]. In another in vitro study by Ro et al. [83], quercetin-rich OPE
inhibits collagen-induced rat platelet aggregation in a dose-dependent manner with ICsy value of
80.0 pg/mL. The anti-platelet aggregation effects of OPE has been ascribed to the reduced levels of
intracellular Ca?* and thromboxane A2 (TXA2) via regulation of cyclooxygenase-1 (COX-1), and TXA2
synthase (TXAS) activities. In addition, OPE also elevates cAMP levels, which might be related to the
regulation of protein kinase activities [83]. Olayeriju et al. [42] showed that the ethyl acetate extract
of red onion tunic affects hemodynamic parameters in rats. The active flavonols in the extract are
identified as quercetin, quercitrin, isoquercitrin, rutin, and kaempferol, which might potentially reduce
systolic and diastolic pressure, mean arterial blood pressure, pulse rate, and heart rate via modulating
the oxidative stress [42].

Several human intervention studies have also demonstrated the efficacy of flavonol-rich onion in
the reduction of CVD risks. Supplementary intake of onion extracts was found to lower blood pressure
in smokers [77] and overweight-to-obese patients with pre-(hypertension) [82]. Endothelial function is
another important predictor of cardiovascular events [80]. Chronic onion extract (rich in quercetin)
intake ameliorates endothelial dysfunction through improving postprandial flow-mediated dilation
(FMD) in healthy men [80]. Consumption of OPE (100 mg quercetin/d) for 12 weeks by healthy
overweight and obese individuals is reported to improve endothelial function by increasing the FMD
and circulating endothelial progenitor cell (EPC) counts [81]. However, not all flavonol-rich onion
fractions demonstrate cardioprotective effects. Recently, Briill et al. [115] observed no influence of
onion skin extract (54 mg quercetin per capsule) on blood pressure, heart rate, or any biomarker of
endothelial function in overweight-to-obese adults with hypertension.

3.5. Neuroprotective Effects

Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, frontotemporal
dementia, Huntington disease, and amyotrophic lateral sclerosis are a growing burden worldwide due
to their high prevalence yet poor treatment [116]. Oxidative stress and inflammation are the major
contributors to the neurodegenerative disease [117-119]. The quercetin-rich A. cepa extract improves
motor coordination and memory functions in aluminium chloride (AlCl3)-induced neurotoxicity in
mice by ameliorating the tested oxidative stress biomarkers in serum including lipid peroxidation,
glutathione levels, and catalase activity [89]. In addition, acetylcholinesterase (AChE) activity, a possible
marker of low-grade systemic neuro-inflammation [120-122], is also significantly reduced in AICI;
exposed animals receiving onion extract [89]. Previously, the kinetics studies of quercetin suggested its
competitive type of inhibition against AchE [123]. Another study reported that the A. cepa outer scale
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extract (rich in quercetin) had positive effects on ischemia-reperfusion cerebral injury in a mice model by
inhibiting lipid peroxidation and increasing antioxidant enzymes as well as antioxidants [91]. In addition,
several in vitro studies investigated the mechanisms of neuroprotective effects of Allium-derived
flavonols. Yang et al. [87] reported that onion derived quercetin protected hippocampal neuronal
cells (HT22) against glutamate-mediated oxidative stress by reducing intracellular ROS production,
Ca?* influx, maintaining MMP, and downregulating several apoptosis-related biochemical markers.
The onion flavonoids quench ROS in hypoxia-induced oxidative stress in neuronal cells via inactivation
of protein kinase C-e¢ (PKC-€) and p38 mitogen-activated protein kinase (p38MAPK), induced by
the phosphorylation of ERK1/2 [88]. The flavonoids from A. victorialis var. platyphyllum leaves and
onion peel [124] were reported to exert neuroprotective effects in activated glial cells by inhibiting NO
production, a pro-inflammatory mediator. These effects are ascribed to the strong antioxidant potential
of flavonoids and their capacity to scavenge ROS [124]. A 3,4’-Qdg isolated from onion bulb protects
human striatal precursor cells (HSPs) under nutrient deprived condition by reducing apoptosis and
improving adhesion capacities via the expression of some adhesion molecules, such as pan-cadherin
and focal adhesion kinase [90]. These studies indicate the potential application of Allium-derived
flavonols in providing neuroprotective effects.

