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Abstract: Rapid growth of brain tumors such as glioblastoma often results in oxygen deprivation
and the emergence of hypoxic zones. In consequence, the enrichment of reactive oxygen species
occurs, harming nonmalignant cells and leading them toward apoptotic cell death. However, cancer
cells survive such exposure and thrive in a hypoxic environment. As the mechanisms responsible for
such starkly different outcomes are not sufficiently explained, we aimed to explore what transcriptome
rearrangements are used by glioblastoma cells in hypoxic areas. Using metadata analysis of transcriptome
in different subregions of the glioblastoma retrieved from the Ivy Glioblastoma Atlas Project, we created
the reactive oxygen species-dependent map of the transcriptome. This map was then used for the
analysis of differential gene expression in the histologically determined cellular tumors and hypoxic
zones. The gene ontology analysis cross-referenced with the clinical data from The Cancer Genome
Atlas revealed that the metabolic shift is one of the major prosurvival strategies applied by cancer
cells to overcome hypoxia-related cytotoxicity.
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1. Introduction

Oxygen levels affect various functions and processes, including cell proliferation, cell differentiation,
angiogenesis, and metabolism [1–3]. While physiologically normoxic conditions for adult human tissues
range widely, they are considerably lower than atmospheric oxygen tension of 21% (about 160 mmHg).
Within the central nervous system, this value depends on the region, oscillating between 0.5% O2 in the
midbrain to 8% O2 in the pia [4]. As a result of an imbalance between oxygen delivery capacity and
consumption, referred to as hypoxia, elevated oxidative stress occurs [5,6]. Hypoxia often builds up in
brain tumors, such as glioblastoma (GBM), resulting in increased necrotic death and the formation of
necrotic zones surrounded by tumor cells [7,8]. This specific niche creates a favorable microenvironment
for the existence of self-renewing glioblastoma stem-like cells—GSCs, which are essential for tumor
initiation, resistance, and recurrence [7,8]. The emergence of perinecrotic/necrotic zones also propagates
the development of chemo- and radio-resistance, correlating with poor survival prognosis [9,10].

GBM is the most common and aggressive brain tumor in adults with a short therapeutic window.
The recent transcriptomic study uncovered a complex ecosystem of GBM as histologically and
genetically distinct anatomic features [11] with far-reaching clinical implications. Leading edge
(LE) and infiltrating tumor (IT) zones form the outermost regions of the tumor with tumor cells
dispersed among normal cells pose a surgical challenge. In contrast, coexistence with cells from normal
brain tissue provides a unique opportunity as a control to understand the extent of transcriptome
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rearrangement in the tumor core. A cellular tumor (CT) is the major part of the tumor, with a ratio of
tumor cells to normal cells ranging from 100/1 to 500/1 [11]. With increasing cell density in the tumor
core, the availability of oxygen decreases, creating a niche for pseudopalisading cells (PC) and GSCs
enriched in the perinecrotic zone (PZ). Thus, these cells from regions around the dead or dying tissue
with undergoing necrosis (NE) are one of the most aggressive despite oxygen limitations. A study
by Beppu et al. [12] showed that in GBM patients, oxygenation is significantly lower in intratumoral
tissue (9.2 mmHg or about 1.2% O2) than in peritumoral areas (17.9 mmHg or about 2.3% O2). Cancer
cells that not only survive such exposure to low oxygen, but thrive in a hypoxic environment, promote
tumor growth and progression of the disease. But most importantly, such adaptation to low oxygen is
a barrier for conventional and immunotherapy [13,14]. Why the hypoxic microenvironment creates
specific niches where stem cells prefer to reside is not clear. Several large-scale genomics projects on
GBM specimens identified a subset of GSCs within the PZ and hypoxic zone, which are distinguished
by the specific expression of CD133 (Prominin 1) and/or CD44 (Osteopontin) markers [7,8,15]. GSCs
can self-renew, differentiate, and are responsible for tumor initiation, progression, and recurrence
post-treatment [7,8,15].

