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Abstract: Pathophysiological mechanisms correlating diabetes mellitus with associated complications
are still not completely clear, even though oxidative stress seems to play a pivotal role. Literature
data suggest that cell damages induced by hyperglycemia, although multifactorial, have a common
pathway in oxidative/nitrosative stress. The present study evaluated the effects of Betula etnensis
Raf. bark extract, a plant belonging to the Betulaceae family endemic to Sicily, on oxidative stress
and in preventing and/or retarding diabetes-associated complications in streptozotocin diabetic
rats treated with the extract at dose of 0.5 g/kg body weight per day for 28 consecutive days.
The extract administration significant decreased food and water intake, fasting blood glucose,
weight loss and polyuria, compared with untreated diabetic animals. Furthermore, oxidative stress
markers particularly, lipid hydroperoxides (LOOH) and nitrite/nitrate levels, non-proteic thiol groups
(RSH), γ-glutamyl-cysteine-synthetase (γ-GCS) activities and expression, heme oxygenase-1 (HO-1),
endothelial and inducible nitric oxide synthases (i-NOS e-NOS) expression, significantly changed by
streptozocin treatment, were markedly restored both in plasma and tissues together with nuclear
sirtuins activity (Sirt1). Results suggested that B. etnensis bark alcoholic extract is able to counteract
oxidative stress and to ameliorate some general parameters related to diabetes.

Keywords: terpenoids; polyphenols; flavonoids; betulinic acid; insulin; oxidative stress; HO-1 (heme
oxygenase-1); γ-GCS (γ-glutamyl-cysteine-synthetase)

1. Introduction

The WHO defines diabetes as a multiple metabolic disorder, characterized by chronic
hyperglycemia with impaired metabolism of carbohydrates, fats and proteins, resulting from defects in
insulin secretion, insulin action or both [1]. Insulin deficiency produces Type 1 Diabetes Mellitus (T1DM),
while insulin resistance produces Type 2 Diabetes Mellitus (T2DM). Common effector mechanisms can
cause this deficit: immunological stimuli in type 1 diabetes and metabolic and/or inflammatory factors
in the type 2 converge on common pathways of signal transduction leading to functional alterations
and cell destruction. In both cases, oxidative stress may play a key role in determining the functional
deficits that lead to the progressive loss of beta cells [2]. To date, however, there is debate as to whether
Reactive Oxygen Species (ROS) formation is always a primary cause or if it is sometimes actually a
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result of tissue damage. In fact, the onset of insulin resistance and dysfunction of pancreatic beta cells
appear to be due to increased oxidative stress with a concomitant reduction of antioxidant systems.
However, oxidative stress may play a relevant role both in development of some complications of
diabetes (such as vascular complications, nephropathy, diabetic liver injury [3]), and may also represent
a causative pathogenic factor of insulin resistance and/or pancreatic beta cell destruction [4]. In recent
years, the overall incidence of diabetes is increasing [5,6], also due to incorrect lifestyle and eating habits.
A proper diet with a support of herbal preparations, in fact, may represent a source of substances with
preventive activities against this pathology. Ethno-pharmacology-based studies have suggested that
medicinal plants may have beneficial effects on diabetes and its complications [6–13] and it is well
known that vitamins and thousands of substances of different chemical nature such as polyphenols,
flavonoids and terpenes, contained in plants, are capable of increasing the antioxidant defenses [14].
Several studies reported antidiabetic activity of phyto-bioactive compounds [15], but their potential
beneficial effects on human health might be not limited to their antioxidant action. Many Betula species
contain flavonoids, tannins, saponins, sterols and pentacyclic triterpenoids such as betulinic acid and
betulin, which might have multiple biological activities, including effects on the absorption and uptake
of glucose, insulin secretion and some diabetic complications [16]. Betula. etnensis Raf., also known as
Birch of Etna, is a deciduous tree belonging to Betulaceae family. It is a legacy of the last glaciation in
Sicily [17] and it grows only on the Etna volcano, at an altitude between 1000 and 2000 m. The bark is
cream-colored and rich, in particular the young branches, which consists of numerous peltate resinous
glands [18]. Previous studies have indicated that B. etnensis extracts contain considerable quantities
of polyphenols, show radical scavenging activity [19] and exhibit a significant ability to differently
modulate oxidative stress in an in vitro model of colon cancer [20]. The purpose of this study was to
perform a preliminary phytochemical characterization of an alcoholic bark extract of B. etnensis and to
evaluate some in vivo effects in an experimental model of diabetes induced in rats by administration of
streptozotocin (STZ). To this end, together with general parameters (such as blood glucose and insulin,
amounts of water and food taken, excreted urine volume, bodyweight), we assessed some oxidative
stress biochemical markers (lipid hydroperoxides (LOOH) and nitrite/nitrate levels, non-proteic thiol
group (RSH) amount, activity and expression of γ-glutamyl-cysteine-synthetase (γ-GCS), endothelial
and inducible nitric oxide synthases (i-NOS, e-NOS) and heme oxygenase-1 (HO-1) expression) of
some organs involved in oxidative stress-induced diabetes and associated complications. In addition,
in view of the roles played by Sirt1 in modulating the regulation of a variety of cellular processes
associated with antioxidant and redox signaling, the same experimental in vivo model of diabetes
was used to assess the effects of the extract on nuclear sirtuins activity. All these data allowed the
assessment of organ damages and possible antioxidant and anti-diabetic effects of B. etnensis bark
extract in a streptozotocin-induced diabetic rat model.

