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Abstract: High-mobility group box 1 (HMGB1) is a protein that is part of a larger family of
non-histone nuclear proteins. HMGB1 is a ubiquitary protein with different isoforms, linked
to numerous physiological and pathological pathways. HMGB1 is involved in cytokine and
chemokine release, leukocyte activation and migration, tumorigenesis, neoangiogenesis, and the
activation of several inflammatory pathways. HMGB1 is, in fact, responsible for the trigger, among
others, of nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), toll-like receptor-4 (TLR-4),
and vascular endothelial growth factor (VEGF) pathways. Diabetic retinopathy (DR) is a common
complication of diabetes mellitus (DM) that is rapidly growing in number. DR is an inflammatory
disease caused by hyperglycemia, which determines the accumulation of oxidative stress and cell
damage, which ultimately leads to hypoxia and neovascularization. Recent evidence has shown that
hyperglycemia is responsible for the hyperexpression of HMGB1. This protein activates numerous
pathways that cause the development of DR, and HMGB1 levels are constantly increased in diabetic
retinas in both proliferative and non-proliferative stages of the disease. Several molecules, such as
glycyrrhizin (GA), have proven effective in reducing diabetic damage to the retina through the
inhibition of HMGB1. The main focus of this review is the growing amount of evidence linking
HMGB1 and DR as well as the new therapeutic strategies involving this protein.

Keywords: antioxidants; diabetes mellitus; diabetic retinopathy; free radicals; high-mobility group
box 1 (HMGB1); inflammatory pathways; novel therapies; oxidative stress

1. Introduction to Diabetic Retinopathy (DR)

Diabetes mellitus (DM) is a well-known metabolic disease that causes numerous chronic
complications. To this day, the number of patients affected by type one and type two DM is estimated to
be 463 million. This number will rise to 700 million by 2045 (around 10.9% of the global population) [1].
The most common complications, such as diabetic retinopathy (DR), are caused by microvascular
damages. Nowadays, the number of patients affected by DR is calculated as around 93 million [2].
These numbers place DR as the fifth most common cause of severe visual impairment in the world [3].
From a clinical point of view, DR is characterized by typical vascular and macular abnormalities.
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In non-proliferative DR (N-PDR), the most common findings are microaneurysms, cotton wool spots,
hemorrhages, hard exudates, and venous dilatation. The progression toward the stage of PDR is
defined by the development of neovascularization that may lead to retinal and vitreous hemorrhages,
fibrovascular proliferation, and tractive retinal detachment. Other complications of DR are neovascular
glaucoma, steaming from iris neovascularization, and macular edema (Figures 1 and 2) [4,5].
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Figure 1. Spectral-domain optical coherence tomography exam of two patients. Patient (A). Initial
diabetic retinopathy (DR) characterized by typical vascular and retinal abnormalities: microaneurysms,
hemorrhages (hyperreflective dots), hard exudates (hyperreflective dots), and venous dilatation (blue
arrow). Patient (B). Preproliferating ischemic-exudative DR to the posterior pole with epiretinal
membrane (green arrows), retina spongy (white arrow), and altered layers of photoreceptors and retinal
pigment epithelium (external retina).

The pathogenesis of DR is an extremely complex mechanism that involves numerous biochemical
and inflammatory pathways triggered by long exposition to hyperglycemia. The development
of DR is characterized by the concomitant participation of vascular endothelial dysfunction,
pericyte loss, and neurodegeneration, which ultimately leads to hypoxia and neovascularization [6].
Interestingly, neuronal degeneration appears to precede vascular disease and develop as an independent
mechanism [7].
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Figure 2. Spectral-domain optical coherence tomography (SD-OCT) of a diabetic patient right and left eye. The progression of the disease toward the stage of
proliferative diabetic retinopathy (PDR) is defined by the development of persistent/chronic macular edema with flower petal cysts, important retinal and vitreous
hemorrhages, marked fibrovascular proliferation, tractive retinal detachment, and, finally, vitreoretinal neovascularization with retinal detachment. SD-OCT exam:
above 4 December 2019 and under 9 March 2020.
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The persistence of high levels of blood glucose is determinant for the activation of inflammatory
mechanisms, the enhancement of oxidative stress, and, consequently, the production of advanced
glycation end-products (AGEs) [4]. The inflammation determines the local accumulation of cytokines,
such as vascular endothelial growth factor (VEGF), tumor necrosis factor-alpha (TNF-α), and inducible
nitric oxide synthase (iNOS), that favor the establishment of hypoxia in the diabetic retina [8].
Inflammation leads also to the accumulation of chemokines and adhesion molecules such as intercellular
adhesion molecule-1 (ICAM-1). This mechanism causes the migration of leukocytes towards the retinal
endothelium, increased vascular permeability, and the breakdown of the blood–retinal barrier (BRB)
that ultimately leads to edema [9].

Hyperglycemia determines the production of AGEs. The binding of AGEs to their receptors
(RAGE) allows for the activation of nuclear factor-κB (NF-κB) pathways, which ultimately leads to the
production of reactive oxygen species (ROS) and the reduction of antioxidant defense systems [10].
Oxidative stress conducts to the metabolic memory phenomenon in mitochondria. This phenomenon
is deemed responsible for the persistence of vascular damage, even when glycemic control is perfectly
achieved [11]. Moreover, hyperglycemia determines the production of sorbitol through the activation
of the polyol pathway. High volumes of sorbitol lead to the depletion of reduced glutathione (GSH)
and the accumulation of ROS [12].

