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Abstract: Although there is some evidence that total dietary antioxidant capacity (TDAC) is inversely
associated with the presence of obesity, no longitudinal studies have been performed investigating
the effect of TDAC on comprehensive measures of body composition over time. In this study,
we included 4595 middle-aged and elderly participants from the Rotterdam Study, a population-based
cohort. We estimated TDAC among these individuals by calculating a ferric reducing ability of plasma
(FRAP) score based on data from food-frequency questionnaires. Body composition was assessed by
means of dual X-ray absorptiometry at baseline and every subsequent 3–5 years. From these data,
we calculated fat mass index (FMI), fat-free mass index (FFMI), android-to-gynoid fat ratio (AGR),
body fat percentage (BF%) and body mass index (BMI). We also assessed hand grip strength at two
time points and prevalence of sarcopenia at one time point in a subset of participants. Data were
analyzed using linear mixed models or multinomial logistic regression models with multivariable
adjustment. We found that higher FRAP score was associated with higher FFMI (0.091 kg/m2 per
standard deviation (SD) higher FRAP score, 95% CI 0.031; 0.150), lower AGR (−0.028, 95% CI −0.053;
−0.003), higher BMI (0.115, 95% CI 0.020; 0.209) and lower BF% (−0.223, 95% CI −0.383; −0.064)
across follow-up after multivariable adjustment. FRAP score was not associated with hand grip
strength or sarcopenia. Additional adjustment for adherence to dietary guidelines and exclusion
of individuals with comorbid disease at baseline did not change our results. In conclusion, dietary
intake of antioxidants may positively affect the amount of lean mass and overall body composition
among the middle-aged and elderly.

Keywords: dietary antioxidants; nutrition; body composition; diet; dietary antioxidant capacity;
muscle strength

1. Introduction

Dietary intake of antioxidants, a group of compounds that are capable of mitigating oxidative stress,
has been shown to lower the risk of diseases such as type 2 diabetes, myocardial infarction and cancer [1–3].
Examples of such dietary antioxidants include vitamins C and E, polyphenols and carotenoids,
and foods that are generally regarded as rich in antioxidants include fruits, vegetables, tea, coffee,
spices and herbs [4,5]. Because multiple antioxidants may have synergistic effects, it is important to
study the total dietary antioxidant capacity (TDAC) comprehensively rather than considering the effects
of individual compounds [6]. Although the exact intermediate pathways through which the beneficial
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health effects of TDAC occur are not precisely known, there is some evidence that higher TDAC is
inversely associated with the presence of obesity and age-related muscle loss [7–9].

In recent years, advances in imaging technology have allowed for more thorough assessment
of body composition in population studies than was previously possible. In particular, the use of
dual X-ray absorptiometry (DXA) allows for accurate estimation of body composition at low cost
and negligible radiation exposure [10,11]. DXA not only provides information about total body fat
mass and fat-free mass, but also about fat distribution (i.e., android or gynoid type fat distribution)
within a given individual. Investigating these detailed measures of body composition as opposed to
more simple measures such as body mass index (BMI) is of importance because fat mass and fat-free
mass differentially affect risk of several different health outcomes [12]. Changes in body composition
are especially relevant in elderly individuals, in whom loss of muscle mass and function is commonly
observed [13]. Such losses in muscle mass are associated with reduced functional outcomes over
time [14].

Most studies on antioxidants and body composition so far have been of cross-sectional design with
relatively small sample sizes and have only investigated a small number of antioxidants. A systematic
review reported that although a number of cross-sectional studies found a significant inverse association
between TDAC and waist circumference, issues relating to the design or statistical power of these
studies made inference on this association difficult [15]. No studies thus far have investigated a
comprehensive measure of TDAC in relation to more detailed body composition measurements.
For these reasons, we aimed to investigate the relationship between TDAC and longitudinal profiles of
body composition derived by means of DXA, as well as muscle strength and sarcopenia, in the context
of a large population-based cohort study among middle-aged and elderly individuals.