2. Materials and Methods

2.1. Drugs and Chemicals

All chemicals were purchased from Sigma-Aldrich S.r.l. (Milano, Italy), except those mentioned
elsewhere.

2.2. Plant Material and Preparation of the Extract

B. etnensis bark was collected in the area around Linguaglossa (Catania, Italy) in November 2018.
The specimen was obtained and authenticated by the botanist Acquaviva, one of the authors. A voucher
specimen of the plant (No. 36/03) was deposited in the Department of Drug Science, University of
Catania, Italy. Grinded dried bark from two/three-year-old branches of B. etnensis for a total amount
of 2000 g, was extracted three times with 70% ethanol (1–5) at room temperature under constant
agitation for 24 h. The ethanolic extract was then filtered and evaporated in vacuo, to dryness with a
rotatory evaporator since to obtain a brown residue. The yield of the bark extract, compared to 100 g of
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dried plant material, was 8.76%. The extract was resuspended in water before being administered to
experimental animals.

2.3. Total Phenolic Content and Total Flavonoids Content

The concentration of total phenolic compounds was determined spectrophotometrically, using
the Folin-Ciocalteau total phenols procedure, as previously described [21]. The concentration of total
phenolic compounds was determined by comparing the absorbance between the extract and the gallic
acid standard solutions and was estimated as gallic acid equivalent and expressed in mg gallic acid
equivalent/g extract. Each result represents the mean ± S.D. of three experimental determinations.
The flavonoid content was measured using a colorimetric assay [21]. A standard curve of catechin
was used for quantification. The total flavonoid content of the extract was expressed as mg catechin
equivalent/g extract. Each result represents the mean ± S.D. of three experimental determinations.

2.4. HPLC/DAD Analysis

One gram of each sample was extracted with 20 mL of methanol/water (9:1) and chloridric acid 1%,
solution at room temperature (25 ± 2 ◦C) and in darkness for 24 h. The obtained solutions were filtered
in a Büchner funnel and residual methanol from the solution was removed by nitrogen automated
rapid evaporation (Rapid Mini of the Crescent Scientific, Mumbai, Maharashtra India). The obtained
solution was purified using a Bond Elut C18 (500 mg 6 mL) column (Agilent, Santa Clara, CA, USA)
according to the manufacturer’s instructions. The solid samples obtained were dissolved in 1 mL
of methanol/water solution (1:1) with a final concentration of 30 mg/mL. HPLC-DAD analyses were
carried out in duplicate and performed using an Agilent 1100 Infinity (Agilent, Santa Clara, CA, USA),
equipped with a diode array detector (DAD) and with a 250 × 4.6 mm i.d., 5 µm Symmetry Shield
RP 18 column; the mobile phases: 100% organic solvent (MeOH) in isocratic conditions; total time
35 min. The column temperature was maintained at 25 ◦C. The flow was 1 mL/min and the injection
volume was 10 µL. The chromatogram profiles were recorded from 190 to 500 nm and monitored at
210, 280 nm ± 2 nm. HPLC-grade solvents, methanol, water, anhydrous sodium sulfate and chloridric
acid were obtained from Carlo Erba Reagenti (Milano, Italy). The reference compound (betulinic acid)
was obtained from PhytoLab GmbH & Co. (Vestenbergsgreuth, Germany).

2.5. Antioxidant Characterization of the Extract

2.5.1. SOD-like Activity

The scavenger effect of the bark extract on superoxide anion (SOD-like activity) was performed as
previously reported [21], and recorded as decrease in absorbance at λ = 340 nm. Results are expressed
as the percentage of inhibition of NADH oxidation (IC50), and SOD (80 mU) was used as reference
compound. The result represents the average of three independent experiments, and is reported as
mean 50% inhibitory concentration (IC50) ± S.D.