Oxidative stress resulting from disturbed oxygen balance leads to the generation of reactive
oxygen species (ROS). At a physiological level, ROS function to modulate signal transduction pathways,
and regulate the activity of transcription factors and mitochondrial enzymes [16,17]. On the contrary,
oxidative stress can induce ROS-driven damage of proteins, lipids, and DNA, leading to genomic
instability. Therefore, cancer cells are under constant pressure to maintain a balance between ROS and
oxidative-stress response for their survival [17]. Adaptive cellular response to low oxygen levels in both
physiological and pathological conditions engage diverse pathways, with one of the most recognized
being the hypoxia-inducible factors (HIFs), and endoplasmic reticulum (ER) stress responses [18,19].
HIF-related mechanisms responding to fluctuations in oxygen tension affect GSCs’ capacity to initiate
tumors [20]. While an increased HIF-1α expression was observed in both tumor-derived GSCs and
neural progenitor cells derived from normal brains, the former also show increased levels of HIF-2α
(EPAS1) [21]. Moreover, HIF2α is expressed by the GSCs at oxygen concentrations close to normal
in vivo oxygen levels (2–5%). Therefore, within highly heterogeneous GBM tumors, diverse tumor
cells cope with a broad spectrum of oxygen tension in their surroundings [22,23], and due to the
expression of both HIFs, create an advantage over normal cells in adjusting to the microenvironment.

Decades of research on brain pathology suggested an inverse correlation between the likelihood of
cancer and neurodegenerative diseases [24]. These studies described the difference between nonmalignant
glial and neural cells and glioblastoma cancer cells in sensitivity to low oxygen. Still, the mechanism of
oxidative stress response in the hypoxic tumor niche has not been sufficiently scrutinized. Studying
tumor microenvironmental stress response in vivo meets considerable methodological obstacles, as the
analysis of bulk tissue masks intricate details of communication between different cell types [25–28].
At the same time, single-cell approaches or transfer to in vitro culture dissipate the very stress that was
the initial goal of investigation. But in situ analysis of transcriptome in distinct histological areas of
GBM allow us to correlate patient survival with the oxidative stress response signatures.

Using metadata analysis of transcriptome in different subregions of the GBM retrieved from the
Ivy Glioblastoma Atlas Project (IvyGAP), we created the hypoxia/oxygen stress-dependent guide,
providing evidence that strictly regulated and specific changes in gene expression affect diverse
molecular pathways, which GBM cells adopted to cope with oxidative stress. Our efforts created a list
of genes and pathways that are putative targets for the development of anticancer treatment.

2. Materials and Methods

To catalog the molecular function of genes differentially expressed in the hypoxic regions of the
tumor, we conducted a systematic review using the Gene Ontology (GO) database (December 2019
edition). This strategy identified gene sets whose function is related to hypoxic and oxidative stress.
Genes were included if the standard nomenclature identified them for human genes in the HGNC
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database. To create the oxidative stress hypoxic map, we used a curated list of 278 genes whose
expression could be found in the IvyGAP. The clinical and genomic database IvyGAP [11] was created
for the 41-patient cohort with diagnosed GBM. In brief, we used data plotted in the tumor’s anatomic
features (based on in situ hybridization (ISH), followed by the analysis of the transcriptome by laser
microdissection (LMD) and RNA sequencing (RNA-seq)). The geographic regions within glioblastoma
specimens were separated based on several factors, including gene ontology enrichment analysis,
gross tissue pathology, and hypoxic marker EPAS1 and carbonic anhydrase 9 (CA9) [11,26,29]. Thus,
a curated list of 278 oxidative stress genes was applied to the matrix of anatomic features to read
their expression.

