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Numerous chronic diseases including cancer, cardiovascular, chronic respiratory or
neurodegenerative diseases, diabetes mellitus, retinal damage, and others are associated with oxidative
stress. Therefore, various natural and synthetic antioxidants are proposed for the prevention and
treatment of such diseases [1]. Cellular protection against oxidative and electrophile toxicities
(chemoprevention) can be provided either by redox-active, short-living direct antioxidants or indirect
antioxidants having both anti- and prooxidant activity, activating the Keap1/Nrf2/ARE pathway,
which results in the transcriptional induction of cytoprotective proteins [2–4]. Individual antioxidant
protective systems in humans cooperate in a complex functional interplay; cytoprotective proteins are
involved in the synthesis and/or regeneration of direct antioxidants, which in turn are often required for
the catalytic functions of cytoprotective proteins, which are the real “antioxidant” effectors [3,5]. Direct
antioxidant therapy often failed in clinical trials and recent studies mostly confirm the involvement of
several cell signaling pathways in cytoprotection from oxidative stress [6–8].

As further investigation into this subject is likely to provide renewed insight into the molecular
mechanisms of oxidative stress in chronic diseases, the aim of this Special Issue was to compile up to
date original research dealing with the cytoprotective activity of natural antioxidants and inducers
of cytoprotective proteins from plants or microorganisms, but also (semi)synthetic molecules and
especially pleiotropic agents with protective effects in the abovementioned chronic diseases. Studies
focusing on the molecular mechanism of action of cytoprotective agents were particularly welcome.

In line with this, one of the two reviews in this Issue highlights the critical role of the Keap1/Nrf2
pathway, its modulation by natural compounds, and the growing interest in clinical applications of the
Nfr2 activators in, e.g., endocrinology/metabolism, cardiology, and nephrology [9]. As a response to
the urgent need for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
disease (COVID-19), the second review deals with the potential cytoprotective activity of ozone therapy
in this viral infection via decreasing organ damage mediated by inflammation and oxidative stress [10].

To more easily monitor the cytoprotective effect of antioxidants, a new quantitative assay called
Anti Oxidant Power 1 (AOP1) was developed, which specifically measures reactive oxygen species
(ROS) and/or free radical scavenging effects inside living cells using Light Up Cell System (LUCS)
technology allowing fine monitoring of ROS production inside live cells. The assay was used to
compare intracellular antioxidant/prooxidant efficacy of 15 well-known antioxidants with different
hydrophilic/lipophilic properties [11].

An important line of research deals with possible protection against toxicity induced by
various drugs using both natural and synthetic agents. Treatment of oncological conditions with
chemotherapeutics such as the platinum-based antineoplastic medications often results in toxic
side-effects towards non-cancer tissues and cells [12]. Berberin containing the methanolic root extract
of Berberis vulgaris L. displayed both a prophylactic and curative protective effect against nephrotoxic,
hepatotoxic, and hyperlipidemia effects of cisplatin in vivo in male albino Wistar rats [13]. On the other
hand, calmangafodipir (proprietary name: PledOx®), an analogue of manganese superoxide dismutase
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mimetic, chelating agent, and intravenous magnetic resonance imaging agent mangafodipir showed
preventive and protective effects against oxaliplatin-induced neurotoxicity in BALB/c mice [14].

A growing number of studies deal with the mechanism of action of cytoprotection. The
cytoprotective mechanism of natural anthocyanin delphinidin against oxidative stress induced by H2O2

was investigated in human chondrocytes where it inhibited reactive oxygen species (ROS)-induced
apoptosis via activation of Nrf2 and nuclear factor κB (NF-κB) and activated cytoprotective autophagy
showing potential in the treatment of osteoarthritis [15]. Embelin, a plant natural product from
Lysimachia punctata and Embelia ribes fruit with quinone and hydroquinone functional groups plus a
long hydrophobic tail completely abolished the superoxide radical generated in situ with hydrodynamic
voltammetry. Moreover, it exhibited cytoprotective activity in THP-1 human leukemic monocytes and
BV-2 mice microglia probably thanks to its long alkyl tail enabling its insertion in cell membranes [16].
The mechanism of anti-inflammatory and antioxidant effects of aspirin on hyperoxia-induced acute
lung injury was studied in NF-κB–luciferase transgenic mice. Pretreatment with aspirin significantly
reduced the protein levels of phosphorylated protein kinase B, NF-κB, and tumor necrosis factor α,
indicating that aspirin reduces NF-κB activation [17].