3.6. Antimicrobial Effects

In an antibiotic crisis world, flavonol-rich Allium extracts could act as a promising source of
antimicrobial or antivirulence agents. Flavonol compounds exhibit antimicrobial activity against
a broad range of antibiotic resistant pathogens in vitro. Recently, Sharma et al. [125] demonstrated
antimicrobial activity of methanolic extract and isolated quercetin from onion against several multi-drug
resistant (MDR) bacteria through in vitro and in silico experiments. The extract displayed higher zone
of inhibition as compared with the isolated quercetin, which may be attributed to the synergistic effects
of other co-existing bioactive compounds. The molecular docking analysis revealed that quercetin
might interfere with the metabolism of bacterial proteins (3-lactamase, gyrase A, 2-trans-enoyl-acyl
carrier protein reductase-inhA and topoisomerase IV) [125]. Snoussi et al. [46] demonstrated the in vitro
antimicrobial potential of methanolic extracts of different plant parts from A. roseum var. odoratissimum
against bacteria and yeast isolated from contaminated meat and sea foods. The authors attributed the
observed antimicrobial effects of Allium extracts to the apigenin and kaempferol derivatives.

No matter how effective a new antimicrobial agent may be, pathogens will eventually develop
resistance over time. Therefore, recently scientists lauded for studies on “antivirulence drugs” instead of
“antimicrobial drug” to cope up with antibiotic resistance [126]. An antivirulence agent is not bactericidal
per se but it attenuates the detrimental phenotypes of a pathogen and therefore, generally used as
adjuncts to potentiate the existing antibiotic therapy [127]. Recently, Mahomoodally et al. [128]
demonstrated that the polyphenol-rich extracts of onion and garlic augmented the efficacy of
streptomycin and chloramphenicol against standard and clinical bacterial strains. The ability of
4’-Qmg from onion peel to inhibit biofilm formation regulated by quorum sensing (QS)-mechanisms
and hence the virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa, has also been
reported [129]. They established that 4’-Qmg treatment prevented the production of virulence factors
(violacein, elastase, and pyocyanin) and biofilm formation in the test pathogens by antagonizing the
virulence factor regulator (Vfr) and QS signal receptor (LasR) [129]. Another recent study witnessed the
anti-QS activity of quercetin aglycone and 3-Qmg from onion on C. violaceum, P. aeruginosa, and Serratia
marcescens by inhibiting violacein production and swarming ability [130]. The above discussion imparts
that the use of Allium-derived flavonols could be a sustainable solution to mitigate issues relating to
the resistant microbial infections. However, we emphasize further in vivo studies and clinical trials
prior to any formal promotion of flavonols toward disease management involving MDR pathogens.
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3.7. Other Health Benefits

Immunomodulatory effects of flavonoid-rich fraction of A. ascalonicum (shallot) extract is reported
via inducing delayed-type hypersensitivity and TH1 cytokine-IFNy expression in a mouse model [131].
A. mongolicum extract (100 and 200 mg/kg) containing flavonols (quercetin, kaempferol, and their
respective glucosides) has been reported to induce the recovery of fecal excretion and water content while
enhancing colon thickness and number of goblet cells in a loperamide (LOP)-induced constipated mouse
model [132]. The anti-constipation effects are mediated by the downregulation of aquaglyceroporin-3
(AQP3) expression and up-regulation and activation of G protein alpha (Go) and phosphoinositide
3-kinases (PI3K) [132]. Cho et al. [133] reported the protective effects of onion extract (quercetin;
17.1 uM) against radiation-induced cyto- and geno-toxicity in human lymphocytes pertaining to its
antioxidant and DNA repair properties.

The A. tuberosum extracts containing glycosides of quercetin, kaempferol, and isorhamnetin
demonstrated antiviral effects in ovo against an avian influenza (low-pathogenic) virus [40].
The antiviral efficacy of flavonols is attributed to their ability to interact with various molecular
targets [134-136]. Quercetin derivatives are reported to target cap-binding site of PB2 of influenza
viral RNA polymerase [134]. Schwarz et al. [136] found that kaempferol derivatives block virus ion
channels in SARS coronavirus. A recent molecular docking analysis revealed that fisetin, kaempferol,
and quercetin target SARS-CoV2-S spike protein of CoVID-19 [135]. These studies indicate that
Allium-derived flavonols may present a promising and relevant therapeutic option for the management
of CoVID-19 infection.