The copy number and mutation analyses previously indicated that LE and IT samples mostly
consist of non-neoplastic cells. In contrast, CT, PZ, and PC comprise mostly of tumor cells. Due to
similar cell composition of some anatomic features of GBM [11], we decided to combine data from LE
and IT as well as from PZ and PC, and to consider them as one region. This combination was dubbed
LE and PZ, respectively. Thus, all the comparisons were made between LE vs. PZ and CT vs. PZ.
Next, we performed differential expression analysis to define gene signatures using cutoff based on a
significant difference in the expression of genes from these regions based on z-score log-transformed,
normalized expression values downloaded from IvyGAP [11]. To set up a hypoxic niche signature into
a broader clinical context, we queried the list of genes with The Cancer Genome Atlas (TCGA) data,
where the 489 GBM tumors and ten control specimens were analyzed using Affymetrix HT_HG-U133A
microarray gene chips. The collection of the data from TCGA [30] and the Ivy Glioblastoma Atlas
Project [11] was compliant with all applicable laws, regulations, and policies for the protection of human
subjects. GO, and KEGG pathway analyses were performed with the software implemented in ShinyGo
v0.61 software. Kaplan–Meier survival analysis was performed using GBM biodiscovery portal [31]
for oxidative response genes signature according to Verhaak et al. [30] explained in supplementary
materials and methods file. In some cases, genes were absent in the GBM biodiscovery portal dataset;
therefore, the final list of genes used for analysis was reduced (n = 17 in LE vs. PZ and n = 17 in CT
vs. PZ comparisons for upregulated genes, and n = 19 for CT vs. PZ comparison for downregulated
genes). All the statistical operations were performed with the GraphPad Prism 8 software, using paired
t-test or multiple t-test analysis, and considered significant with a p-value < 0.05 or False Discovery
Rate (FDR) with corrected q-value < 0.01, respectively. The in situ hybridization CD44 and HIF-1α
signals converted to fluorescence (Figure 1b and Figure S1b, right panels, respectively) were subjected
to graphical enhancement (contrast and brightness correction).Antioxidants 2020, 9, x FOR PEER REVIEW 4 of 17 

 
Figure 1. Hypoxia-related gene signature distinguishes between different anatomic features of 
glioblastoma: (a) representative hematoxylin and eosin (H&E) staining section from tumor W5-1-1-
L.1.05 (left panel), converted to tumor feature anatomic (TFA) color map (right panel). Color code: 
green—cellular tumor (CT); light blue—perinecrotic zone (PZ); orange—hyperplastic blood vessels 
(HBV); purple—infiltrating tumor (IT); dark blue—pseudopalisading cells (PC); black—necrosis 
(NE); (b) representative section labeled using ISH probe against CD44 gene with merged tumor 
feature boundary (TFB) of anatomic regions (left panel), and ISH-labeled CD44 signal converted to 
fluorescent map (right panel); (c) representative section labeled using ISH probe against CD44 gene 
(left panel) with red inset indicating a site of magnification; (d) RNA-seq expression data of CD44 (z-
score values as in Table S1) in anatomic features LE (n = 43), CT (n = 111), and PZ (n = 66) isolated by 
LMD; paired two-tailed t-test, p-value between pairs (n = 23 for LE vs. PZ, and n = 65 for CT vs. PZ) is 
shown; **** p < 0.0001. 
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shown to be upregulated in GBM, particularly around necrotic regions [34]. Therefore, we compared 
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situ hybridization (Figure S1b,c) nor transcript expression (Figure S1d) showed consistent 
upregulation in PZ. The likely level of stabilized protein could be more relevant [18,35]; however, no 
data was present in searched databases. Therefore, in the search for other suitable markers of hypoxia 
in GBM, we compared the expression of CA9 (Figure S1e) and GSC marker CD44 [15] in the same 
anatomic features, as it was proposed in the human and a mouse model of GBM that perivascular 
and perinecrotic zones are GSC-enriched [15,36,37]. The representative tumor section with H&E 
staining for the GBM regions is presented in Figure 1a. Both ISH and RNA-Seq data (Figure 1b–d) 
demonstrated that diverse regions of the tumor can be delineated based on CD44 and CA9 expression 
whose pattern was correlated (Figure S1e). The highest expression of CD44 found in the PZ (Figure 
1d) is consistent with the prevalence of GSCs in this area; thus, it is regarded as a marker for hypoxia 
as suggested elsewhere [36]. 