2.5.2. DPPH Radical Scavenging Activity Assay

The free radical-scavenging capacity was tested by the ability of the extract to bleach stable
1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) compared to Trolox (30 µM) a water-soluble derivative
of vitamin E as reference compound. After 10 min at room temperature the absorbance at λ = 517 nm
of the DPPH reaction mixture, with the different concentrations of acetonic extract in 1 mL of ethanol
was recorded [22]. The result was obtained from the average of three independent experiments, and is
reported as the mean 50% inhibitory concentration (IC50) ± S.D.

2.6. Animals and Treatments

Male Wistar albino rats (60 days old, 200 + 15 g b.w.) were purchased from Charles River
Laboratories, Italia, s.r.l., Calco (Lecco). All the experimental procedures reported in this study
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met the guidelines of the Animal Care and Use Committee of University of Catania, Catania, Italy
(approval number 170). Male Wistar albino rats were fed balanced standard rodent diet and kept in
temperature (20 ◦C) and humidity (50%) controlled rooms. Animals were randomly subdivided into
four experimental groups (10 rats for each group) as follows: control (Ctr.), diabetic (Diab.), non-diabetic
rats treated with B. etnensis extract (Extr.), diabetic rats treated with B. etnensis extract (Diab. + Extr.);
Ctr. and Extr. groups received a single intraperitoneal (i.p.) injection of 0.1 mol/L citrate buffer;
Diab. and Diab. + Extr. groups received an injection of freshly prepared streptozotocin (65 mg/kg
body weight) in 0.1 mol/L citrate buffer (pH 4.5). After 72 h of streptozotocin injection, blood was
extracted from the tail vein for glucose analysis performed by glucometer kit (FreeStyle Optium,
Abbott, UK); rats with blood glucose higher than 250 mg/dL in the fasting state were considered
diabetic. Both non-diabetic (Extract) and diabetic rats (Diab. + Extract) were treated orally for 4 weeks
with the extract of B. etnensis at the dose of 0.5 g/kg, p.o. The dose was determined according to the
literature data [23,24]. Rats were placed in individual metabolic cages; in all four groups of animals,
blood glucose and insulin, body weight, volume of excreted urine, amount of water and food consumed
were assessed at 8, 15, 21 and 28 days. After 28 days, animals were sacrificed with an over-dose of
anesthetic and blood, liver, kidney, brain and pancreas withdrawals were performed. Tissues were
immediately frozen, stored at −80 ◦C and used within 7 days. Blood samples were collected from
the caval vein of each rat in heparinized tubes. Plasma was separated by centrifugation at 800 g for
10 min at room temperature and immediately used for evaluating LOOH, RSH and nitrite/nitrate levels.
Tissues were homogenized in phosphate buffer (PBS), pH 7.4; homogenates, divided into aliquots,
were used to evaluate the following experimental parameters: LOOH and RSH levels, Western Blotting
analysis for γ-GCS, e-NOS and i-NOS, respectively, Sirt1 and γ-GCS activities; in addition, quantitative
determination of HO-1 was also carried out in each tissue.

2.7. Determination of LOOH, RSH and of Nitrite/Nitrate Levels in Homogenates

The determination of LOOH was performed on 200 µL of plasma or homogenate as previously
reported [25], measuring the oxidation of Fe2+ to Fe3+ in the presence of xylenol orange. LOOH oxidize
Fe2+ to Fe3+ in acidic solution, and the latter, in the presence of xylenol orange, forms a complex, which
absorbs λ = 560 nm. The reaction mixture contained, in a total volume of 1 mL: 200 µL of plasma
or homogenate, 100 µM xylenol orange, ammonium iron sulphate 250 µM, 90% methanol, 4 mM
hydroxytoluene, 25 mM H2SO4. After 30 min incubation at room temperature and centrifugation at
11,000 rpm for 5′, the absorbance at λ = 560 nm was measured spectrophotometrically. The results were
expressed as nmoles of LOOH/mg of protein or as µmoles/mL of plasma, using known concentrations of
H2O2 (0.2–20µM) for calibration. RSH levels were determined in 200µL of plasma or tissue homogenates
according to a partially modified Hu’s method [26]. The test is based on the spectrophotometric
measure at λ = 412 nm of the reduction of the chromophore 5,5-ditiobis-2-nitrobenzoic acid (DTNB)
by thiols. The amount of RSH present in the samples was obtained using known amounts of GSH
for calibration. The results were expressed as nmoles of RSH/mg protein or as µmol/mL of plasma.
Protein content was quantified using the Sinergy HT (Biotek, Milano, Italy) instrument by measuring
the absorbance difference at λ = 280 and λ = 260. Nitrite/nitrate levels were determined using a
spectrophotometric method at λ = 540 nm; the method is based on the reaction of diazocopulation of
nitrite with the Griess reagent [27]. Plasma and homogenates were filtered through a centrifugal-driven
10,000 molecular weight cut-off cellulose membrane filter (Ultrafree-MC 10,000, Millipore, Bedford,
MA, USA) at 10,000 g for 1 h at room temperature to remove proteins. In total, 250 µL of ultrafiltrate
were incubated for 30 min at 25 ◦C in phosphate buffer (50 mM, pH 7.4) with NADPH (50 µM) and
nitrate reductase (60 mU); to remove the excess of NADPH, which could interfere with the Griess
reagent, samples were then treated with pyruvate (5 mM) and lactic dehydrogenase (1U). After 10 min,
250 µL of Griess reagent was added to the reaction mixture. The results were expressed as nmoles of
nitrite and nitrate/mg of protein; calibration was obtained using known amounts of KNO2/KNO3.
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2.8. Western Blotting Analysis