4. Molecular Mechanisms Underlying the Physiological Effects of Flavonols

Oxidative stress as denoted by the elevated levels of reactive oxygen species (ROS) has pleiotropic
effects on the development of chronic diseases [137-140]. The inextricable correlations between
the dietary intake of flavonols and their functional effects against certain chronic disorders are
evident. Mechanistically, the health benefits of the Allium flavonols are mainly attributed to their
modulatory effects on oxidative stress and inflammation (Table 3). During a chronic disease condition,
these compounds can regulate the cellular ROS levels by various mechanisms involving direct
scavenging and detoxification as well as engagement of redox signaling pathways (Figure 3). We present
here a few examples of molecular targets of Allium-derived flavonols.

The transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) is a master switch of
cellular antioxidant response [138,141,142]. The active Nrf2 after its dissociation from its suppressor
(Kelch-like ECH-associated protein 1 (Kaep1)) translocates from cytoplasm to the nucleus and controls
the basal and inducible expression of the target genes that contain antioxidant response element
(ARE) [143]. These target genes include antioxidant enzymes: Superoxide dismutase (SOD), catalase
(CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutamate cysteine ligase (GCL),
thioredoxin reductase (TrxR), peroxiredoxin (Prx), and sulfiredoxin (Srxn); detoxifying proteins: Heme
oxygenase 1 (HO-1), glutathione S-transferase (GST) and NAD(P)H: Quinone oxidoreductase 1 (NQO1),
and anti-inflammatory proteins: IL-6 and IL-13 [142]. Nrf2 also regulates inflammation through the (1)
direct regulation of antioxidant enzymes and pro-inflammatory genes and (2) crosstalk with nuclear
factor-«B (NF-kB) pathway [142,144]. In addition to regulating oxidative stress and inflammation, Nrf2
also coordinates different pathways involved in glucose and lipid metabolisms [145]. The mechanism
of Nrf2 activation was concluded to be through multiple kinase pathways, including PI3K/Akt, MAPK,
P38, glycogen synthase kinase (GSK), AMPK, and PKC [141,146,147]. Numerous studies have shown
that flavonols and their glycosides confer protection against oxidative stress through the activation of
Nrf2-ARE signaling [148-153]. For instance, quercetin alleviated oxidative stress by upregulating the
Nrf2-ARE-mediated gene expression in vitro (NQO1) and in vivo (SOD, NQO1, and HO-1) through
the MAPK (JNK, ERK, p38) signaling pathway [148,153]. Hussein et al. [152] reported that kaempferol
exerted protective effects against oxidative stress by inducing Nrf2-ARE-mediated gene expression of
SOD, CAT, and GPx through the modulation of GSK signaling pathway in rat models. Yang et al. [149]
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ascribed the antioxidant activity of isorhamnetin to the increased Nrf2 activity and its target gene
expression of HO-1 and GCL via the phosphorylation of ERK1/2, PKC3, and AMPK.

Chronicfiseases
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Figure 3. Examples of some molecular targets of Allium-derived flavonols during a chronic
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disease condition. Blue line indicates activation; red line indicates inhibiton; black line indicates
pathways. AMPK, AMP-activated protein kinase; AP-1, Activator protein-1; ERK, extracellular
signal-regulated kinase; JNK, jun N-terminal kinase MAPK, mitogen-activated protein kinase; PI3,
phosphatidylinositol 3-kinase; Akt, protein kinase B; ROS, reactive oxygen species; NF-«B, nuclear
factor kappa-light-chain-enhancer of activated B cells; Nrf2, nuclear factor erythroid 2-related factor 2.