3.2. The Expression of Oxidative Stress-Related Genes in GBM Depends on the Microenvironmental Niche 

To better understand cancer cell adaptation to oxygen deprivation, we analyzed expression 
profiles of genes associated with oxidative stress response in distinct GBM anatomic features. Using 
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converted to tumor feature anatomic (TFA) color map (right panel). Color code: green—cellular tumor
(CT); light blue—perinecrotic zone (PZ); orange—hyperplastic blood vessels (HBV); purple—infiltrating
tumor (IT); dark blue—pseudopalisading cells (PC); black—necrosis (NE); (b) representative section
labeled using ISH probe against CD44 gene with merged tumor feature boundary (TFB) of anatomic
regions (left panel), and ISH-labeled CD44 signal converted to fluorescent map (right panel);
(c) representative section labeled using ISH probe against CD44 gene (left panel) with red inset
indicating a site of magnification; (d) RNA-seq expression data of CD44 (z-score values as in Table S1)
in anatomic features LE (n = 43), CT (n = 111), and PZ (n = 66) isolated by LMD; paired two-tailed
t-test, p-value between pairs (n = 23 for LE vs. PZ, and n = 65 for CT vs. PZ) is shown; **** p < 0.0001.

3. Results

3.1. Molecular Markers of GSCs Are Associated with the Hypoxic Zone of Glioblastoma

Hypoxia is a common feature of solid tumors [32]; therefore, we claim that distinct GBM areas
affected by diverse oxygen levels could serve as a good model for studying cellular adaptation to
oxidative stress. HIF-1α is known as a master regulator of hypoxia [33], whose level/activity was
also shown to be upregulated in GBM, particularly around necrotic regions [34]. Therefore, we
compared the HIF-1α gene expression between LE vs. PZ and CT vs. PZ areas (Figure S1). However,
neither in situ hybridization (Figure S1b,c) nor transcript expression (Figure S1d) showed consistent
upregulation in PZ. The likely level of stabilized protein could be more relevant [18,35]; however, no
data was present in searched databases. Therefore, in the search for other suitable markers of hypoxia
in GBM, we compared the expression of CA9 (Figure S1e) and GSC marker CD44 [15] in the same
anatomic features, as it was proposed in the human and a mouse model of GBM that perivascular and
perinecrotic zones are GSC-enriched [15,36,37]. The representative tumor section with H&E staining
for the GBM regions is presented in Figure 1a. Both ISH and RNA-Seq data (Figure 1b–d) demonstrated
that diverse regions of the tumor can be delineated based on CD44 and CA9 expression whose pattern
was correlated (Figure S1e). The highest expression of CD44 found in the PZ (Figure 1d) is consistent
with the prevalence of GSCs in this area; thus, it is regarded as a marker for hypoxia as suggested
elsewhere [36].

3.2. The Expression of Oxidative Stress-Related Genes in GBM Depends on the Microenvironmental Niche

To better understand cancer cell adaptation to oxygen deprivation, we analyzed expression
profiles of genes associated with oxidative stress response in distinct GBM anatomic features. Using a
curated list of 278 oxidative stress response genes (Table S1), we performed a cluster analysis based
on expression data from RNA-Seq deposited in IvyGAP. Three significant clusters of oxidative stress
response genes were evident within the signature discriminating between LE, CT, and PZ (Figure S2a),
thus providing the rationale for comparison of the PZ signature with both LE and CT. Following that,
differential analysis between subareas of the tumor (Figure 2a,b; Table S2) allowed selection of oxidative
stress response gene profiles in different areas of the tumor (Figure 2c). The number of differentially
expressed genes, and differences in the magnitude of expression, were more prominent between the
PZ zone enriched in GSCs and the LE zone enriched in normal brain cells (n = 170, Figure 2d). Such a
signature is thus associated with cell-type-dependent oxidative stress response genes profile. While the
comparison of CT and PZ provided the signature of genes (79 genes, Figure 2e) that are used by cancer
cells in response to oxidative stress in hypoxia. Changes in the GBM transcriptome create specific
patterns that mirror the adaptation of cells to the different oxygen gradients in studied regions and
can serve as potential markers or therapeutic targets. The observed changes in the GBM oxidative
stress response transcriptome created specific patterns that reflect the adaptation of cells from tumor
microenvironment to the different oxygen gradients.
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Figure 2. Oxidative stress-related gene expression patterns differ between anatomic features
of glioblastoma: (a,b) volcano plots representing differentially expressed genes between LE vs.
PZ (pink—genes downregulated, blue—upregulated in LE) (a), and CT vs. PZ (green—genes
downregulated and, blue—upregulated in CT) (b), each dot corresponds to one gene (n = 278),
the horizontal dotted line shows a cutoff for FDR < 0.01; (c) hierarchical clustering of 185 genes found
as statistically differentially expressed between LE, CT vs. PZ in all anatomic features of glioblastoma;
rows and columns represent genes and samples, respectively. Colors correspond to the expression level
of detected genes, and the blue–red scale bar indicates expression level, with blue being the lowest and
red the highest; (d,e) a correlation matrix showing correlation coefficients between gene expression in
LE vs. PZ (n = 170; Pearson r = −0.407) (d), and CT vs. PZ (n = 79; Pearson r = −0.09) (e); blue–red bar
scale indicates correlation coefficients level, with blue being the negative and red positive correlation.
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3.3. Oxidative Stress-Related Genes Signature Predicts the Outcome of GBM Patients