The expression of i-NOS, e-NOS, (EnzoLife, Milan, Italy), γ-GCS (Abcam, Cambridge, UK)
and β-actin (Santa Cruz, Milan, Italy) was evaluated by Western blotting. To this end, aliquots
of homogenate were treated with the appropriate concentration of a mixture of Sigma-Aldrich®

protease inhibitors. The amount of homogenate corresponding to 30 µg of protein was recovered with
loading buffer (50 mM Tris-HCl, 10% w/v sodium dodecylsulphate (SDS), 10% v/v glycerol, 10% v/v
2-mercaptoethanol and 0.04% of bromophenol) and boiled for 5 min. The samples were then subjected
to electrophoresis on SDS-PAGE (10% acrylamide at 100 volts constant) using as “electrophoretic
run buffer” 5 mM Tris base containing 50 mM glycine and SDS 2% (w/v). After the electrophoretic
stroke, the gels were transferred to a nitrocellulose membrane (Biorad, Hercules, CA, USA) [28].
The membranes were blocked with Tris-buffered saline containing 0.01% Tween 20 (TBST) and 5%
non-fat milk, washed briefly and incubated overnight with the specific primary antibody (a 1:1000
dilution of γ-GCS, and 1:500 dilution of anti-eNOS, iNOS). After washing with TBST, the membranes
were incubated for 1 h with the specific anti-mouse antibody. The Ag-Ab complex was highlighted
using a secondary antibody, conjugated to a dye absorbing at λ = 800 or 700 nm. The membranes
were analyzed using the Odyssey Infrared Imaging Scanner (Li-Cor Science Tec, Lincoln, NE, USA)
and quantified by densitometric analysis. The results, normalized with β-actin, were expressed as
Arbitrary Units (U.A.).

2.9. Enzymatic Activity Assay and Enzyme-Linked Immunosorbent Assay

For the Enzymatic activity of γ-GCS aliquots of homogenate were centrifuged at 12,000× g for
15 min at 4 ◦C. The dosage was performed on a quantity of supernatant corresponding to 100 µg of
proteins according to Nakajima et al. [29]. Samples were treated with 100 mM TRIS-HCl/150 mM
KCl buffer containing 5 mM Na2ATP, 2 mM phosphoenolpyruvate, 10 mM monosodic glutamate,
20 mM MgCl2, 2 mM Na2EDTA, 0.2 mM NADH, 17 µg of pyruvate kinase and 17 µg of lactic acid
dehydrogenase. After 2 min incubation at 37 ◦C, L-α-aminobutyrate (10 mM final concentration) was
added. The change in absorbance at λ = 340 nm was monitored for 5 min and NADH oxidation was
measured spectrophotometrically using εM = 6.22 M−1 [30]. The enzymatic activity was expressed as
mU/mg prot. Detection and quantitative determination of HO-1 were carried out in tissue homogenates
according to the instructions of an AbCam commercially available E.L.I.S.A. (Enzyme-Linked Immuno
Sorbent Assay) kit, which provides the spectrophotometric determination at λ = 450 nm using a
microplate reader; the concentration of HO-1 in the samples was calculated thanks to a standard curve
obtained with known amounts of recombinant HO-1, included in the kit. In accordance with the
instructions of the supplier company, 100 µL aliquots of homogenate were used for each determination.
The results were expressed as ng/mg of proteins. Each sample was measured in triple and the
mean ± S.D.

2.10. Sirt1 Activity

Sirt1 activity in nuclear fraction of tissue homogenates was measured by colorimetric Sirt1 activity
assay kit (Abcam, Cambridge, UK) following the instructions of the manufacturer. Nuclear fraction was
extracted by using the commercial nuclear extraction kit (Abcam, Cambridge, UK). SIRT1 activity was
normalized to total protein content of each sample and expressed as absorbance (atλ= 450 nm)/min/mg prot.