Nuclear factor kappa-B (NF-«kB) is a family of transcription factors that plays a pivotal role
in multiple aspects of innate and adaptive immune functions. Normally, NF-kB exists in the
cytoplasm as an inactive complex in physical association with inhibitory proteins called inhibitors
of kB (IkBs) [154]. Upon activation, NF-kB triggers inflammatory response by increasing the
expression of pro-inflammatory cytokines (TNF-c, IL6, IL1-3), chemokines (monocyte chemoattractant
protein-1, MCP-1), and adhesion molecules as well as by regulating the cell proliferation, apoptosis,
morphogenesis, and differentiation [154,155]. The transcription of NF-kB-dependent genes also
influences the levels of ROS and vice versa [156]. Therefore, a tightly regulated NF-«B signaling is
essential to prevent any exacerbated inflammatory responses during a chronic illness [157]. Previous
reports found that quercetin [158-160], myricetin [161], fisetin [162], and isorhamnetin [163] have
suppressed the inflammatory responses via the inhibition of NF-kB signaling in animal models and
human with chronic diseases. These studies suggest that the transcriptional specificity of NF-xB may
be shaped by the crosstalk with other signaling pathways (p38, MAPK and ERK) and transcription
factors (Nrf2 and p53). Furthermore, some enzymes including inducible nitric oxide synthase
(iNOS), xanthine oxidase, cyclooxygenase-2 (COX-2), arachidonate 12-lipoxygenase, arachidonate
5-lipoxygenase, and cytochrome p450 enzymes that promote the production ROS are also regulated by
NEF-«B signaling [156].

P53, a transcription factor that regulates cell proliferation, senescence, DNA repair, and cell
death and its activity is modulated by the degree of oxidative stress imposed [164]. The low levels of
oxidative stress inhibit p53 expression, which promotes cell survival and repair by direct scavenging
of free radicals through the expression of antioxidant genes [165]. Reciprocally, the acute/high stress
promotes p53 expression and initiates DNA fragmentation to induce apoptosis via caspase cascade
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signaling [165]. Several flavonols are reported to cause cell cycle arrest at G2/M phase and triggered
apoptosis in different types of human cancer cells via the activation of p53 [54,166,167].

Mitochondria-mediated ROS production accounts for approximately 90% of the total cellular
ROS [168]. Lagoa et al. [169] identified mitochondrial respiratory chain complex-I and cyt c as the major
molecular targets of quercetin and kaempferol in alleviating oxidative stress. Another mechanism
pertaining to the beneficial effect of flavonols is identified as mitochondrial uncoupling, a regulated
proton leak mediated by uncoupling proteins (UCPs) [170], which occurs through aldehydic
lipid-peroxidation intermediates such as 4-hydroxy-2-nonenal [85] and AMPK activation [64].
The mitochondrial uncoupling activity of flavonols is also reported to induce apoptosis in cancer
cells by dissipating MMP (A, through the activation of caspase cascades [54]. Influx of Ca®* into
the mitochondria is a critical for the availability of ATP since major enzymes in the tricarboxylic
acid cycle are activated by Ca®* [171]. Quercetin [87] and kaempferol [172] are reported to modulate
mitochondrial Ca?* accumulation and thereby reduce ROS emission.

Different protein kinase pathways including PKC [88], PI3K/Akt [54], MAPK [153],
and AMPK [64,65] have been identified as the targets of allium derived flavonols for providing
cell survival signaling. PI3K/Akt and MAPK (ERK, p38, and JNK) signaling pathways play critical
roles in the regulation of cell proliferation, apoptosis, and autophagy [173] while AMPK is identified
as a key regulator of energy homeostasis [174]. The AMPK activation is reported to be beneficial
for both the prevention and treatment of a wide variety of metabolism related chronic diseases via
its regulatory effects on fatty acid, cholesterol, carbohydrate, and amino acid metabolism as well as
autophagy, mitochondrial function (biogenesis, fission and mitophagy) and cell growth [174]. Flavonols
are reported to mediate cell cycle arrest at G2/M phage, apoptosis, and autophagy in different types of
cancer cells via suppressing the expression of (PI3K)/Akt [54] and MAPKSs [153] as well as increasing
the expression of AMPK [64,65] signaling pathways.

Although the precise molecular details of the beneficial effects of Allium-derived flavonols not
fully elucidated, these studies suggest that some cryptic mechanisms of action are subtly involved.

5. Bioavailability of Allium-Derived Flavonols

Bioavailability refers to the amount of a compound/nutrient that enters systemic circulation and
reaches the intended biological tissues [175,176]. Absorption, metabolism, and excretion are the main
indices of bioavailability of an ingested compound [177,178]. The molecular actions of Allium flavonols
are largely dependent on their bioavailability at the target tissue of humans. However, the bioavailability
studies often involve the use of flavonoid-rich alliums rather than a pure isolated compound, where the
possibility of the effects induced by other phytochemicals could not be excluded. Quercetin and
its glucosides contribute to the major dietary flavonol intake in humans and have been the most
extensively studied compounds for their bioavailability [177,179,180]. However, it should be noted
that the complete bioavaialbility of quercetin in the body is not clearly understood. After quercetin,
kaempferol contributes significantly to the flavonol intake in humans [181]. Nevertheless, there is
a lack of scientific data on the bioavailability of Allium-derived kaempferol, isorhamnetin, myricetin,
fisetin, and morin in humans. A simplified scheme of dynamics of flavonol/flavonol glycosides inside
the body from oral intake to excretion is shown in Figure 4.