2. Materials and Methods

2.1. The Rotterdam Study

The general design of the Rotterdam Study has been outlined extensively elsewhere [16].
In short, this prospective cohort study was initiated in 1990 in the district of Ommoord, Rotterdam,
the Netherlands. All inhabitants of this district aged 55 years or older (n = 10,215) were invited
to participate, and 7983 participants were included for a response rate of 78% (subcohort RS-I).
In 2000, a second subcohort of participants who had moved into the study district or had become
55 years of age since the start of the Rotterdam Study was included in the study; 4472 were invited
and 3011 participated (response rate 67%) (subcohort RS-II). A third subcohort was added in 2006
with the inclusion of 3932 participants, out of 6057 invited (response rate 65%), aged 45–54 years
(subcohort RS-III). Together, these subcohorts account for a total number of participants of 14,926
at baseline. Participants underwent home interviews and an extensive set of physical examinations
at baseline and every subsequent 3–4 years. The Medical Ethics Committee of Erasmus University
Medical Center (registration number MEC 02.1015) and the review board of the Dutch Ministry of
Health, Welfare and Sports (Population Screening Act WBO, license number 1071272-159521-PG) have
approved the Rotterdam Study. The Rotterdam Study has been entered into the Netherlands National
Trial Register (NTR) and into the WHO International Clinical Trials Registry Platform (ICTRP) under
shared catalogue number NTR6831. All participants have provided written informed consent to
participate in the study and to have their information obtained from treating physicians [17].

2.2. Assessment Total Dietary Antioxidant Capacity

Assessment of dietary intake was performed at the fifth examination round for the first subcohort
(RS-I-5; 2009–2011), the first examination round of the second subcohort (RS-II-1; 2000–2001), the third
examination round of the second cohort (RS-II-3; 2011–2012) and the first examination round of
the third subcohort (RS-III-1; 2006–2008) (Supplementary Figure S1). Semi-quantitative food frequency
questionnaires (FFQs) were used to assess dietary intake at baseline. We used two versions: a 170-item
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FFQ for the measurements of RS-II-1 in 2000 and an updated 389-item FFQ for the later examination
rounds, as described in detail elsewhere [18]. Food intake data from all cohorts was converted into
daily nutrient and energy intake (in kcal) using Dutch Food Composition Tables corresponding to
the years of dietary assessment. Both FFQs were developed to assess diet in a Dutch population
and both FFQs have been validated against other assessment methods, which showed that the FFQs
are able to adequately rank participants according to nutrient intakes. The 170-item FFQ was validated
against fifteen twenty-four-hour food records and four twenty-four-hour urea excretion samples among
80 participants of the Rotterdam Study. Pearson’s correlations between the FFQ and the food records
ranged between 0.44 and 0.85, and Spearman’s correlation for estimated protein intake with urea
excretion samples was 0.67 [19]. The 389-item FFQ was validated among two other Dutch populations
using a 9-day dietary record and a 4-week dietary history, with Pearson’s correlations ranging between
0.40 and 0.86 [20,21].

The TDAC was calculated for each participant using the Antioxidant Food Table published by
Carlsen et al., who used a ferric reducing ability of plasma (FRAP) assay to estimate the antioxidant
content of over 3100 types of food [22]. This assay measures absorption changes that occur when ferric
ion (Fe3+) is reduced to ferrous ion (Fe2+) in the presence of antioxidants from different food samples.
The measured value is the antioxidant capacity for a given type of food expressed in mmol per 100 g.
We multiplied these values by the consumption of the different types of food in our FFQs and then
summed across all food types for every participant. The resulting value is a FRAP score that represents
the total dietary antioxidant intake in mmol per day. Because the Antioxidant Food Table lists different
antioxidant capacities for the same types of food produced by different manufacturers, we consulted
nutrition scientists from Wageningen University, the Netherlands, to determine the closest Dutch food
equivalent for food types with multiple listings. Due to lack of data, food supplements were not
included in the calculation of TDAC.