Hyperglycemia is also able to activate different isoforms of protein kinase C (PKC). This enzyme
participates in the retinal vascular damage through its efficiency in the induction of nicotinamide
adenine dinucleotide phosphate oxidase (NOX). The resulting O2

− contributes to the worsening
of endothelial dysfunction [13,14]. PKC is also involved in the increase of endothelial cell death
and pericyte loss via the accumulation of oxidative and nitrosative products, contributing to the
development of microaneurysms and the recruitment of leukocytes [15].

Another pathway heavily affected by chronic exposition to hyperglycemia is the hexosamine
pathway. The alternative cycle to glycolysis is needed to convert the excess of fructose 6-phosphate that
cannot be metabolized by classic glycolysis. This leads to the production of N-acetyl glucosamine and
the overexpression of transforming growth factor-β1 (TGF-β1) and plasminogen activator inhibitor-1
(PAI-1), increasing the apoptotic rate of endothelial cells (EC) and pericytes [16,17]. Moreover,
AGE accumulation activates the hexosamine pathway, determining the production of angiopoietin-2
and the development of neovascularization [18,19]. Lastly, it has been recently demonstrated
that the activation of the innate immune response facilitates the development of inflammation
and therefore DR. Specifically, concentrations of toll-like receptor (TLR)−4 and −2 as well as their
downstream inflammatory cytokines TNF-α, interleukin (IL)-1β, and interferon (IFN)-β were found to
be significantly increased in murine models of DM [20,21].

Current therapeutic approaches, such as anti-angiogenic agents or corticosteroids intravitreal
injections and laser therapy, only target the manifestations of DR. The complexity of the metabolic
pathways activated during DR shows how single-target therapies have limited success [22–24]. The lack
of preventive treatments and the increasing number of patients show the need for the development of
new specific agents targeting the metabolic pathways that lead to DR (Scheme 1).
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Scheme 1. Predominant biochemical alterations in diabetes mellitus (DM) patients and related
dysfunctions caused by hyperglycemia. HMGB1: high-mobility group box 1; DR: diabetic retinopathy;
BRB: blood–retinal barrier; AGEs: advanced glycation end-products; RAGE: receptors for AGEs;
PKC: protein kinase C; NF-κB: nuclear factor-κB; TGF-β1: transforming growth factor-β1; PAI-1:
plasminogen activator inhibitor-1; NOX: nicotinamide adenine dinucleotide phosphate oxidase; VEGF:
vascular endothelial growth factor; TLR: toll-like receptor; iNOS: inducible nitric oxide synthase; TNF-α:
tumor necrosis factor-α; IL-1β: interleukin-1β; IFN-β: interferon-β; ICAM-1: intercellular adhesion
molecule-1; ROS: reactive oxygen species; GSH: reduced glutathione.

2. Introduction to High-Mobility Group Box 1 (HMGB1)

High-mobility group (HMG) proteins are a group of non-histone nuclear proteins discovered in
1973 in the calf thymus, including three families, named HMGB, HMGN, and HMGA [25]. This group
of proteins owes their name to their high electrophoretic mobility [26]. The high-mobility group
box (HMGB) family contains several different proteins unified by the constant presence of at least
one HMGB. The most studied and ubiquitary protein of this family is HMGB1 [27]. HMGB1 is an
evolutionary conserved chromatin-binding protein composed of 215 amino acids and characterized by
two DNA binding domains named Box-A and Box-B and a C-terminal acidic domain [28]. Initially
considered a nuclear protein, HMGB1 has subsequently shown a cytosolic location inside several cell
organelles and structures, such as mitochondria and the cellular membrane as well as extracellular
space [29].

HMGB1 may be present in a reduced, oxidized, or disulfide form. Its actions appear to be largely
dependent on the redox state [30]. The reduced form is characterized by the reduction of specific
cysteine residues. In this configuration, HMGB1 can recruit leukocyte independently from the release
of cytokines or chemokines [31]. The oxidized configuration determines the loss of the immunogenic
properties of HMGB1 [32]. Lastly, the disulfide form activates the NF-κB inflammatory pathway,
determining the production of IL- 6, -8, and TNF-α [31].

HMGB1, due to its ubiquitous location in the cell, performs numerous activities (Figure 3).
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of 216 residues, 30 kD, highly conserved among mammals. The protein contains three alpha-helices,
connected together by loops. It consists of two homologous DNA-binding domains of the HMG-box
type: Box A (and Box B) and segment C-terminal, a negatively charged “tail”. There are two nuclear
localization sequences. Green marks the linker and terminal regions of HMGB1. Box A (P9–79) is
colored in green and Box B (P89–162) in red.

Inside the nucleus, HMGB1 controls chromatin stability and replication, nucleosome release from
damaged cells, gene recombination, and transcription, DNA repair, and replication [27,33].

Cytosolic HMGB1 is usually secondary to the shuttling of nuclear HMGB1 in response to hypoxia,
chemokines, cytokines, and ROS. In the cytosol, HMGB1 acts as a positive regulator of autophagia [34].
HMGB1 expression on the surface of cellular membranes is responsible for the activation of innate
immunity and mediates cellular adhesion [35,36].