To verify whether differential expression of oxidative stress genes has clinical implications,
we associated signature with survival outcomes for patients with GBM. We used an admixture model
of either oxidative stress gene signature (Table S1), or top-20 genes deregulated in the PZ zone
(Table S2) queried with TCGA GBM. The first strategy allowed stratifying patients according to profile
similarity and prognostic index based on the most different molecules amongst the samples (Figure 3a).
A list of 278 genes was filtered to keep the most varied molecules amongst the samples. Following
that, survival analysis based on cluster membership (Figure 3b) and the impact of the multigene
prognostic index (Figure 3c) showed the power of outcome prediction of ten-gene oxidative stress
signature. The second strategy was performed to find whether the loss or gain of oxidative stress genes
signature in the hypoxic region has the power of prediction for patient outcome. This analysis revealed
significant power of genes upregulated in the PZ zone in comparison to the LE zone to predict patient
outcomes (Figure 3d–f) and to a lesser extent for genes upregulated in PZ compared to CT (Figure 3g–i).
In contrast, genes up- and downregulated taken together (Figure S3a–f), or only downregulated in the
PZ region, had no such power (Figure S3g–l). These analyses underlined that response to oxidative
stress in hypoxic tumors could be a potential source of biomarkers and therapeutic targets. While such
multigene analysis identified a group of genes with prognostic value (Figure 3 a–f), only 20 out of
29 genes analyzed separately showed any prognostic value (Table S3). Several genes, whose levels
were increased in PZ such as Lactate Dehydrogenase A (LDHA), Calnexin (CANX), Nucleolar Protein 3
(NOL3), Heat Shock Protein Family A (Hsp70) Member 5 (HSPA5) (Table S2), were also upregulated
in patients with poorer prognosis (Table S3). Despite a significant difference in the expression of,
e.g., Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1), F-Box, and WD Repeat Domain
Containing 7 (FBXW7), between LE and CT vs. PZ (Table S2), none of these genes correlated with the
survival of GBM patients (Table S3). It suggests that the adaptation to oxidative stress to overcome
hypoxia is achieved by the active upregulation of a distinct set of genes that creates microenvironment
favorable for tumor progression.