2.11. Statistical Analysis

The normality of the data distribution was evaluated using both Kolmogorov-Smirnov normality
test and Shapiro–Wilk normality test. One-way analysis of variance (ANOVA) followed by Bonferroni’s
t test was performed in order to estimate significant differences among groups. Data were reported as
mean values ± S.D. and differences between groups were considered to be significant at p < 0.005.
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3. Results

3.1. Phytochemical Contents and Antioxidant Activity

The total phenol and flavonoid content assays showed values of 57.30 ± 0.83 mg gallic acid
equivalent (GE)/g extract and 6.11 ± 0.17 mg catechin equivalent (CE)/g extract (Table 1). In order
to characterize the extract, betulinic acid was identified and quantified by HPLC/DAD analysis.
The HPLC chromatograms of betulinic acid standard and B. etnensis bark extract are shown in Figure 1.
The retention time for betulinic acid standard is 11.349 min (±0.2 min). At a retention time of 11.428 min
(±0.2 min), the peak was identified as betulinic acid and by means of a calibration curve in a region of
concentration between 0.01 and 0.1 mg/mL; it was quantified with a value of 0.069 mg/mL (Table 1).
The extract inhibited superoxide anion formation in a dose-dependent manner. The scavenger effect
showed an IC50 value of 0.51 ± 80 µg/mL, comparable with the IC50 value of 50 mU ± 0.85 of the
positive control superoxide dismutase (SOD) (Table 1). The antioxidant activity, analyzed with a
DPPH test, showed a concentration-dependent free radical scavenging capacity, with an IC50 value of
48.35 ± 1.7 µg/mL, equivalent to 15 mM ± 0.62 of Trolox (Table 1).
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λ = 210 nm, 0.5 mL/minutes flowrate. (B) HPLC Chromatogram of ethanolic extract of B. etnensis bark
with Chromatographic conditions: Symmetry Shield RP 18 (4.6 × 250 mm, 5 µm) column, methanol,
λ = 210 nm, 0.5 mL/minutes flowrate.
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Table 1. Betulinic acid, total phenols, flavonoids content of B. etnensis extract mg/g of extract; scavenger
effect of extract on superoxide anion expressed as percentage of inhibition of NADH oxidation (rate of
superoxide anion production was 4 nmoles/minutes), and as the capacity to bleach DPPH.

Sample Betulinic Acid
(mg/mL)

Total Phenolic Gallic
Acid (mg/g)

Total Flavonoids
Catechin (mg/g)

SOD-like Activity
IC50 (µg/mL)

DPPH Test IC50
(µg/mL)

B. etnensis extract 0.069 ± 0.007 57.30 ± 0.83 6.11 ± 0.17 0.51 ± 0.80 48.35 ± 1.7
Positive control SOD 50 mU ± 0.85

Trolox 15 mM ± 0.62

3.2. Effect of Extract Administration on Blood Glucose and Insulin, Body Weight, Volume of Excreted Urine,
Amount of Water and Food Intake

As shown in Table 2, STZ induced a significant and lasting increase of glycemia; daily oral intake
of Betula extract for consecutive 28 days counteracted the hyperglycemia STZ-induced, but did not
modify blood glucose levels in non-diabetic rats. Coherently with hyperglycemia, despite increased
food intake, a gradual and substantial weight loss was observed in untreated diabetic rats, accompanied
by polydipsia and polyuria. All these effects were effectively counteracted by oral administration of
the extract; in fact, compared with untreated diabetic animals, oral intake of the extract significantly
reduced food and water intake, weight loss and polyuria; Table 2 also shows that the same treatment
did not alter these parameters in non-diabetic, treated rats. Moreover, insulin levels were increased by
the administration of the extract (Table 2).

Table 2. Effect of B. etnensis (0.5 g/kg, p.o.). on insulin blood level, glycemia, food intake, body weight,
water assumption and 24 h urine volume of normal and experimental rats.

Group 0 8 Days 15 Days 21 Days 28 Days

Insulin (ng/mL)
Ctr. 0.97 ± 0.04 1.0 ± 0.02 0.99 ± 0.03 1.1 ± 0.04 0.99 ± 0.02

Diab. 0.87 ± 0.06 0.34 ± 0.05 * 0.38 ± 0.04 * 0.40 ± 0.06 * 0.39 ± 0.05 *
Extr. 1.0 ± 0.03 1.01 ± 0.03 1.0 ± 0.05 0.99 ± 0.03 1.02 ± 0.04

Diab. + Extr. 0.81 ± 0.02 0.60 ± 0.03 * 0.71 ± 0.03 * 0.78 ± 0.02 * 0.68 ± 0.02 *

Glycemia (mg/dl)
Ctr. 80 ± 9.02 82 ± 7.8 90 ± 7.2 85 ± 6.98 90 ± 9.01

Diab. 78 ± 10.1 600 ± 25 * 575 ± 31 * 550 ± 26.1 * 500 ± 32 *
Extr. 81 ± 8.89 81 ± 8.23 82 ± 8.01 85 ± 8.2 87 ± 7.8