Extracellular HMGB1 is involved in numerous activities such as the regulation of T-cells [37],
stem cells [38], and neoplastic cell differentiation [39]. This protein is also involved in the management
of the inflammatory response, through the activation of numerous different immune cells [40,41],
and the promotion of cytokine release [42,43]. HMGB1’s extracellular functions consist of cellular
proliferation [44] and migration [45], including vascular growth during inflammatory or neoplastic
diseases and tissue repair [46,47]. During the inflammatory response, HMGB1 is secreted by
macrophages, platelets, EC, and monocytes, as well as necrotic or damaged cells [48]. Disulfide
HMGB1 binds together with myeloid differentiation factor-2 and TLR-4, determining the formation of
a complex that triggers the inflammatory response [49,50]. In addition, HMGB1 deficient cellular lines
show a reduced capacity to induce cytokines [51]. The binding of HMGB1 to RAGEs determines the
formation of a complex responsible for the activation, among others, of NF-κB, phosphatidylinositol
3-kinase (PI3K)/PKB, mitogen-activated protein kinase (MAPK), and TNF-α pathways [52–54]. Thus,
HMGB1 is involved in myriad diseases, such as hypoxia-induced injury [55], microglial damage
and neuroinflammation [56], vascular barrier damage [57], and inflammatory heart diseases [58].
Moreover, ROS, through the activation of the NF-κB pathway, are responsible for the passive and
active secretion of HMGB1 in monocytes and macrophages [59]. HMGB1 is recognized to be a direct
angiogenic molecule as it induces a pro-angiogenic phenotype in EC [60,61]. It can, moreover, stimulate
angiogenesis through the activation of the MAPK/extracellular signal-regulated kinase (ERK) 1/2
pathway. The bond between HMGB1 and RAGE results in the stimulation of NF-κB signaling in
leukocytes, which leads to the production of proinflammatory and angiogenic molecules [62]. HMGB1
in conjunction with TLR-4 can influence the development of neovasis in proliferative and metabolic
diseases [63,64]. Moreover, it has been demonstrated that HMGB1 can mediate angiogenesis through
the activation of hypoxia-induced factor-1α (HIF-1α) [65].

In conclusion, HMGB1 shows a wide range of interactions in both physiological and pathological
mechanisms. The next section of the review will focus on the growing amount of evidence linking
HMGB1 expression and the development of DR. The main focus of this review is the growing amount
of evidence linking HMGB1 and DR as well as the new therapeutic strategies involving this protein.
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3. HMGB1 and DR

At the moment, information regarding the function of HMGB1 in DR is mostly limited to
murine models and in vitro studies. DM upregulates the expression of HMGB1, leading to the
activation of inflammatory signaling pathways such as the RAGE-mediated activation of ERK1/2-NF-κB.
Intravitreal injection of HMGB1 mimics the effects of diabetes and increases RAGE, ERK1/2, NF-κB,
and proinflammatory biomarkers such as ICAM-1 and soluble ICAM-1 (Scheme 2). These mechanisms
decrease TLR-2 and occludin expression, increasing retinal vascular permeability and disrupting the
stability of tight junction complex between adjacent retinal microvascular EC [66].
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Scheme 2. High-mobility group box 1 (HMGB1) levels increased in diabetic retinopathy (DR). HMGB1
promotes angiogenesis directly and indirectly. Multiple functions of HMGB1 in DR are limited to
murine models and in vitro studies. HIF-1α: hypoxia induced factor-1α; Egr-1: early growth response
protein 1; TYK2: tyrosine kinase 2; CXCL12/CXCR4: chemokine; NOX2: nicotinamide adenine
dinucleotide phosphate oxidase; RAGE: receptors for advanced glycation end-products; TLR-1/2/9/4:
toll like receptor-1/2/9/4; ERK: extracellular signal-regulated kinase; NF-kB: nuclear factor-κB; ICAM-1:
intercellular adhesion molecule-1; IL-1β/8: interleukin-1β/8; PLA-2: phospholipases A2; TNF-α: tumor
necrosis factor-α; VEGF: vascular endothelial growth factor; SIRT1: sirtuin; PARP-1: poly ADP-ribose
polymerase; ROS: reactive oxygen species; 8-OHdG: 8-hydroxydeoxyguanosine; VAP-1: vascular
adhesion protein-1; HO-1: heme oxygenase-1; OPN: osteopontin.
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High glucose stimulates the translocation of HMGB1 into the cytoplasm of retinal pericytes.
RAGEs act as receptors for HMGB1 and, in diabetes, their expression is enhanced. HMGB1 is involved
in the induction of DR through the activation of this receptor. HMGB1, through the binding of
RAGEs, enhances the transcriptional activity of NF-κB in retinal pericytes in in vitro and in vivo
models. Hyperglycemia also increases the binding of NF-κB to the RAGE promoter, inducing the
overexpression of RAGEs and therefore establishing a vicious cycle [67].

HMGB1 is strictly related to the signal transducer and activator of transcription-3 (STAT-3).
Constant intake of HMGB1 inhibitor glycyrrhizin (GA) attenuates the upregulation of phosphorylated
STAT-3 (pSTAT-3). The inhibition of STAT-3 blocks HMGB1-induced VEGF upregulation and human
retinal microvascular endothelial cell (HRMECs) migration, suggesting the role of STAT-3 in mediating
HMGB1-induced angiogenesis in DR [68].

HMGB1 induces the significant upregulation of IL-1β and ROS and the expression of NOX2,
caspase-3, and poly ADP-ribose polymerase-1 (PARP-1) in HRMECs [69].

HMGB1 may have a role in the alteration of BRB HMGB1 expression, which is enhanced in the
retinas of diabetic rats, and BRB permeability is significantly increased [70].

Sirtuin 1 (SIRT1) is a member of the SIRT family of proteins with deacetylase activity. Many studies
report its role in DNA repair, oxidative stress, angiogenesis, inflammation, and senescence. There is a
strong link between SIRT1 expression and the development of DR and PDR. In particular, hyperglycemia
and diabetes cause the downregulation of SIRT1, thus resulting in inflammation, angiogenesis, an
increase in oxidative stress, and vascular permeability, all of which are hallmarks of diabetic damage [71].
There is a functional link between HMGB1 and SIRT1 in the regulation of the diabetes-induced
breakdown of the BRB. Intravitreal injection of HMGB1 in normal rats results in the downregulation
of SIRT1. The HMGB1 inhibitor GA attenuates the downregulation of and normalizes retinal SIRT1
expression. Moreover, treatment with the SIRT1 activator resveratrol attenuates the diabetes-induced
downregulation of SIRT1, accompanied by reduced expression of HMGB1 and RAGEs. Resveratrol
may confer protection against the diabetes-induced breakdown of BRB through SIRT1 upregulation
and HMGB1 downregulation [72]. HMGB1, insulin-like growth factor-binding protein 3 (IGFBP-3),
SIRT1, and protein kinase A (PKA) are strictly related. IGFBP-3 increases SIRT1 and decreases HMGB1.
PKA mediates the reduction in cytoplasmic HMGB1 by increasing IGFBP-3 and SIRT1 activities [73].