2.3. Measurement of Body Composition

Body composition was measured by means of Dual X-ray Absorptiometry (DXA; Prodigy and iDXA
devices, GE Healthcare, Chicago, United States). From these DXA data, we calculated fat mass index
(FMI) as total fat mass in kilograms divided by height in meters squared, fat-free mass index (FFMI) as
total lean mass (excluding bone mineral content) in kilograms divided by height in meters squared,
android-to-gynoid fat ratio (AGR) as android fat mass in kilograms divided by gynoid fat mass in kg
and total body fat percentage (BF%) by expressing total fat mass in kilograms as a percentage of total
body weight in kilograms. Weight was recorded with a digital scale with the participant wearing light
clothing and height was recorded with the participant in a standing position without shoes. BMI was
calculated as total body weight in kilograms divided by height in meters squared.

Sarcopenia was defined according to the updated European Working Group on Sarcopenia
in Older People (EWGSOP2) criteria [23,24]. According to these criteria, sarcopenia is defined as
the combination of low muscle strength and low muscle quantity or quality with or without low
physical performance, and probable sarcopenia is defined as isolated low muscle strength. We defined
low muscle strength as a peak hand grip strength <27 kg (for men) or <16 kg (for women) over three
attempts as measured at the Rotterdam Study research center. Low muscle quantity was defined as
appendicular skeletal muscle mass index (ASMI; appendicular skeletal muscle mass divided by height
squared) <7.0 kg/m2 (for men) or <5.5 kg/m2 (for women). Appendicular skeletal muscle mass was
assessed by DXA and was calculated as the sum of the muscle masses of all four limbs. Low physical
performance was defined as a gait speed ≤0.8 m/s.

2.4. Population for Analysis

Data availability in the different examination rounds is outlined in Supplementary Figure S1.
Full-body DXA measurements were performed from 2009 (RS-I-5), 2004 (RS-II-2) and 2006 (RS-III-1)
onward, which constitute the baseline of our current study for a total of 8547 participants. Dietary data
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were available for 5791 of these 8457 individuals, of which 309 were excluded for having invalid
dietary data (reported energy intake <500 or >5000 kcal/day). Of the remaining 5663 participants,
4971 underwent DXA at least once. Another 375 individuals were excluded because their body mass
index (BMI) was greater than 35 kg/m2. Such individuals typically exceed the surface area limitations of
the DXA-scanner, which would compromise image accuracy and therefore produce biased estimations
of body composition [25]. Thus, our final population for analysis consisted of 4595 individuals, of
whom 3065 had more than one DXA measurement available.

Data on hand grip strength were available for 4193 individuals from the total of 4595, measured
from 2009 (RS-I-5), 2011 (RS-II-3) and 2006 (RS-III-1) onward. Sufficient data to assess the prevalence of
sarcopenia was only available for the fifth visit round of the first cohort (RS-I-5) and the third visit
round of the second cohort (RS-II-3) for a total of 2001 participants. For the second cohort (RS-II),
we used dietary data from the first examination round (RS-II-1) for the DXA outcomes and dietary
data from the third examination round (RS-II-3) for the analyses pertaining to hand grip strength
and prevalent sarcopenia, to minimize the time between assessment of FRAP score and the respective
outcomes (Supplementary Figure S1).