Diab. + Extr. 80 ± 9.03 320 ± 13.1 * 250 ± 14.3 * 280 ± 12.6 * 245 ± 10.2 *

Food (gr/die)
Ctr. 10 ± 0.5 11 ± 1.65 10.5 ± 0.5 10 ± 0.5 12 ± 0.6

Diab. 10 ± 0.5 45 ± 6.75 * 50 ± 6.25 * 47 ± 5.87 * 45 ± 6.07 *
Extr. 12 ± 0.6 12 ± 1.8 11 ± 0.55 11.5 ± 0.57 11 ± 0.49

Diab. + Extr. 11 ± 0.55 32 ± 6.3 * * 28 ± 3.5 * 27 ± 3.3 * 24 ± 3.0 *

Weight (gr)
Ctr. 330 ± 15 330 ± 14 350 ± 13 370 ± 14 382 ± 15

Diab. 335 ± 12 300 ± 12 280 ± 12 * 240 ± 11 * 210 ± 12 *
Extr. 320 ± 13 335 ± 12 355 ± 14 362 ± 14 378 ±15

Diab. + Extr. 335 ± 12 310 ± 10 300 ± 10 312 ± 9 * * 321 ± 8 *

Water (ml/die)
Ctr. 34 ± 2 32 ± 1.5 30 ± 2 33 ± 1.5 34 ± 2

Diab. 30 ± 2 160 ± 4 * 165 ± 4 * 158 ± 5 * 167 ± 4 *
Extr. 35 ± 2 33 ± 2 35 ± 2 31 ± 1.8 32 ± 2

Diab. + Extr. 33 ± 2 89 ± 2.5 * 82 ± 3 * 75 ± 3 * 61 ± 3 *

Urine (ml/die)
Ctr. 10 ± 1 11 ± 1 10.5 ± 1.2 10 ± 1 10 ± 1.3

Diab. 10 ± 1 135 ± 10 ** 130 ± 9 ** 138 ± 11 ** 140 ± 8 **
Extr. 12 ± 1 12 ± 1 11 ± 1 11.5 ± 0.9 9.5 ± 1

Diab. + Extr. 11 ± 1 120 ± 2.5 ** 78 ± 2 ** 75 ± 2 ** 58 ± 2 **

Control rats (Ctr.), diabetic rats (Diab.), non-diabetic rats treated with B. etnensis extract (Extr.) and diabetic rats
treated with B. etnensis extract (Diab. + Extr.). Each value represents the mean ± S.D. of ten rats. * p < 0.001;
** p < 0.01 denote significant differences (Diab. vs. ctr and Diab. + Extr. vs. Diab.).
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3.3. Oxidative Stress in Diabetic Rat

The enhanced oxidative stress induced by STZ was confirmed by the increased levels of LOOH
and nitrite/nitrate in plasma, in the liver and pancreas; by the depletion of RSH in the same tissues and
in the kidney; and last but not least, by the significant decrease in activity and expression of γ-GCS
reported in the liver and pancreas of diabetic rats (Figures 2–4). The administration of the extract
mitigated the deleterious effects exerted by STZ, reducing oxidative stress by decreasing LOOH and
nitrite/nitrate levels, enhancing RSH amount, activity and expression of γ-GCS in plasma, liver and
pancreas (Figures 2–4). The control group treated with the extract showed results comparable to the
untreated control group. In this experimental model, STZ had little effect on the brain within the
considered parameters, thus, we excluded it from further investigations (Figures 2–4).
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3.4. HO-1, iNOS and eNOS Protein Expression in Pancreas, Liver and Kidney

Figure 5 shows the results for HO-1 expression detected by the E.L.I.S.A. kit. STZ significantly
increased the expression of this inducible enzyme in the pancreas, and increased it slightly in the
kidney. The administration of the extract enhanced the expression of HO-1 in pancreas and liver in
the treated control group. iNOS expression in the examined organs of diabetic rat was significantly
increased (Figure 6). The extract was able to counteract the expression of the protein induced by STZ,
maintaining it at a comparable level to the control group. Conversely, e-NOS protein expression levels
(Figure 6) were considerably decreased in the diabetic group, in all three organs. In the diabetic treated
group, e-NOS levels were maintained at the same levels of the untreated and treated control group.
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Figure 6. Immunoblotting of iNOS and eNOS expression in tissue of control rats (Ctr.), diabetic rats
(Diab.), non-diabetic rats treated with B. etnensis extract (Extr.) and diabetic rats treated with B. etnensis
extract (Diab. + Extr.). Values, expressed as Arbitrary Units, represent the mean + D.S. of four
experimental determinations (10 samples/group). * p < 0.001 vs. Ctr and vs. Diab.