Chen et al. found increased expression of HMGB1 and its receptor RAGEs TLR-2 and TLR-4 in
the retinas of type 2 diabetic rats and human retinal pigment epithelial cell line-19 (ARPE-19) exposed
to high glucose. The NF-κB activity was found to be increased as well. The blockage of HMGB1
downregulated NF-κB hyperactivation and VEGF production in high glucose cultured ARPE-19
cells [74].

High levels of HMGB1 expression are due to both gene transcription and protein synthesis.
The specific mechanism by which HMGB1 leads to DR is unclear. It may exert its function via the
TLR-9 pathway. The expression of TLR-9 was increased and positively related to the expression of
HMGB1 [75].

A high glucose environment could promote HMGB1 expression and activate TLR-4 and NF-κB
overexpression in retinal ganglion cells (RGC), thus leading to the inhibition of cell survival and
growth. TLR-4 is an important receptor for HGMB-1 that is largely expressed in the nervous system
and can regulate neuron growth and proliferation. When HMGB1 binds to TLR-4, it activates
several signaling pathways such as NF-κB with the release of inflammatory cytokines, chemokines,
and colony-stimulating factors, leading to leukocyte adhesion and inflammation [76]. Yu et al. showed
a higher expression of HMGB1 in diabetic rats associated with the upregulation of phospholipases A2
(PLA-2), TNF-κ, VEGF, and ICAM-1. Regarding HMGB1 receptors, RAGEs protein was increased,
whereas TLR-1 was reduced, suggesting that HMGB1 effects are RAGE-mediated [77].

Injury and death of the retinal pericytes and EC in DR might be due to the HMGB1/PLA2 induced
cytotoxic activity of glial cells as well as the direct effect of HMGB1 on EC. HMGB1 could mediate EC
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death directly and pericyte death indirectly through the HMGB1-induced cytotoxic activity of glial
cells. Regarding PLA2 it seems to be a positive regulator of VEGF-induced angiogenesis [78].

HMGB1 has an important role in angiogenesis. It can act directly through RAGEs and TLR-4 with
EC activation, proliferation, and migration. HMGB1 also promotes angiogenesis indirectly through
the production of proangiogenic cytokines, such as VEGF, TNF-κ, and IL-8 from EC and activated
macrophages [79]. The same role of HMGB1 was also demonstrated by Santos et al. The authors
suggest that HMGB1 is not able to mediate angiogenesis in the retina by itself [80].

According to Lee et al., AGEs cause a rise in intracellular ROS, inducing the release of HMGB1
into extracellular space. HMGB1 augments the signal via RAGEs or TLR and mediates the secretion
of VEGF-A through the c-Jun N-terminal kinases signaling pathway that was blocked by HMGB1
inhibitor GA. This could be a possible way through which HMGB1 upregulates VEGF [81].

HMGB1 and VEGF-A expression are upregulated in serum samples of DR patients and are
positively associated. The in vitro up-regulation of HMGB1 inhibits the retinal pigmented epithelium
(RPE) cell viability and induces apoptosis. HMGB1 administration to RPE cells in high glucose
conditions up-regulates the expression of VEGF-A [82].

The silencing of HMGB1 inhibits the activation of MAPK and NF-κB signaling pathway; modulates
the levels of VEGF, ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1), therefore influencing
endothelial permeability; attenuates cell apoptosis, BRB damage, and the inflammatory response
induced by high concentration of glucose [83].

HMGB1 may inhibit the expression of NF-κB light polypeptide gene enhancer in B-cell inhibitor-α,
a protein capable of inhibiting NF-κB by binding to its promoter region. This determines the activation
of the NF-κB pathway, influencing inflammation and angiogenic processes, thus leading to DR. High
levels of HMGB1 stimulate apoptosis and inhibit the proliferation of human retinal endothelial cells
(HRECs). HMGB1 may determine apoptosis through the NF-κB pathway thanks to an alternate
mechanism of non-perfusion and neovascularization [84].

There is a potential link among HMGB1, vascular adhesion protein-1 (VAP-1), oxidative stress,
and heme oxygenase-1 (HO-1) in the pathogenesis of inflammation and angiogenesis associated with
PDR. HMGB1 levels are consistently increased in the vitreous of patients with PDR, particularly
higher in patients with active PDR. Exogenous HMGB1 activates HRMECs to upregulate the adhesion
molecule ICAM-1.

Increased levels of the oxidative marker 8-hydroxydeoxyguanosine (8-OHdG) in the vitreous of
PDR patients, particularly in active PDR, have been found. The positive correlation between vitreous
levels of HMGB1 and 8-OHdG in HRMECs suggests that HMGB1 is associated with oxidative stress.

Regarding VAP-1, there was a significant correlation between the levels of sVAP-1, HMGB1
concentration, and 8-OHdG in vitreous. Expression of VAP-1 was higher in diabetic patients compared
to controls in the RPE, whereas no significant difference was found in the neuroretina.