2.5. Covariates

The following variables were considered as potential confounders in our analyses: age, sex,
Rotterdam Study cohort, hypertension status, presence of dyslipidemia, daily alcohol consumption,
daily physical activity, smoking status, highest attained level of education, total daily energy intake,
overall diet quality and serum glucose level. Potential confounders were selected based on general
knowledge of their association with exposure and outcomes or on the basis of previous literature.
We used directed acyclic graph (DAG) modeling to help theorize which variables would potentially
be relevant to include in our analyses as confounders [26]. Participant height and weight were
recorded at every center visit. Participants were considered to have dyslipidemia if their total serum
cholesterol was >6.5 mmol/L or if they used lipid-lowering medication. Serum cholesterol was
determined in blood samples taken at baseline using a CHOD-PAP method (Monotest Cholesterol kit,
Boehringer Mannheim Diagnostica, Mannheim, Germany) [27]. Hypertension was defined as having a
systolic blood pressure ≥140 mmHg, a diastolic blood pressure ≥90 mmHg or using antihypertensive
medication. We performed two blood pressure readings at the right upper arm using a random-zero
sphygmomanometer. Information on use of lipid-lowering or antihypertensive drugs was obtained
during home interviews and by consulting pharmacy dispensing records. Smoking status (never,
former or current user of tobacco products) and highest attained level of education were assessed
during home interviews. Energy intake (kcal/day) and alcohol consumption (glasses/day) were derived
from the FFQ data. To assess physical activity we used the LASA physical activity questionnaire and a
modified version of the Zutphen Study Physical Activity Questionnaire to estimate activity in metabolic
equivalent of task (MET) hours [28,29]. Because different questionnaires were used, we calculated
cohort-specific standard deviation (SD) scores for physical activity. Finally, as a measure of overall
healthiness of diet, we used a diet quality score which describes the degree of adherence to the Dutch
Dietary Guidelines [18]. Data on comorbid disease (coronary heart disease, heart failure, stroke, type 2
diabetes and cancer) were collected by consulting general practitioners’ records and hospital discharge
data and using measurements in our research center [30–33].

2.6. Statistical Analysis

In order to assess the association between baseline FRAP score and longitudinal changes in body
composition measures and hand grip strength, we used a linear mixed model approach. We used
the residual method to adjust FRAP score for energy intake [34]. We did this in each of the cohorts
separately to account for the use of different FFQs and we used the standardized residuals as exposure
in our analyses. For every regression model, we investigated whether non-linear terms (polynomials
or three-knot natural cubic splines) for the variables age and time significantly (p < 0.05) improved
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model fit by performing likelihood ratio tests with the models fitted under maximum likelihood.
Using the same procedure, we tested whether interaction between FRAP score and time, age or sex
significantly improved the model fit. If this was the case, the non-linear or interaction terms were
kept in the model. For the random effects structure of these models, we specified random intercepts
and random slopes (for time between repeated measurements). In order to investigate the association
between FRAP score and prevalence of probable sarcopenia or sarcopenia, we fitted multinomial logistic
regression models. To provide insight into how the covariates influence the association between FRAP
score and body composition parameters, these covariates were introduced into the models in a stepwise
process. Model 1 was adjusted for age, sex, Rotterdam Study cohort and time difference between
exposure and outcome measurement (where applicable) in years. Model 2 was additionally adjusted
for hypertension, dyslipidemia, alcohol consumption (natural log-transformed), physical activity,
smoking, education and serum glucose. In model 3, we also included diet quality. Missing values were
accounted for by the use of ten-fold multiple imputation. All statistical analyses were performed using
R version 3.6.1 (The R Foundation for Statistical Computing, Vienna, Austria), using the mice package
(version 3.8.0) for multiple imputation and the nlme package (version 3.1-140) for designing the linear
mixed models [35,36]. As sensitivity analysis, we repeated our analyses excluding participants with
comorbidities (as defined previously) at baseline.

3. Results

The characteristics of the study population are presented in Table 1. Overall, the mean FRAP score
was 25.2 (SD 10.3) mmol/day. For the different measures of body composition, population averages
at the first measurement were 9.3 (2.9) kg/m2 for FMI, 17.5 (2.1) kg/m2 for FFMI, 0.6 (0.2) for AGR,
34.0 (7.9) for BF% and 26.8 (3.4) for BMI. The food groups that contributed most to FRAP in our study
were coffee, fruit, vegetables and tea. For those participants with more than one DXA measurement
(n = 3065), the average follow-up duration was 6.6 years (6.1 years for those with two measurements
(n = 2705) and 10.9 years for those with 3 measurements (n = 360)).

Table 1. Baseline characteristics of the total study population (n = 4595).