A few publications were devoted to the effect of natural compounds in the form of complex but
well-characterized extracts. Thus, the essential oil from feijoa (Acca sellowiana) fruit peal containing
mostly sesquiterpenes showed strong antioxidant and free radical scavenging activity, cytoprotective
activity on lymphocytes pre-treated with 100 µM tert-butylhydroperoxide (t-BOOH), as well as a
decrease in intracellular ROS, induced by t-BOOH on erythrocytes and antimicrobial and antifungal
activities against Staphylococcus aureus and Candida albicans, respectively [18]. Vitis vinifera var. Fetească
neagră tendrils and leaves extracts, intended to be used in oral hygiene products recommended
in periodontal disease, displayed a cytoprotective effect against nicotine-induced cytotoxicity and
anti-inflammatory activity in human gingival fibroblasts [19]. Viburnum opulus berry phenolic extracts
were able to decrease the uptake of glucose, free fatty acids, and accumulation of lipid droplets in
Caco-2 cells without affecting their viability, followed by a decrease in the CD36/FAT gene expression,
without influence on the GLUT2 and PPARα levels. Furthermore, the extracts revealed strong
chemo-preventive activity against oxidative stress induced chemically by t-BOOH, as well as against
DNA damage through the induction of DNA repair after cell exposition to methylnitronitrosoguanidine
and H2O2 [20]. In a subsequent study, V. opulus fruit fresh juice and a phenolic-rich fraction were
able to decrease intracellular oxidative stress in mice insulinoma MIN6 cells, induced glucagon-like
peptide-1 secretion in the presence of an elevated glucose concentration, and inhibited in vitro activity
of the dipeptidyl peptidase-4 [21].

Several publications in this Special Issue study flavonolignans from silymarin, an extract from
the fruits of Silybum marianum. Twenty-six commercially available silymarin preparations, natural
silymarin from Sigma Aldrich, and a model mixture of pure flavonoid/flavonolignans mimicking
the silymarin composition, all analyzed by U-HPLC-HRMS/MS, were compared using biochemical
(2,2′-azino-bis-(3-ethylbenzothiazoline-6 sulfonic acid) (ABTS), oxygen radical absorption capacity
(ORAC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH)) and cellular (CAA) antioxidant tests and
significant differences in the antioxidant capacity of the supplements were observed [22]. Antioxidant
activities of pure stereomers A and B of silybin and 2,3-dehydrosilybin, their racemic mixtures, pure
silychristin A, and its derivatives (anhydrosilychristin, isosilychristin, and 2,3-dehydrosilychristin
A) were investigated by using ORAC and CAA assays. Moreover, their anti-inflammatory activity
was studied in macrophages and multidrug resistance modulation as inhibition of P-glycoprotein
and sensitization of doxorubicin-resistant ovarian carcinoma cells overproducing P-glycoprotein was
detected and the effect on related gene expression revealed a distinct mechanism of action for the
individual compounds [23,24]. Last but not least, new potential targets of silymarin constituents silybin
and dehydrosilybin as dual inhibitors of BRAF and the Hedgehog pathway receptor Smoothened
(SMO), two major targets in anticancer therapy, were identified in silico and confirmed in vitro [25].
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The content of the Special Issue clearly shows that cytoprotection by anti- and prooxidant active
molecules is still a hot topic. However, for effects demonstrated in cell cultures other than those derived
from the gastrointestinal tract, the bioavailability and metabolism of the active compounds often could
not be taken into consideration. Therefore, future studies should be directed towards the effects of the
metabolites likely to be present in blood plasma.
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