Stimulation with HMGB1 caused the upregulation of HO-1 in HRMECs. HO-1 levels were
significantly higher in eyes with active neovascularization compared with eyes with involuted PDR.
These findings suggest that HO-1 might contribute to PDR angiogenesis and progression. Moreover,
VEGF can induce the expression of HO-1 that stimulates the synthesis of VEGF in a positive feedback
loop [85].

Vascular EC and stromal cells in diabetic epiretinal membranes express HMGB1, RAGE,
osteopontin (OPN), and early growth response protein-1 (Egr-1). In diabetic epiretinal membranes,
these proteins and receptors are specifically localized in myofibroblasts. This suggests that
HMGB1/RAGE/OPN/Egr-1 signaling pathway is involved in the inflammatory, angiogenic, and fibrotic
responses in proliferative vitreoretinopathy (PVR) and may contribute to the instauration of PDR and
its most dangerous complications [86].

OPN, HMGB1, and connective tissue growth factor (CTGF) were upregulated in the vitreous
of patients with PVR, particularly in their active form, whereas increased levels of pigment



Antioxidants 2020, 9, 666 10 of 23

epithelium-derived factor (PEDF) may be a response designed to counteract the activity of the
angiogenic and fibrogenic factors during the progression of PDR and PVR [87].

There is a relationship between the activity of PDR, the presence of vitreous hemorrhages,
and levels of HMGB1. In fact, HMGB1 is higher in patients with active PDR compared with inactive
PDR and is higher in PDR patients with vitreous hemorrhages compared with patients without it [88].

Shen et al. found that HMGB1, VEGF, RAGE, and IL-1β levels were significantly elevated in the
vitreous and serum of patients with PDR, suggesting that the upregulation of HMGB1 might contribute
to the initiation and progression of angiogenesis in PDR and that the HMGB1/RAGE signaling axis has
a role in the progression of PDR [89].

The upregulation of HMGB1 can induce the downregulation of brain-derived neurotrophic factor
(BDNF), a neurotrophin with a neurogenetic function, and also of synaptophysin, an integral membrane
protein of synaptic vesicles involved in neurotransmission. HMGB1 upregulates cleaved caspase-3 in
vitreous fluid and serum from patients with PDR, as well as in the retinas of diabetic rats. HMGB1
inhibitor GA is able to revert the downregulation of BDNF.

RAGEs and ICAMs levels are upregulated in the serum of patients with PDR. RAGEs bind
its ligands, preventing their link to RAGE, therefore blocking the inflammatory cascade. Elevated
levels of RAGEs in the serum of patients with PDR could negatively regulate inflammation and limit
diabetes-induced retinal vascular and neuronal dysfunction [90].

HMGB1 and VEGF levels were higher in vitreous from PDR patients. Moreover, there were
increased levels of soluble vascular endothelial-cadherin that could be a marker of EC activation
or injury associated with angiogenesis, inflammation, and the breakdown of the inner BRB. Finally,
there was lower angiogenic activity in patients with higher levels of soluble endoglin, suggesting that
it could be protective against pathological angiogenesis [91].

The intravitreal injection of HMGB1 in normal rats mimics the effect of DM, with increased
expression of HMGB1 protein and mRNA, caspase 3, and levels of glutamate (responsible for excitotoxic
neuronal death). HMGB1 inhibitor glycyrrhizic acid attenuates all of these effects. The early retinal
neuropathy induced by diabetes is, at least in part, attributable to the diabetes-induced upregulation of
HMGB1. Inhibiting the release of HMGB1 with a constant intake of GA results in the reduction of
diabetes-induced retinal neuropathy. This could be a novel therapeutic approach to DR. [92].

The induction of DM and intravitreal injection of HMGB1 in normal rats resulted in the significant
upregulation of HIF-1α, Egr-1, tyrosine kinase 2 (TYK2), and the CXCL12/CXCR4 chemokine axis.
HIF-1α is associated with retinal inflammation induced by diabetes, Egr-1 may play a role in the
development of vascular complications of DM, and the CXCL12/CXCR4 chemokine axis contributes to
neovascularization. All these upregulations are mediated by the interaction of HMGB1 with RAGE.
Inhibition of the release of HMGB1, for example with GA, attenuates the upregulation of all these
molecules [93].

Exposure to hypoxia is able to release HMGB1 from RPE cells. HMGB1 may stimulate the
overproduction of angiogenic and fibrogenic factors such as VEGF and CTGF in RPE cells. HMGB1 is
involved in DR pathogenesis through binding to TLR-4, RAGE, and their signaling cascades such as
PI3K, p38/MAPK, and NF-κB [94,95].

4. Future Therapeutic Approaches

Numerous molecules have been studied as inhibitors of HMGB1 in recent years for the treatment
and prevention of DR and its complications (Table 1).

4.1. Glycyrrhizin (GA)

GA is a triterpene glycoconjugate naturally extracted from licorice root (Glycyrrhiza glabra). It is
composed of two molecules of glucuronic acid and glycyrrhetinic acid aglycone [96]. This molecule
inhibits the chemotactic and pathogenic functions of HMGB1 by binding directly the A and B boxes [97].
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GA shows a wide range of effects such as antibacterial, hepatoprotective, antiproliferative, antiallergic,
and antiviral [98].