Age (Years) 65.1 (10.8)

Sex
Female 2581 (56.2%)
Male 2014 (43.8%)

Highest level of education (%)
Primary 372 (8.1%)
Lower/intermediate general or lower vocational 1782 (38.8%)
Intermediate vocational or higher general 1063 (23.1%)
Higher vocational or university 1063 (23.1%)

Hypertension (%)
No 1668 (36.3%)
Yes 2927 (63.7%)

Dyslipidemia (%)
No 2644 (57.5%)
Yes 1951 (42.5%)

Alcohol intake (glasses/day) a 0.9 [1.1]

Smoking (%)
Never smoker 1429 (31.1%)
Former smoker 2293 (49.9%)
Current smoker 873 (19.0%)

Physical activity (MET-hours/week) a 54.3 [67.7]
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Table 1. Cont.

Energy intake (kcal/day) 2199 (676)

Dietary guideline score 6.8 (1.9)

Fasting serum glucose (mmol/L) 5.6 (1.2)

Height (cm) b 168.6 (9.3)

Weight (kg) b 76.4 (12.6)

Body mass index (kg/m2) b 26.8 (3.4)

Fat mass index (kg/m2) b 9.3 (2.9)

Fat-free mass index (kg/m2) b 17.5 (2.1)

Android-to-gynoid fat ratio b 0.6 (0.2)

Total body fat percentage (%) b 34.0 (7.9)

FRAP score (mmol/day) 25.2 (10.3)

Variables are presented as mean (SD) unless otherwise indicated. a Median (interquartile range). The presented
statistics represent the data after ten-fold multiple imputation. b Variable is presented for the individuals who
participated in the baseline DXA measurement round (n = 3770), i.e., RS-I-5, RS-II-2 or RS-III-1.

The results of our main analyses are displayed in Table 2. We observed an inverse association
between FRAP score and FMI during follow-up in model 1, but this association was explained
by the metabolic and lifestyle factors in model 2 and by overall diet quality in model 3 (model 3:
−0.018 kg/m2 per SD higher FRAP score, 95% CI −0.089; 0.053). Furthermore, we found a positive
association between FRAP score and FFMI during follow-up in model 1, for which the effect estimate
hardly changed and remained statistically significant after adjustment for covariates (model 3: 0.091,
95% CI 0.031; 0.150). We observed an inverse association of FRAP score with AGR, which was also
persistent across models (model 3: −0.028, 95% CI −0.053; −0.003). FRAP score was not significantly
associated with BMI during follow-up in the first model, but we did observe a positive association in
model 3 (0.115, 95% CI 0.020; 0.209). Finally, we found that FRAP score was inversely associated with
BF% during follow-up, with some attenuation after adjustment for covariates (model 3: −0.223, 95% CI
−0.383; −0.064).

Table 2. Longitudinal associations between Ferric Reducing Ability of Plasma (FRAP) score and fat
mass index, fat-free mass index, android-to-gynoid fat ratio, body mass index and body fat percentage.

Fat Mass Index
(kg/m2) p-Value Fat-Free Mass

Index (kg/m2) p-Value Android-To-Gynoid
Fat Ratio p-Value Body Mass

Index (kg/m2) p-Value Body Fat % p-Value

Model 1 a −0.083
(−0.156; −0.010) 0.026 0.076

(0.016; 0.135) 0.013 −0.028
(−0.054; −0.002) 0.033 0.039

(−0.058; 0.137) 0.426 −0.365
(−0.527; −0.202) <0.001

Model 2 b −0.037
(−0.108; 0.033) 0.301 0.088

(0.028; 0.147) 0.004 −0.029
(−0.054; −0.004) 0.025 0.092

(−0.002; 0.186) 0.055 −0.266
(−0.425; −0.107) 0.001

Model 3 c −0.018
(−0.089; 0.053) 0.619 0.091

(0.031; 0.150) 0.003 −0.028
(−0.053; −0.003) 0.026 0.115

(0.020; 0.209) 0.017 −0.223
(−0.383; −0.064) 0.006

N = 4595. Results are presented as regression coefficient (β) with corresponding 95% CI per 1 standard deviation
increment in FRAP. a Model 1: adjusted for time interval, age, sex and Rotterdam Study cohort. b Model 2: additionally
adjusted for hypertension status, presence of dyslipidemia, daily alcohol consumption, daily physical activity,
smoking status, highest attained level of education and serum glucose. c Model 3: additionally adjusted for adherence
to dietary guideline score. At the baseline examination round (cohorts RS-I-5, II-2 and III-1), 3770 participants
underwent a DXA measurement; during the second round (cohorts I-6, II-3 and III-2), 3492 participants were
measured and, during the final examination round (cohort II-4), 718 participants were measured. Of the 4595 total
participants, 1530 participants were measured once during the study period, 2705 were measured twice and 360 were
measured at all three time points.