The site and manner in which flavonols are absorbed depend on their chemical
structure [180,182,183]. Crespy et al. [183] reported gastric absorption of quercetin, but not its
glycosides in a rat model, indicating a limited contribution of stomach in the bioavailabilty of
flavonols. The pioneering study by Hollman et al. [184] indicated that 52% absorption of onion-derived
quercetin glucosides whereas, 24% of quercetin aglycone given as a pure compound was absorbed
in the small intestine of healthy ileostomy volunteers. The greater absorption of quercetin glucoside
is attributed to its water-soluble nature and is mediated by sodium-dependent glucose transporter 1
(SGLT1) [184]. In contrast, higher quercetin aglycone (dried shallot skin) absorption is reported when
quercetin aglycone was consumed as an integral food component as compared with its glucosides
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(shallot flesh) in humans [185]. This may be ascribed to the fact that quercetin aglycone is relatively
lipophilic and thereby can easily enter intestinal enterocytes because of passive transport, whereas its
respective glycosides must be hydrolyzed by phlorizin lactase or 3-glucosidase located at the intestinal
brush border membrane prior to absorption by an enterocyte [186,187]. Hollman et al. [188] pointed
out that sugar moiety is the main determinant for the absorption of quercetin in humans; glucosides
of quercetin being more efficiently absorbed than the rutinoside. However, the position of sugar
moiety had no effects on their absorption when the same levels of pure 3-Qmg and 4’-Qmg were
fed in humans [189]. Apart from glycosylation pattern, dietary source [188,190] and components of
food matrix [191] also affect the oral bioavailability of flavonols. For example, higher absorption of
quercetin from onions was reported as compared with apples in ileostomy patients [188] and healthy
volunteers [190]. In an animal study using a porcine model, the fat content in the diet positively
influences the bioavailability of 3-Qmg [191]. Dietary fat-dependent improvements in quercetin
bioavailability, likely by enhancing its micellarization at the small intestine have also been reported in
humans [192].

Ingested flavonol
g : i Target
v organs/tissues
Hydrolysis and oxidation (.k Absorption
due to low pH
v
- C . B . Conjugation
Deglycosylation by LPH ﬁ Absorption ‘(&_ 7 Metabolism ractions by
v COMT, SULT,
Unabsorbed metabolized and UGT :
flavonols flavonols Methylation,
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Deglycosylation by 1 Microbial Su N, an
microbial glucosidase | % ../ taboli glucoronidation
Ring fission metabolism

l (3 i) Excretion via urine

Excretion via feces
and breath

Figure 4. A simplified schematic representation of oral bioavailability of flavonols in humans.
LPH, phlorizin lactase; COMT, catechol-O-methyl-transferases; SULT, sulfotransferases; UGT, uridine
5’-diphospho-glucuronosyl transferases.

Once absorbed, all the flavonols are metabolized via three types of conjugation in the
liver: Methylation, sulfation, and glucuronidation by catechol-O-methyl-transferases (COMTs)
sulfotransferases (SULTs), and uridine 5’-diphospho-glucuronosyl transferases (UGTs), respectively,
prior to reaching systemic circulation [177,186,193]. It is noteworthy to mention that only 5-10% of
the total dietary polyphenols is absorbed in the small intestine, while the remaining 90-95% together
with their conjugates (excreted through bile) reaches the colon and undergoes microbial metabolism,
leading to the production of low molecular weight phenolic acids and aromatic compounds as
well as CO;, [194-197]. The simpler phenolic compounds can be re-absorbed in the small intestine,
then subjected to conjugation again in liver, reach the target tissues, and ultimately excreted via urine
and feces as their respective conjugates, and via breath as CO, [194-197].