As a result of recent studies on ARPE cells, it has been demonstrated that HMGB1 is connected
to the increase in angiogenesis and fibrosis during the course of DR [94]. Oral administration of GA
in diabetic mice strongly inhibited HMGB1 concentration in retinas. This result led to a reduction in
vascular and neuronal damage related to DR. The anti-inflammatory effects of GA were mediated by
the inhibition of TNF-κ, IL-1β, and the cleavage of caspase-3 in retinal EC. GA, through the inhibition of
HMGB1, reduces ROS concentrations and blood circulating glucose [99]. In another work, GA reduced
TLR-4 concentrations and ischemia-reperfusion damage as well as increasing the expression of insulin
receptors, partially preserving the anatomical integrity of the retina [100]. In a recent study, Liu et al.
demonstrated that exchange protein for cAMP1, an inflammatory molecule involved in leukostasis,
acts in synergy with GA. The combination of these two proteins strongly inhibits HMGB1 through the
activation of SIRT1. SIRT1 deacetylates HMGB1, exerting a protective role in the diabetic retina [101].
GA also suppresses the proangiogenic effects of HMGB1 as it blocks AGE-induced upregulation of
VEGF [81]. Abu El-Asrar and Mohammad’s workgroup demonstrated, in a diabetic murine model,
that GA can inhibit HMGB1’s cytokine-like activities. Specifically, oral GA determines a reduction
in HIF-1α, transcription factor Egr-1, TYK2, CXCL12, and CXCR4 [93]. Moreover, the same authors
demonstrated that GA can inhibit the upregulation of STAT-3 induced by HMGB1 and its translocation
in retinal Müller cells [68], upregulate BDNF expression in experimental mice [90], attenuate the
expression of NOX2, caspase-3, and PARP-1 in the retinas as well as lowering the concentrations
of ROS [69] and cleave caspase-3 glutamate and downregulating neurodegeneration mediators and
markers in murine retinas [92] and attenuating the expression of retinal ICAM-1 [84]; lastly, it inhibits
HMGB1 mediated activation of NF-κB. [66]. GA in association with resveratrol shows the ability to
replenish retinal SIRT1 expression [72].

All this evidence points in the direction of the potential use of GA in the prevention of DR and
its complications. It is worth mentioning that, in human studies on male patients affected by chronic
hepatitis and type 2 diabetes, the administration of GA reduced serum testosterone aggravating
insulin resistance, atherosclerosis, and sexual dysfunctions [102]. Further studies, especially on human
subjects, are needed in order to confirm the pathways and molecules involved and their efficacy
and safety.

4.2. Small Interfering RNAs/Short Hairpin RNA (siRNA/shRNA)

Small interfering RNAs (siRNAs) are a class of double-strand RNA usually constituted by 21–25
nucleotides that are gaining importance as therapeutic tools in numerous diseases. SiRNAs are capable
of selectively binding specific genomic sequences, silencing them and therefore inhibiting the protein
expression [103,104].

SiRNA HMGB1 transfection can repress HMGB1 RNA overexpression, determining the
suppression of TLR-4 and NF-κB mRNA in RGCs. The downregulation of these inflammatory
pathways can promote the survival and growth rates of RGCs [76]. A similar study conducted by Jiang
and Chen confirmed these results in both in vivo and in vitro models. HMGB1 suppression, mediated
by intravitreal injections of siRNA, is capable, in diabetic rats, of reducing retinal apoptosis rates as
well as improving retinal function. In HRECs exposed to high glucose concentrations, siRNA HMGB1
improved cell viability and reduced the oxidative damage lowering ROS production [105]. The same
study group demonstrated the protective role of HMGB1 inhibition in murine DR models. Retinal cells
isolated from 8-year-old rats were incubated with a recombinant lentivirus containing short hairpin
RNA (shRNA) for HMGB1. Through this mechanism, the authors obtained the silencing of HMGB1
gene expression. The results showed the downregulation of both MAPK and NF-κB, contributing to
the reduction of inflammation, cell death, and BRB breakdown [83].
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4.3. Polygonum Cuspidatum (PCE)

P. cuspidatum, also known as “Hojang-geun” in Korea, is a commonly employed herbal medicine
in East Asia. The plant shows anti-inflammatory and anti-diabetic effects [106]. Recent works
have explored the potential role, as a preventive treatment, of P. cuspidatum extract in diabetic
nephropathy [107]. PCE is rich in resveratrol, polidatyn, and emodin compounds, with strong
anti-inflammatory properties [108]. Sohn et al. suggested a beneficial effect of the ethanol extract of the
root in a DR murine model. It prevents diabetic-induced retinal vascular hyperpermeability, attenuating
the HMGB1 signaling pathway through the downregulation of the RAGE-mediated activation of NF-κB.
It directly blocks the binding of HMGB1 to RAGE, thus preventing retinal vascular inflammation.
Moreover, fluorescein angiography demonstrated that PCE markedly inhibits fluorescein leakage,
suggesting that it may prevent the breakdown of the BRB. PCE reduces the expression of HMGB1 in
diabetic rat retinal tissue and inhibits the binding of NF-κB to the RAGE promoter, with considerable
anti-inflammatory activity. It is worth mentioning that the oral administration of PCE showed no
positive effects on glycemic and body weight control in the murine model [109].

4.4. Paeoniflorin

Paeoniflorin is a monoterpene glucoside extracted from the root of the Paeonia Lactiflora.
Paeoniflorin shows anti-inflammatory properties and it is already used in traditional Chinese medicine
for a wide range of pathologies [110,111]. Moreover, paeoniflorin shows immunomodulatory effects
on microglial cells through the enhancement of the suppressor of cytokine signaling 3 (SOCS3)
pathways [112]. Zhu et al. demonstrated, in an in vitro study on BV2 microglial cells exposed
to high concentrations of glucose, that treatment with paeoniflorin reduces the expression of
metalloproteinases-9 (MMP-9) through the inhibition of p38/NF-κB. In addition, paeoniflorin activates
SOCS3, which blocks the TLR-4 pathway [112,113]. The repression of TLR-4 determines the reduction
of HMGB1 mediated inflammation in retinal microglial cells [114].