The results for subsequent analyses on hand grip strength and sarcopenia are presented in
Tables 3 and 4. FRAP score was not associated with hand grip strength across follow-up after
multivariable adjustment (model 3: 0.177, 95% CI −0.135; 0.488) (Table 3). Among the subgroup of
individuals with data on sarcopenia, we identified 314 cases of probable sarcopenia and 104 cases of
sarcopenia. FRAP score was not associated with probable sarcopenia (model 3: OR 0.95, 95% CI 0.81;
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1.12) (Table 4). Although higher FRAP score was associated with lower probability of sarcopenia in
model 1 (OR 0.77; 95% CI 0.60; 0.99), after adjustment for covariates this association slightly attenuated
and was no longer statistically significant (model 3: OR 0.81, 95% CI 0.62; 1.05).

Table 3. Longitudinal associations between Ferric Reducing Ability of Plasma (FRAP) score
and hand grip strength.

Hand Grip Strength (kg)
(n = 4193) p-Value

Model 1 a 0.232
(−0.078; 0.541) 0.142

Model 2 b 0.182
(−0.129; 0.493) 0.251

Model 3 c 0.177
(−0.135; 0.488) 0.267

Results are presented as regression coefficient (β) with corresponding 95% CI per 1 standard deviation increment in
FRAP. a Model 1: adjusted for time interval, age and sex. b Model 2: additionally adjusted for hypertension status,
presence of dyslipidemia, daily alcohol consumption, daily physical activity, smoking status, highest attained level
of education and serum glucose. c Model 3: additionally adjusted for adherence to dietary guideline score.

Table 4. Associations between Ferric Reducing Ability of Plasma (FRAP) score and prevalence of
(probable) sarcopenia.

Probable Sarcopenia
(n Cases = 314) p-Value Sarcopenia

(n Cases = 104) p-Value

Model 1 a 0.93
(0.79; 1.08) 0.342 0.77

(0.60; 0.99) 0.045

Model 2 b 0.95
(0.81; 1.11) 0.504 0.80

(0.62; 1.04) 0.098

Model 3 c 0.95
(0.81; 1.12) 0.564 0.81

(0.62; 1.05) 0.110

N = 2001. Results are presented as odds ratio (OR) with corresponding 95% CI per 1 standard deviation increment
in FRAP. a Model 1: adjusted for age, sex and Rotterdam Study cohort. b Model 2: additionally adjusted for
hypertension status, presence of dyslipidemia, daily alcohol consumption, daily physical activity, smoking status,
highest attained level of education and serum glucose. c Model 3: additionally adjusted for adherence to dietary
guideline score.

Excluding participants with one or more comorbidities at baseline left 3327 individuals for analysis.
Repeating our analyses in this subgroup did not substantially change our conclusions with regard to
the association between TDAC and body composition, although we did observe some attenuation of
the association between FRAP score and AGR (Supplemental Tables S1–S3). We observed no significant
interaction between FRAP score and follow-up time for any of the body composition outcomes in our
analyses, indicating that FRAP generally does not modify the rate at which body composition changes
over time. We did observe significant interaction between FRAP score and time on hand grip strength
(p for interaction 0.003), suggesting that FRAP modifies the rate at which hand grip strength changes
over time. We found significant interaction between FRAP score and sex only on FFMI (p for interaction
0.043) and between FRAP score and age only on AGR (p for interaction 0.046). Considering these
findings, we additionally stratified all our analyses by sex and median age at baseline (Supplemental
Tables S4–S9). We observed that FRAP score was more strongly associated with FFMI in women
(0.189, 95% CI 0.135; 0.243) compared to men (0.070, 95% CI 0.007; 0.133) after adjustment for all
covariates, but these sex differences were generally not reflected in the other outcome parameters.
Similarly, while FRAP score was more strongly associated with AGR in younger participants (−0.007,
95% CI −0.012; −0.001) compared to older participants (−0.0004, 95% CI −0.006; 0.006) after adjustment,
this pattern was not reflected in the other outcome parameters.
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4. Discussion