3.4. Oxidative Stress Response Genes Have Different Functions in Diverse Microenvironmental Niches

The oxidative stress response is a network process employing apoptosis and autophagy pathways
and metabolism rearrangements. To answer what mechanisms are used by cancer cells to thrive in
a hypoxic niche, we scrutinized the ontology of genes associated with different areas of the tumor.
As our list of genes was already preselected for those enriched in the GO terms related to hypoxia
and oxidative stress, we first narrowed our analysis to the top-20 model (Table S2 (LE vs. PZ and CT
vs. PZ)). The gene ontology analysis visualizes the connection between studied genes in Figure 4a–f
and Figure S4a,b. “Metabolism” and “oxidative stress response” were found to be among the most
enriched categories (Figure 4a,b,d,e, Table S4). Genes whose expression was upregulated in PZ (blue
color in bar legend) were included in processes termed “neuron/cell death” and “metabolism” such as
necroptosis, mitophagy, glycolysis/gluconeogenesis, and carbon metabolism. Besides, as visualized
by Venn diagrams (Figure S4c; Table S5), many of these genes were commonly affected in both LE
and CT. The second analysis was performed to find out whether clinically relevant oxidative stress
genes signature have the potential to bring us closer to pinpointing therapeutic obstacles (Table S3,
Figure 4g,h). Interestingly, proteins encoded by genes with prognostic value and most deregulated
genes in LE, CT vs. PZ (Figure 4c,f,i) show functional enrichment as bridging molecules secreted
into extracellular vesicles. That is important as vesicles transferred over a considerable distance may
propagate hypoxic niche signaling, so by targeting PZ-specific genes, we can expect a therapeutic
benefit in CT tumor.
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Figure 3. Patient survival is correlated with the expression of oxidative-stress-related genes in the
perinecrotic zone: (a,d,g) Heatmaps with color annotations according to profile similarity (light blue/red)
annotated with prognostic index (red–dark blue). (b,c,e,f,h,i) Kaplan–Meier analysis of a full cohort of
glioblastoma. Clustering and survival analysis of samples dataset stratified by the status of oxidative
stress response genes (a–c), top-20 upregulated genes in PZ vs. LE (d–f), or vs. CT (g–i).
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of glioblastoma: Function of top-20 (a–f) and 29 outcome predictive gens (g–i) represented as Gene
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shown as a heat map, with red maxim and blue minimum.

4. Discussion

Our study linked the oxidative-gene expression signature altered in the PZ zone of glioblastoma
with complex crosstalk between key signaling pathways, which in turn may promote tumor survival in
the hostile microenvironment. These processes include a shift in the metabolism towards glycolysis [38,39],
induction of autophagy, and protection from apoptotic cell death [40,41] that all have been proposed to
be of particular importance in cancer. By exploring transcriptome rearrangements in different anatomic
regions of GBM, we showed what genes may predispose tumor cells to survive in hypoxic conditions
under oxidative stress.

As GBM is a highly heterogeneous tumor and diverse cells across the tumor cope with a full
spectrum of oxygen tension in their surroundings [22,23], we first sought for a relevant marker of
hypoxia, whose expression could distinguish between LE, CT, and PZ. We showed that high levels
of CD44, a well-known GSC marker [6,7], were prevalent in PZ, in line with the notion that GSCs
are enriched within a hypoxic tumor niche where the oxidative stress is elevated [7,8]. In contrast,
HIF1α expression was inconsistent in studied regions. Yet, HIF1α and HIF2α are well-known master
regulators of hypoxia, and once induced under hypoxic conditions [42], they drive expression of
multiple hypoxia-responsive genes [21,42].

As evident from our analysis of differential gene expression and GO and KEGG pathways,
the adaptation of GBM cells to low oxygen microenvironment could be achieved by enhanced and
modified metabolism, as well as by maintaining the equilibrium between activation and inhibition
of stress response pathways. Interestingly, as few as 20 most upregulated genes in PZ was sufficient
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to predict outcome in GBM patients. It suggests that the upregulation of a distinct set of genes in the
hypoxic tumor core orchestrates its adaptation to oxidative stress and creates a specific microenvironment
for tumor development.

It was proposed almost a century ago that tumor cells may adapt to the unfavorable low oxygen
environment by switching their metabolism between mitochondrial oxidative phosphorylation and
aerobic glycolysis (“the Warburg effect”) [38]. Activation of HIFs leads to the expression of glycolytic
factors, including glucose transporter-1,3 (Glut-1,3 aka Slc2a1, 3); aldolase C (ALDOC); glyceraldehyde
phosphate dehydrogenase (GAPDH); hexokinase 1,2 (HK1,2); lactate dehydrogenase-A (LDHA);
phosphofructokinase L (PFKL); and phosphoglycerate kinase 1 (PGK1) [43,44]. Overexpression of these
genes in the PZ area evident from our analysis, strengthen the notion that specific expression patterns
of those genes may promote cancer survival in the hostile microenvironment. For instance, LDHA is
an enzyme responsible for the conversion of pyruvate to lactate under anaerobic conditions and is key
in the altered glycolytic metabolism. The silencing of LDHA expression in GBM resulted in reduced
glycolysis, decreased cell growth, and increased cell apoptosis [45–47]. A complementary action
to maintain balanced glucose levels may require the downregulation of some other genes. Per our
analysis, FBXW7 was one of the most affected genes in the PZ area of GBM. The knockdown of FBXW7
promotes malignant phenotypes in vitro and in vivo, e.g., by indirect targeting of c-MYC, leading to
reduced glucose uptake [48].