4.5. Salicin

Salicin is the main component of the willow bark extract, commonly used in traditional medicine
for its anti-inflammatory and antipyretic effects [115]. Salicin is metabolized to salicylic acid in vivo;
therefore, it is also known as “nature’s aspirin”. Previous studies showed that salicin exerts protective
effects on EC, both inhibiting angiogenesis [116] and reducing ROS production [117]. Song et al.
demonstrated that the treatment of HRECs with salicin led to a reduction in HMGB1 release and the
prevention of cellular apoptosis. Moreover, the authors demonstrated that salicin can suppress the
production of IL-1β and its related cytokines, such as TNF-κ and IL-6, responsible for retinal toxicity.
Salicin is also able to block the release of the adhesion molecules ICAM-1 and VCAM-1 and the NF-κB
inflammatory pathway [118].

4.6. Ethyl Pyruvate (EP)

Ethyl pyruvate is a pyruvate derivative with the addition of an aliphatic ester group. EP is
considered to be safer and more effective than pyruvate in inhibiting ROS and inflammation [119].
EP is a strong HMGB1 inhibitor. Treatment with EP promotes stable vascular growth and blocks retinal
pathological neovascularization by preventing the overexpression of HMGB1. Moreover, EP can inhibit
the expression of IL-6, TNF-κ, and NF-kB, exerting a protective role in chronic inflammatory diseases
such as DR [120].
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4.7. Bradykinin (BK)

BK is a vasoactive peptide part of the kinins family. BK participates in several processes such as
inflammation, pain, and cell proliferation [121]. Zhu et al. studied the effects of BK in HRECs exposed
to high concentrations of glucose. Results show that BK can suppress oxidative stress and the release
of inflammatory mediators. It can also control the process of neovascularization, downregulating the
expression of VEGF. Lastly, BK inhibits the HMGB1/NF-κB signaling pathway, therefore controlling
the growth and proliferation of HRECs [122].

4.8. Kallistatin

Kallistatin is an endogenous serine proteinase that plays numerous physiological and pathological
roles like tumorigenesis, vasodilation, inhibition of neovascularization, inflammation, oxidative stress,
cellular death, and fibrosis [123]. It stimulates the expression of eNOS, SIRT1, and SOCS3, while it
inhibits VEGF, HMGB1, TNF-κ, and NF-κB [124]. It has been demonstrated that vitreous humor levels
of kallistatin in patients with PDR are lower when compared to healthy controls [125]. Xing et al.
established that kallistatin is a strong inhibitor of angiogenesis and therefore may act as a potent drug
in the prevention of PDR [126].

4.9. Compound 49b

Compound 49b is a recently discovered β-adrenergic receptor agonist that has already
demonstrated efficacy in preventing apoptosis in in vitro models of EC and Müller cells exposed to
high glucose [127,128]. Recent evidence shows that compound 49b can inhibit HMGB1 expression,
TLR-4 downstream signaling, and, therefore, NF-κB in both EC and Müller cells. This leads to the idea
that this agonist may preserve vascular and neuronal integrity in the diabetic retina [126,129].

4.10. Cyclosporine A (CyA)

Cyclosporine A is a polypeptide derived from the fungi Beauveria nevus and Tolypocladium inflatum,
and it is well known for its anti-inflammatory and immunosuppressive effects [130]. Wang et al.
demonstrated that CyA attenuates the enhanced expression of IL-1β and TNF-κ in the retinas of
diabetic rats, probably via the suppression of HMGB1. The intravitreal injection of CyA may represent
a novel therapeutic strategy to treat DR [131].

CyA is also involved in the reduction of BRB permeability in diabetic rats. In particular, it
reduces the levels of IL-1β, nitric oxide (through a decreased expression of iNOS), and IL-1β-induced
cyclooxygenase-2 (COX-2) expression. Moreover, CyA decreases vitreous protein concentration in
diabetic rats. The authors suggest that this reduction in vitreous protein concentration can be linked to
the reduction of BRB permeability [132].
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Table 1. Summary of direct and indirect high-mobility group box (HMGB1) inhibitors with therapeutic potential in diabetic retinopathy. HRECs = human retinal
endothelial cells; TLR = toll like receptor; TNF-α = tumor necrosis factor-α; GCL = ganglion cell layer; STZ = streptozotocin; SIRT1 = sirtuin 1; BDNF = brain-derived
neurotrophic factor; ROS = reactive oxygen species; ICAM-1= intercellular adhesion molecule-1; NF-κB = nuclear factor-κB; HIF-1α = hypoxia induced factor-1α;
pSTAT-3 = phosphorylated signal transducer and activator of transcription-3; VEGF = vascular endothelial growth factor; siRNA = small interfering RNAs; shRNA =

short hairpin RNA; RAGE = receptors for AGEs; MMP = metalloproteinases; IL = interleukin; SOCS3 = suppressor of cytokine signaling 3; ROP = Retinopathy of
prematurity; SOD = superoxide dismutase; IGFBP-3 = insulin-like growth factor-binding protein-3; iNOS = inducible nitric oxide synthase; COX-2 = cyclooxygenase;
BRB = blood retinal barrier.