In this prospective cohort study, higher total dietary antioxidant capacity (TDAC) was associated
with higher fat-free mass index (FFMI), higher body mass index (BMI), lower body fat percentage
(BF%) and lower android-to-gynoid fat ratio (AGR) across follow-up. We found no association between
TDAC and the presence of sarcopenia, probable sarcopenia or hand grip strength. The observed
associations were independent of degree of adherence to dietary guidelines. Overall, this combination
of findings from our study indicates a positive association between TDAC and fat-free mass in particular.
TDAC was positively associated with FFMI but was not associated with FMI. Hence, the decrease in
body fat percentage we observe with higher TDAC is likely mainly due to higher fat-free mass rather
than lower fat mass.

Several previous studies have examined the association between individual compounds with
antioxidative properties and indicators of body composition. For example, a cross-sectional study
of 3182 participants found that serum levels of β-carotene and vitamin C, but not vitamin E,
zinc or selenium, were lower in participants with higher BMI [37]. Another cross-sectional study
on a similar scale found that serum levels of magnesium, a cofactor for a number of antioxidant
enzymes, were associated with lower BMI and waist circumference [38]. Several studies have also been
performed that examined TDAC in relation to anthropometric measures. A systematic review reported
that TDAC was examined in relation to waist circumference in several studies, two of which found a
significant (inverse) association [7,15,39]. One of these two studies investigated TDAC in relation to
abdominal obesity (defined as a waist circumference ≥ 95 cm) measured 3 years after baseline among
1983 young adults, and reported lower occurrence of abdominal obesity across quartiles of TDAC
after multivariable adjustment [7]. The other study reported lower waist circumference with higher
trolox-equivalent antioxidant capacity (TEAC) among 266 young adults in a cross-sectional analysis
adjusted only for energy intake and sex [39]. Another cross-sectional study found an association
between measures of TDAC and obesity as measured by BMI, but not between TDAC and waist
circumference [40]. Differences between studies with regards to the observed associations could be
accounted for by differences in sample size, as a number of previous studies had considerably fewer
participants available than ours and other larger studies [7,8,39]. Furthermore, a number of previous
studies also did not adjust their analyses for cardiometabolic risk factors [39], or had a population
that was demographically and ethnically different from ours [7,8,40]. Previous studies also differed
with regards to the measure of TDAC that was investigated [39–41]. Notably, no studies thus far
have investigated TDAC in relation to more detailed measures of obesity derived from DXA data.
This is important considering that BMI alone fails to fully capture inter-individual differences in fat
and lean mass [42]. Furthermore, when used as a measurement of adiposity, waist circumference may
underestimate the association between adiposity and cardiometabolic risk factors when compared to
DXA-derived measurements of adiposity [43]. These limitations emphasize the importance of studying
more comprehensive measures of body composition over simple anthropometrics.