3.5. Sirt1 Activity in Pancreas, Liver and Kidney

Data on the activity of Sirt1 in the three organs are reported in Figure 7. STZ-induced diabetic rats
showed a significant reduction in Sirt1 activity both in pancreas and liver. Instead, the administration
of the extract in diabetic rat and also in control treated rat, promoted the activity of Sirt1 in pancreas
and liver with values higher than in the control group. No differences were detected in the kidney
among all groups.
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4. Discussion

In diabetes, together with hyperglycemia caused by a deficiency or insensitivity to endogenous
insulin, a disorder in carbohydrate metabolism is also present. Thus, the established altered state is
associated with ROS overproduction that leads to a condition of oxidative stress that is involved in
the pathogenesis and progression of diabetes and diabetes-associated complications [30]. In recent
years, much attention has been paid to the anti-diabetic properties of many medicinal plants due to
their anti-hyperglycemic, antioxidant and anti-inflammatory effects [6–13]. In this study, for the first
time, we evaluated in vivo the effect of the administration of B. etnensis bark extract on some general
diabetes-related parameters and on some key biochemical markers of oxidative stress conditions in
streptozocin-induced diabetes in rats. Our results showed that daily oral intake of Betula extract
counteracted the STZ-induced hyperglycemia, without modifying blood glucose levels in non-diabetic
rats (Table 2) and slightly but significantly increased insulin levels in diabetic rats (Table 2) after just one
week of administration. These effects restored liver homeostasis compromised by reduced peripheral
glucose uptake and increased hepatic glucose production, suggesting that the extract probably enhances
the release of insulin from surviving β-cells or increases the sensitivity of its receptors. STZ-induced
diabetes displays all the hallmarks of functional and biochemical alterations observed in diabetes in
humans such as increase in food and water intake and body weight loss due to the degradation of
structural proteins [31]. The present study showed that administration of B. etnensis bark extract for
28 days significantly reduced food and water intakes as well as polyuria in diabetic rats, but above all
improved body weight loss (Table 2), a mark of a more efficient metabolic homeostasis. In diabetes,
the excessive generation of reactive oxygen species (ROS), mainly due to hyperglycemia, leads to
oxidative stress in organs and tissues. Oxidative stress results from an imbalance in free radical
production and endogenous antioxidant defenses. The unphysiological high levels of ROS and reactive
nitrogen species (RNS) and the concomitant decrease in endogenous antioxidants generate cellular
damage, thus promoting the development of diabetes associated complications [2,4]. Induction of
diabetes in rats with STZ resulted in significant changes in oxidative stress markers both in plasma and
tissues. Reduced glutathione is an important intracellular endogenous antioxidant and its decrease
represents an oxidative stress biomarker. It is both a direct scavenger of free radicals and a cofactor for
many enzymes, directly and indirectly, involved in antioxidant defense, such as glutathione peroxidase;
it also participates in the thiol protection and redox regulation of protein thiol groups under oxidative
stress conditions [32]. Additionally, in blood, the proportion between reduced glutathione and
oxidized glutathione (GSH/GSSG) is indicative of oxidative stress conditions [33]. In our study, it was
observed that the administration of STZ induced a massive reduction in RSH (whose main constituent
is Glutathione, GSH) amount in plasma, liver and both at a pancreatic and renal level; conversely,
no significant differences were found in the brain among the four groups and in all later determinations
(Figure 2). The B. etnensis extract has been able to counteract the depletion of this important endogenous
antioxidant; in fact, in diabetic animals treated with B. etnensis, the pancreatic, hepatic and renal
levels of GSH were comparable to the values found in control rats (Figure 2). Lipids and in particular
polyunsaturated fatty acids present in cell membranes are the main target of oxidation in supported
oxidative stress status [34]. Here, reported results showed that in all three organs, hyperglycemia
induced a significant increase in LOOH levels compared to control rats. The observed increase in
LOOH in diabetic rats was significantly counteracted by oral treatment with the extract (Figure 2).
This effect was also evident in non-diabetic treated animals and could be attributed to the antioxidant
activity of the phytocomplex present in the extract (Table 1). Moreover, the significant increase in
lipoperoxidation, found at the renal level, supports the hypothesis of the involvement of oxidative
stress in the etiopathogenesis of diabetic nephropathy. In order to verify the hypothesis that the
significant reduction of RSH levels was not only due to the depletion of endogenous antioxidant content
caused by excessive ROS formation but rather due to a concomitant decrease in antioxidant capacity,
in this research, the activity and expression of γ-GCS, the key enzyme in the synthesis of glutathione,
were evaluated. The results obtained confirmed the hypothesis, showing that the enzymatic activity of
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γ-GCS in the examined organs of diabetic rats is significantly reduced compared to control animals;
in addition, oral administration of birch extract was able to significantly increase the enzymatic activity
compared to diabetic rats (Figure 4). A similar though less marked trend was also found concerning
the expression of this enzyme. As mentioned above, ROS are not the only responsible for oxidative
stress but RNS also play an important role in supporting this harmful condition [35]. Nitric oxide (NO),
as well as ROS, has either beneficial or deleterious effects in cells and tissues. Indeed, NO is involved
in many cellular signaling pathways [36], and it is also an oxygen-derived free radical. By its nature,
NO can react with other radical species or substrates, generating RNS, responsible for nitrosative stress
that influences the structure and the function of proteins [37]. The results obtained in the present study
demonstrated that nitrite/nitrate plasma levels, directly correlated with ·NO production, were strongly
increased, confirming its overproduction following hyperglycemia injury in diabetic untreated animals
(Figure 3). Differently, in B. etnensis-treated diabetic rats, the daily administration of the extract induced
a significant reduction of ·NO levels in all assessed tissues, particularly at renal level, where the role
of ·NO should also be considered in the etiopathogenesis of diabetic nephropathy. In fact, it plays
numerous roles in the kidney, as it is involved in the control of renal and glomerular hemodynamics,
interfering on many stages of nephrons functions [38]. In order to identify the mechanism by which the
extract exerts this effect, under the same experimental conditions, the expression of two of the enzymatic
proteins responsible for the synthesis of ·NO has also been evaluated: the endothelial nitroxide synthase
and the inducible isoform, both involved in diabetes-associated complications [39]. The results obtained
in diabetic rats showed that the endothelial isoform is significantly reduced, while the inducible
isoform displayed a significantly increased protein expression (Figure 6). Additionally, the extract was
found able to counteract these reverse effects on endothelial and inducible NOS isoforms compared
to controls. Furthermore, the expression pattern of iNOS reflects the results concerning nitrite and
nitrate levels suggesting that the marked increase in nitrite and nitrate found in diabetic animals can
be attributed to the overexpression of this isoform. Another important enzyme implicated in elevated
oxidative stress conditions is HO-1 [40]. It is well known that together with its potent antioxidant
effect, the increased activity of HO-1 is able to counteract the development of diabetes-associated
complications [41], so that increased HO-1 expression may be considered both a marker of cell stress
and a cellular defense mechanism. In the present study, HO-1 expression was evaluated in pancreas,
liver and kidney. Betula extract, according to previous results, was able to induce this enzyme in all the
studied organs (Figure 5), further confirming the protective effect exerted by the extract on oxidative
stress diabetes-induced. Mammalian sirtuins are a class of proteins including seven NAD+-dependent
enzymes [42]. Important functions of sirtuins include deacetylation of key proteins responsible for
cellular homeostasis; as a consequence of deacetylation, in fact, activation or deactivation of enzymes
involved in lipid, protein and carbohydrate metabolism occurs [43]. The roles of sirtuins in both
carbohydrate and lipid metabolism is still controversial, despite many studies based on various
experimental models of diabetes and insulin resistance demonstrating improved glucose tolerance,
insulin secretion and sensitivity [44,45]. In fact, it has been reported that oxidative stress may induce
sirtuin impairment [46], particularly Sirt1, affecting many stages of glucose metabolism in different
organs and tissues [45,47]. Moreover, SIRT1 is a crucial player in the prevention of oxidative damage
via a variety of mechanisms [46,48].