The poor water solubility, low lipophilicity, and instability, as well as extensive first pass
(intestine-liver) metabolism contribute to the low bioavailability of orally ingested flavonols [198].
Recently, research on developing novel delivery systems to improve their bioavailability, target-specificity
and efficacy has gained much attention. In this context, various formulation strategies have been
explored including preparations such as phospholipid complexes/phytosomes [199], liposomes [91],
nanoparticles [200,201], nanoemulsions [202], solid dispersions [199,203], nanodispersions [204],
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nanocrystals [205], self-emulsifying systems [203], and prodrugs (structural modification) [206]
as well as delivery as natural prodrugs [207].

6. Stability During Domestic and Technological Processing

Domestic and technological processing may bring a significant variability in allium flavonol
contents. The kind and position of the sugar moiety in flavonol glycosides often determine their fate
during these processing practices [208,209]. Data in the literature about the effects of the processing
techniques on the flavonol content are restricted to onions only. For instance, Rodrigues et al. [210]
reported that maceration of chopped red onion slightly reduced the levels of 3,4’-Qdg and 4’-Qmg
during the first 5 h when kept at room temperature under continuous light exposure. However, Makris
and Rossiter [211] observed no marked changes in 3,4’-Qdg and 4’-Qmg following 60 min of maceration
of chopped onion, indicating the fact that longer time is needed for the enzyme action. Cooking
significantly alters the flavonol content due to thermal degradation and transformation; however,
changes vary with the type of culinary treatment and the length of exposure [209-212]. The losses of
onion flavonols during different cooking treatments are supposedly affected in the following order:
Boiling > microwave roasting > oven roasting > frying [210]. Intriguingly, Lee et al. [212] reported a very
different trend of flavonol losses following various cooking treatments: Frying > sautéing > boiling in
water with 3% salt > boiling in water with 1% salt > steaming > microwaving. However, baking resulted
in the gain of onion flavonols. The high loss of flavonols after boiling and frying may be attributed to
a combined effect of thermal degradation and leaching into cooking water and 0il [209,210,212]. Thermal
treatments led to deglycosylation of quercetin glucosides (4’-Qmg and 3,4’-Qdg) to their corresponding
aglycone [209,210]. The sugar moiety attached at 3-O-position (C-ring) is more susceptible to thermal
degradation as compared with that attached at 4-O-position (B-ring) [209]. Garlic and onion are often
marketed as dried powders for culinary uses due to their longer shelf-life. Freeze-drying is considered as
the best method to produce high-quality food powders with maximal retention of bioactive compounds
in the final products as compared to other drying techniques [213]. Pérez-Gregorio et al. [214] reported
that freeze-drying increased the flavonol levels (4’-Qmg and 3,4’-Qdg) in onions by 32% and no
significant changes were observed in the flavonols of freeze-dried onions during 6-months of storage.

Fermentation of Allium vegetables is an important part of Asian cuisine. Several studies have
substantiated the fermentation mediated changes of Allium flavonols. Most notably, the red onion
fermentation by Lactobacillus plantarum S1 leads to the hydrolysis of quercetin diglucoside to its
monoglucoside and aglycone derivatives [215]. Yang et al. [216] demonstrated that the controlled
fermentation of yellow onion using a 3-glucosidase-rich crude extract from Aspergillus kawachii
resulted in elevated quercetin aglycone levels owing to the enzymatic cleavage of 4’-Qmg and
3,4’-Qdg. The regioselective de-glycosylation of onion quercetin glucosides by Saccharomyces cerevisiae
is also reported following the fermentation [217]. Similarly, Lee et al. [218] demonstrated that onion
fermentation using Leuconostoc mesenteroides at varying salt concentrations resulted in higher relative
abundance of quercetin and isorhamnetin glucosides, while their corresponding aglycones were
gradually increased via 3-glucosidase action. Recently, Kothari et al. [40] also observed higher relative
abundance of flavonol glycosides following the controlled L. plantarum-mediated fermentation of
A. tuberosum. Contrastingly, no flavonol glucosides but only the traces of free quercetin are detected in
onion following fermentation, suggesting a rapid decomposition of flavonols into smaller molecules
including acetate, butyrate, and carbon dioxide [219]. Therefore, further studies should focus on a
tailored microbial fermentation of alliums for the controlled production of bioactive metabolites toward
enhancing the nutritional and health properties.