Drug Target Test Diabetic Inducement Mechanism of Action Results Reference

Glycyrrhizin

HRECs High glucose
concentrations

Inhibition of TLR-4 and TNF-α; cleavage of caspase 3 through
inactivation of HMGB1 Increased insulin receptor signal transduction [99,100]

Mice Ischemia/
reperfusion damage Block of the loss of retinal thickness Protects GCL and retinal capillaries [99,100]

Mice STZ
Upregulation of SIRT1, inhibition of inflammatory factors.
Attenuates BDNF downregulation, reduces ROS, ICAM-1,

NF-κB, and HIF-1α

Reduced vascular permeability, increased retinal thickness.
Protection from diabetes-induced retinal damages and

inflammation

[101]
[67,68,85,90]

[93]

Retinal Muller Cells High glucose
concentrations Attenuates p-STAT3 expression Inhibition of VEGF expression [69]

Small interfering RNAs

Mice STZ Intravitreal injection of HMGB1 siRNA Protected morphological changes, and improved the function
of the retina [105]

Retinal ganglion cells High glucose
concentrations

Transfection with HMGB1 siRNA reduced the expression of
TLR-4 and NF-κB Increased cell survival rate [77]

HRECs High glucose
concentrations

Transfection with HMGB1 siRNA reduced the expression of
caspase 3 Inhibition the early stage of apoptosis [105]

Short hairpin RNAs Rat retinas High glucose
concentrations

Transfection with HMGB1 shRNA reduced the expression
TNF-α and NF-κB Increased cell survival rate and vascular permeability [83]

Polygonum cuspidatum Mice STZ Reduced RAGE and NF-κB expression Reduced vascular permeability [109]

Paeoniflorin

Mice STZ Inhibition of MMP-9 and IL-1β Alleviated microglial activation [113]

BV2 modified microglial cells High glucose
concentrations Inhibition of NF-κB expression and SOCS3 Reduced MMP-9 and TLR-4 concentrations [113]

Salicin HRECs Incubated with IL-1β
(inflammatory response) Suppression of NF-κB pathway and the release of MMP Inhibition of IL-1β mediated inflammatory pathways [118]

Ethyl pyruvate Mice Induction of ROP through
exposition to hyperoxia

Reduction of ROS,
NF-κB, IL-6, VEGF and TNF-α Reduction of neoangiogenesis and areas of ischemic retina [120]

Bradykinin HRECs High glucose
concentrations

Suppression of NF-κB, caspase 3, VEGF, TNF-α, IL-1β.
Increase in SOD activity

Promotion of retinal cells survival/ inhibition of apoptosis.
Reduction of vascular permeability [122]

Kallistatin HRECs High glucose
concentrations Suppression of VEGF expression Reduction of neoangiogenesis [126]

Compound 49b
HRECs and rat retinal Muller cells High glucose

concentrations Increase of IGFBP-3 levels and inhibition of TLR-4 pathway Prevention of cellular apoptosis [127,129]

Mice SZT Increase of IGFBP-3 levels Prevention of the decrease in retinal thickness and loss of cells
in GCL [127]

Cyclosporine A
Mice STZ Reduction of TNF-α and IL-1β Amelioration of retinal thickness, regression of retinal edema [131]

Mice STZ Reduction of iNOS,
IL-1β and COX-2 Reduction of BRB permeability [132]
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5. Conclusions

The purpose of this review is to show the role of HMGB1 in DR. Many studies have demonstrated
that DM, and then hyperglycemia, upregulate the expression of and increase in the levels of HMGB1.
This situation activates several pathways and involves a large number of molecules, such as ERK,
NF-κB, ICAM, RAGE, VEGF, and TLR. The final result is the activation and increase of inflammation,
angiogenesis, oxidative stress, and, ultimately, retinal damage to the patients. At the same time,
the involvement of this great number of molecules can provide a hint of new therapeutic approaches
to be developed and studied.
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Abbreviations

8-OHdG 8-hydroxydeoxyguanosine
AGE advanced glycation end-products
ARPE-19 adult retinal pigment epithelial cell line-19
BDNF brain-derived neurotrophic factor
BK bradykinin
BRB blood–retinal barrier
COX-2 cyclooxygenase
CTGF connective tissue growth factor
CyA cyclosporine A
DM diabetes mellitus
DR diabetic retinopathy
EC endothelial cells
Egr-1 early growth response protein 1
eNOS endothelial nitric oxide synthase
EP ethyl pyruvate
ERK extracellular signal-regulated kinase
GA glycyrrhizin
GSH reduced glutathione
HIF-1α hypoxia induced factor-1α
HMGB high-mobility group box
HO-1 heme oxygenase-1
HRECs human retinal endothelial cells
HRMEC human retinal microvascular endothelial cells
ICAM-1 intercellular adhesion molecule-1
IFN interferon
IGFBP-3 insulin-like growth factor-binding protein-3
IL interleukin
iNOS inducible nitric oxide synthase
MAPK mitogen-activated protein kinase
MMP-9 metalloproteinases-9
NF-κB nuclear factor-κB
NOX nicotinamide adenine dinucleotide phosphate oxidase
NPDR non proliferative diabetic retinopathy
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OPN osteopontin
PAI-1 plasminogen activator inhibitor-1
PARP poly ADP-ribose polymerase
PCE polygonum cuspidatum
PDR proliferative diabetic retinopathy
PEDF pigment epithelium-derived factor
PI3K phosphatidylinositol 3-kinase
PK protein kinase
PLA-2 phospholipases A2
PVR proliferative vitreoretinopathy
RAGE receptors for AGEs
RGC retinal ganglion cells
ROP retinopathy of prematurity
ROS reactive oxygen species
RPE retinal pigmented epithelium
shRNA short hairpin RNA
siRNA small interfering RNAs
SIRT sirtuin
SOCS3 suppressor of cytokine signaling 3
SOD superoxide dismutase
STAT-3 signal transducer and activator of transcription-3
pSTAT-3 phosphorylated STAT-3
STZ streptozotocin
TGF-β1 transforming growth factor-β1
TLR toll like receptor
TNF-α tumor necrosis factor-α
TYK2 tyrosine kinase 2
VAP-1 vascular adhesion protein-1
VCAM-1 vascular cell adhesion molecule-1
VEGF vascular endothelial growth factor
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