Nonetheless, such dynamic and rapid changes in metabolism often lead to the accumulation of
toxic byproducts. We found that ALDH1A1, belonging to the superfamily of enzymes responsible for
the catalysis of aldehyde oxidation [49], whose accumulation can be toxic to cells, was significantly
downregulated in the PZ area. ALDH1A1 specifically catalyzes the oxidation of retinaldehyde to
retinoic acid, and the latter was shown as an effective treatment against GBM cells by inducing
their differentiation, reducing the expression of stem cell markers like CD133, CD44, and Sox-2,
and decreasing the neurosphere-forming capacity [50]. Therefore, yet another metabolic adaptation
applied by cancer cells is the reduced rate of synthesis of such metabolites by decreased expression of
the ALDH1A1 gene.

Several approaches have been applied to target metabolism in glioblastoma as well as other
cancers [51–53]. Different studies showed that deletion/inhibition of LDHA combined with treatment
with drugs such as tamoxifen, taxol, or use of drugs alone (oxamate, phenformin, gossypol, galloflavin)
could impact tumorigenesis by affecting glucose uptake and increasing tumor apoptosis (reviewed
in [51–53]). Gossypol, for instance, is well tolerated in clinical trials and has shown promise in
recurrent malignant glioma trials [54]. Combinations of rapamycin with chemotherapy (temozolomide,
doxycycline, etomoxir) were shown to be effective strategies in GBM [53]. However, the common
problem with drugs is that they have limited cell penetration; therefore, relatively high doses are
required to have any significant effect. Nonetheless, enhanced search for alternative drugs, both
of natural origin [55,56] or less toxic/more potent derivatives may provide a successful therapy for
glioblastoma. The link between oxidative stress and inflammation has been described in the literature
in various cancers [57,58]. The regulation of expression of proinflammatory cytokines is a consequence
of crosstalk between HIF-related transcriptional activity, and the transcription factor NF-κB (nuclear
factor-kappa B) pathway [59]. Our differential expression analysis showed significant upregulation
of immune-response-related factors, which indicate possible crosstalk between those pathways in
GBM. For instance, proinflammatory PTGS2 (better known as COX2) is an enzyme engaged in the
biosynthesis of prostaglandin E2 (PGE2), which plays a vital role in modulating of motility, proliferation,
and resistance to apoptosis [60,61]. It has been shown that in GBM, PTGS2/COX-2-positive cells
accumulated in perinecrotic regions of the tumor [62]. High levels of PTGS2 in GBMs are positively
correlated with many aggressive traits of the disease, such as the cell proliferation rate or GBM
grade [60,62]. Both chemotherapy and radiotherapy induce COX-2 to synthesize PGE2 in GBM cells to
produce immunosuppressive cytokines, such as interleukin 6 (IL-6) and IL-10, which are upregulated
in the PZ region per our analysis, blocking T cell functions [62]. These findings might be of particular
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interest as GBM is considered to be one of the most immunosuppressive tumors, characterized by
reduced infiltration and proliferation of immune cells [63,64]. Some of the current approaches include
stimulation of the immune system, e.g., by use of immune checkpoint inhibitors. At the same time, other
approaches, such as chimeric antigen receptor (CAR) T-cell therapies, involve the use of individually
engineered T-cells to attack cancer cells [65,66]. Despite continued research and some promising initial
results of novel therapies, none have significantly impacted patient mortality in GBM to date.