7. Food Fortification

The increasing nutrition knowledge has improved the consumer perception to opt for flavonoid
fortified food products. Several researchers attempted to incorporate flavonol-rich alliums into food
products to augment the health quality of foods. For instance, the onion skin extract addition
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improves the polyphenolic content and antioxidant activity of bread [220,221] and bean paste [222]
in a dose-dependent manner. A cereal bar containing A. fistulosum extract (containing ferulic acid
and quercetin) displayed anti-obesity effects in a rat model [223]. Recently, a quercetin derivative
isolated from onion/beef soup demonstrated autophagy in the colon cancer cell in vitro [224]. However,
not all the Allium-fortified foods have enhanced nutritional values. The fortification sometimes
reported to negatively influence protein digestibility due to the formation of flavonoid—protein
insoluble complexes [220,222]. Therefore, while designing an Allium-rich food formulation, the food
matrix components also need to be considered to ensure its end-product quality. In addition,
the scale-up and technical constraints related to the flavonol fortifications in food must be thoroughly
evaluated considering their varying solubility, unstable nature, and low bioavailability in food
matrices. Furthermore, biofortified products should also be subjected to public awareness, consumer
participation, and acceptance parameters.

8. Future Perspectives and Limitations

From the above literature review, it is evident that the consumption of Allium flavonols may
engender a lower risk of chronic disease development through modulating the oxidative stress and
related low-grade systematic inflammation. However, the epidemiological studies regarding the
health effects of Allium flavonols are surprisingly limited pertaining to several challenges including
(1) time-consuming and labor-intensive isolation of a single bioactive flavonol from its natural
source, (2) elusive underlying mechanism of action, and (3) their low bioavailability. Most of the
Allium-derived flavonol studies are based on using solvent extracts that have multiple bioactive
constituents such as OSCs, saponins, and other polyphenols and thus their additive or synergistic
actions cannot be dismissed. In most of the studies reporting the health effects and related bioactivities,
the specific flavonol compounds have not been fully characterized using ultra-high performance liquid
chromatography (UHPLC) or gas chromatography (GC) coupled to high resolution-mass spectrometry
(HR-MS), and nuclear magnetic resonance (NMR) spectroscopy. Hence, we emphasize on both functional
and chemical characterization of the flavonols from Allium species having substantiated pharmacological
effects. In addition, most of the mechanistic evidence derived from culture-based and/or animal model
studies using the native forms of flavonol either in isolation or combination. However, following
the ingestion, flavonols undergo a cascade of biotransformation reactions depending on individual’s
genetics, dietary habits, and various environmental factors. The in vivo studies often use animal
models of similar genetic makeup and involves normalization of diet as well as the environment.
However, the humans are genetically diverse and exposed to numerous exogenous factors, and their
diets often includes highly diverse nutritional components [225]. These variables make it very difficult
to ascertain the true effect(s) of dietary Allium-derived flavonols on the human host. Therefore,
mechanistic studies should be thrived in both animal models and humans with the help of integrated
multi-omics approach. To address the low bioavailability issue, further research is needed toward
developing micro- and nano-delivery systems to maximize the absorption of flavonols and thereby
enhance their target specificity and therapeutic efficacy.

9. Conclusions

Long-term oxidative stress contributes to the development of several chronic conditions including
age-related neurodegenerative and cardiovascular diseases, cancer, diabetes, obesity, and low-grade
systematic inflammations, among many others. Disease prevention models practicing healthy lifestyle
changes including dietary modifications are suggested to be one of the effective strategies to address
these chronic disorders. Herein, we exclusively discuss the Allium-derived flavonols as natural
antioxidants and their possible role toward the prevention of chronic diseases in humans through
alleviating the oxidative stress and associated chronic inflammation. Nonetheless, the potential
importance of other biologically active compounds, such as phenolic acids, anthocyanins, saponins,
and OSCs of alliums, cannot be undermined. Currently, insufficient scientific evidence prevails to
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draw any conclusion on flavonol intake from alliums and their exclusive health benefits. Further
mechanistic studies involving animal models and human volunteers are required to substantiate any
potential health benefit claims. The poor bioavailability of flavonols and food matrix constituents
should also be taken into consideration while designing any formulations. Finally, individual health
conditions that could interfere the metabolism and, thus, the health effect should also be considered
for the clinical use of Allium-derived flavonols.
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