The positive association between TDAC and fat-free mass we observed in our study could be
mediated by the reduction in oxidative stress levels that is associated with antioxidant consumption [44].
One of the major sources of oxidative stress is the presence of excess reactive oxygen species (ROS), which
are chemically reactive molecules naturally produced in response to cellular stress and inflammatory
processes [45]. While ROS have certain physiological functions at low concentrations, excess ROS
production in response to stressors has adverse effects on cellular functioning [45]. High levels of
ROS may specifically affect skeletal muscle mass and strength through a number of pathways [46].
For example, oxidative stress induces activation of proteolytic compounds and mediates the release of
pro-inflammatory cytokines, which may lead to protein degradation and atrophy or loss of muscle
fibers [47]. Previous studies have also demonstrated that aging is associated with higher levels of
ROS in skeletal muscle [48,49]. These adverse effects of ROS on muscle tissue, potentially exacerbated
by increasing levels of ROS with aging, may in part be responsible for the commonly observed loss
of muscle mass in the elderly [47,50]. Given that antioxidants have the ability to lower oxidative
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stress levels, a high consumption of antioxidants might reduce the extent to which these deleterious
processes take place [45]. Increased consumption of dietary antioxidants may also help counteract
the age-related deficiencies in the endogenous antioxidant defense system that have been reported in
the elderly [51]. In spite of our observation that higher TDAC was associated with higher FFMI, we did
not observe an association between TDAC and hand grip strength. This indicates that the increased
muscle mass that is associated with higher TDAC is not also paired with increased muscle strength
(Table 3). This discrepancy between findings for muscle mass and muscle strength could be explained by
the fact that despite the correlation between these parameters, muscle strength may also be determined
by neural factors in addition to muscle mass alone [52]. Furthermore, in a previous study, it was
demonstrated that muscle mass accounted for only 13% of the variation in muscle strength among
older adults [53]. We observed no association between TDAC and probability of probable sarcopenia
or sarcopenia after adjustment for covariates. Sarcopenia is a complex and heterogeneous condition
that can be defined according to different combinations of criteria within the EWGSOP2 definition [23].
Possibly, other factors than TDAC play a more prominent role in the pathogenesis of sarcopenia.
We also had limited statistical power in this analysis due to the relatively low number of sarcopenia
cases (n = 104) available.

In addition, although we found that the association between TDAC and FFMI appeared to be
somewhat stronger in women compared to men, previous literature has not provided consistent
evidence of sex differences with relation to this association or the associations between individual
antioxidants and anthropometrics [37,54]. However, in the case of our study, these sex differences
could also be explained by differences in statistical power between the groups considering that we
had more women (n = 2581) than men (n = 2014) available for analysis. The association between
TDAC and android-to-gynoid fat ratio, and the variation of the strength of this association with age,
has not been previously reported in the literature. Further research is needed in order to elucidate
these findings.

The strengths of our study include its prospective design with repeated assessment of body
composition over a period of, on average, more than six years. In addition, we had a large population
available for analysis. We investigated a comprehensive measure of TDAC, which takes into account
the potential synergistic effects of all antioxidants that are contained in the diet, rather than focusing on
single antioxidative compounds. In addition, we analyzed advanced measures of body composition in
our study as opposed to only anthropometrics, enabling us to study the association between TDAC
and body composition in greater detail than was previously possible. Furthermore, we were also
able to adjust for a large number of covariates related to lifestyle, cardiometabolic status and dietary
habits. Although it is possible that high TDAC could reflect an overall healthy diet because healthy
foods are generally rich in antioxidants, we were able to demonstrate that our results persisted after
adjustment for adherence to guidelines for a healthy diet. Several limitations should be taken into
account when interpreting our findings. First, we estimated TDAC based on a Norwegian database
listing the antioxidant content of different types of food [22]. It is possible that differences with
regards to country of origin, growth conditions and processing of food have led to some error in
the estimation of TDAC, although we did attempt to mitigate this by determining the closest Dutch
food equivalent for products with multiple listings in the database. Second, we had no information
available on the cooking methods used by participants. It has been demonstrated that cooking methods
may also affect the antioxidant content of food [55]. Third, we had no data available on the use
of food supplements in our study, so these could not be taken into account in our estimation of
the TDAC. Fourth, the FFQ we used in order to assess dietary habits may inherently provide some
measurement error, although our FFQ were both validated and shown to be adequate in ranking
according to nutrient intake [19,20]. Fifth, we had a relatively limited number of repeated measurements
available per participant, which may in turn limit the accuracy of the estimated longitudinal body
composition profiles.
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In conclusion, higher total dietary antioxidant capacity was associated with higher fat-free mass
index in this longitudinal population-based cohort study of over 4500 middle-aged and elderly
participants. Our findings indicate that increased consumption of antioxidants may have favorable
effects on body composition and may play a role in preserving lean mass over time.
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