Cell proliferation and death are inherent characteristics of all cells, including malignant ones.
We found that many genes whose expression was affected per our analysis were related to cell
death. Three main categories recognized as programmed cell death include autophagy, apoptosis,
and necroptosis, and an imbalance between cell death and survival is a crucial step of cancer
initiation [67,68]. Several studies showed that GBM cells were characterized by increased expression of
antiapoptotic proteins such as FOS (Fos proto-oncogene), MCL-1 (Myeloid Cell Leukemia 1), or NOL3
(Nucleolar Protein 3). Their expression was shown by our study to be increased in the PZ, and their
knock-out sensitized GBM cells to radiation or chemotherapy, induced senescence, and enhanced
apoptosis [69,70].

As demonstrated in the cell culture model, factors secreted by GBM cells can induce oxidative
stress in surrounding nontumor cells and trigger apoptotic pathways in them [71]. That corresponds
with our findings that proapoptotic genes were among mostly upregulated genes in LE or CT, whereas
antiapoptotic genes were mostly upregulated in PZ. Our analysis also showed increased expression of
several autophagy-related genes in PZ compared to other regions, such as B-Cell CLL/Lymphoma 2
interacting protein (BNIP3), Activating Transcription Factor 4 (ATF4), Sequestosome 1 (SQSTM1),
and Autophagy Related 7 (ATG7), whose induction acts as a mechanism preventing cell death
through apoptosis [40,72–74]. Interestingly, there are links between apoptosis and metabolic pathways.
For instance, LDHA reduction resulted in an inhibited cancer cell proliferation, elevated cellular
oxidative stress, and induction of apoptosis via the mitochondrial pathway [75]. Moreover, it was
shown that tumor cells, resistant to apoptosis, undergo necrosis when exposed to excessive metabolic
stress [76,77], and that an increase in autophagy suppresses the necrosis [40,41]. Different approaches
to augment intrinsic or induced apoptosis has been proposed to apply as a possible therapy against
GBM [78,79]. Although apoptosis can be a measure of cell death, it is disputable whether it has a
prognostic value for patient outcome in GBM [80,81].

Complex tumor microenvironment and heterogeneity of glioblastoma are critical problems in the
design of successful therapy. We thus emphasize that diverse molecular pathways are turned on in
different tumor regions/anatomical features; thus, a combination of treatments and approaches rather
than single-gene targeting will bring us closer to a breakthrough in the struggle against GBM.

5. Conclusions

Through altering the expression of diverse genes, cancer cells activate complex crosstalk that
intertwines metabolism and other key signaling pathways. These include cell death, immune response,
and protein processing. Therefore, studying the dynamic adaptation of tumor cells to fluctuating
microenvironmental factors such as nutrient supply, oxygen level, or treatment-inflicted damage is
challenging. A plethora of genes whose expression is changed in the GBM are potential targets for
therapy. Proteins encoded by oxidative stress genes with prognostic value identified by our study are
secreted via extracellular vesicles into microenvironment [82–85], implying that targeting of expressed
and secreted factors from PZ will bring therapeutic benefit to CT tumors. However, pathways adopted
by cancer cells to overcome hypoxic stress are also common among normal cell types, and GBM cells
somehow manage to master their regulation. We believe that our analysis and systematic update of the
knowledge may help to understand the complex microenvironment of GBM better and create means
to develop potential therapeutic strategies to target tumor cells. However, the lingering questions
remain: what are the alternative strategies engaged upon the exposure to various intrinsic or extrinsic
oxygen/nutrient deprivation? Do different cell populations within the tumor have different strategies to
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overcome oxidative stress? How do cancer cells maintain a balance between activation and suppression
of diverse pathways to support their growth? Can cells modify particular pathways to overcome the
exposure to adverse microenvironmental conditions?

Genes listed in this study were analyzed based on RNA expression, not protein levels, which
certainly might alter their ranking of importance. The expression of HIF1a transcript is not associated
with the prognosis of glioblastoma, but hypoxic cancers have a poorer overall prognosis [86].
This paradigm implies that for protein-coding genes, the protein level and or activity affected by
post-translational modifications or copartner binding is a crucial indicator of function. While awaiting
a much-anticipated atlas of active protein within glioblastoma features, we can learn more about the
intricacies of glioblastoma using more feasible to profile noncoding RNAs [27,83,87].
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