Determination of nuclear sirtuins activity in all four groups evidenced that the oral administration
of Betula extract was able to counteract the streptozotocin-induced decrease in sirtuin activity restoring
levels to those observed in control group (Figure 7). These last results suggested an involvement
of Sirt1 activation in improving insulin sensitivity following extract oral administration. These last
results suggested an involvement of Sirt1 activation in improving insulin sensitivity following the
oral administration of the extract. Our data agrees with previous in vitro and in vivo studies that
demonstrated the efficacy of different plant extracts containing polyphenolic and terpenic compounds
on the glycemic profile, SIRT1 activity modulation and oxidant/antioxidant status [49–51].
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Furthermore, the reported effects on sirtuins activity also allows us to hypothesize that the
administration of the extract may counteract the deleterious effects of hyperglycemia and oxidative
stress, also increasing the activity of these important modulators involved in the processes of glucose
homeostasis, insulin secretion/sensitivity and redox homeostasis.

5. Conclusions

Taken together, the here reported results suggest that protective and anti-diabetic effects on
STZ-induced diabetes in rats of B. etnensis bark extract are mainly due to the capacity of restoring redox
homeostasis through the modulation of some regulatory enzymes that are involved in the antioxidant
response, and also through the modulation of sirtuins activity strictly linked to glucose homeostasis
and oxidative stress mitigation.
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