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Abstract: Neurodegenerative disorders have emerged as a serious health issue in the current era.
The most common neurodegenerative disorders are Alzheimer’s disease (AD), Parkinson’s disease,
multiple sclerosis, and amyotrophic lateral sclerosis (ALS). These diseases involve progressive
impairment of neurodegeneration and memory impairment. A wide range of compounds have been
identified as potential neuroprotective agents against different models of neurodegeneration both
in vivo and in vitro. Hesperetin, a flavanone class of citrus flavonoid, is a derivative of hesperidin
found in citrus fruits such as oranges, grapes, and lemons. It has been extensively reported that
hesperetin exerts neuroprotective effects in experimental models of neurodegenerative diseases.
In this systematic review, we have compiled all the studies conducted on hesperetin in both in vivo
and in vitro models of neurodegeneration. Here, we have used an approach to lessen the bias in
each study, providing a least biased, broad understanding of findings and impartial conclusions of
the strength of evidence and the reliability of findings. In this review, we collected different papers
from a wide range of journals describing the beneficial effects of hesperetin on animal models of
neurodegeneration. Our results demonstrated consistent neuroprotective effects of hesperetin against
different models of neurodegeneration. In addition, we have summarized its underlying mechanisms.
This study provides the foundations for future studies and recommendations of further mechanistic
approaches to conduct preclinical studies on hesperetin in different models.
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1. Introduction

With current advances in science and technology, the world is extensively experiencing a smooth
rise in life expectancy and an associated increase in the incidence of neurodegenerative disorders.
Furthermore, neurodegenerative conditions mostly occur in later stages of life; the number of individuals
with disorders like Alzheimer’s disease (AD), Parkinson’s disease, and multiple sclerosis (MS)
is expected to go higher in the upcoming years. Although the incidences of these disorders are increasing,
unfortunately developing therapeutic strategies for treating the neurodegenerative conditions is
challenging, and the current management of neurodegeneration remains largely unsuccessful [1].
The neurodegenerative disorders share a multi-faceted set of mechanisms that aid in the progression
of these diseases. These factors comprise elevated nitrosative and oxidative stress, excitotoxicity,
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disturbed calcium homeostasis, inflammation within the brain regions, and interruptions in protein
homeostasis that may induce the death of neuronal populations within the brain. The loss of these
neuronal cells and its associated signaling leads to the progression of the synaptic and cognitive
dysfunction that is naturally associated with major neurodegenerative diseases such as Parkinson’s
disease and Alzheimer’s disease.

The term neurodegeneration is a complex multifactorial process that causes the progressive loss
of structure and functions of neuronal cells in the brain and spinal cord, which further causes neuronal
dysfunction and memory impairment [2,3]. Neurodegeneration is used for several neurological
disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic
lateral sclerosis. There are various pathophysiological bases of neurodegenerative diseases but
the most important are: accumulation of abnormal proteins, oxidative stress, neuroinflammation,
and mitochondrial dysfunction [4,5], in Figure 1, a simple diagram has shown the progression of
neurodegenerative diseases, and the role of different factors.
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Figure 1. Pathogenesis of neurodegenerative diseases. A diagram showing the role of activated 
astrocytes, microglia, neuroinflammation, and elevated oxidative stress in the procession of 
neurodegeneration. Aβ: Amyloid beta, ROS: Reactive oxygen species, Nrf2: Nuclear factor-2 related 
factor-2, HO-1: Heme-oxygenase-1, PSD-95: postsynaptic density protein 95, SNAP25: Synaptosome 
Associated Protein 25, Syn: Syntaxin. 

 

2. Methods 

2.1. Search Methods 

We extensively reviewed the research articles showing the beneficial effects of hesperetin in 
different models of neurodegeneration. The studies were searched from several databases: such as 
Google Scholar and PubMed. We used different keywords, such as “neuroprotective”, 
neuroprotection”, and “hesperetin” for the search. The reviewer (Amjad Khan) collected the studies 
by studying the abstracts of the collected articles. 

2.2. Inclusion and Exclusion Criteria 

a. Studies conducted on any species, age, and sex were included. b. Studies where a comparison 
between different groups was given (e.g., control group, diseased group, and treated with hesperetin 
group), where the control mice had administered a physiological placebo/saline or a similar vehicle, 
were included. Administration of drugs, administration route, and treatment schedule were not 
considered. No duplicate references, incomplete data, and review articles were included. All studies 
where the effects of hesperetin on animal models of neurodegeneration were included. 

3. Chemical Structure, Bioavailability and Blood–Brain Barrier Permeability of Flavonoids 

The basic structure of flavonoids contains 15 carbon atoms with two benzene rings, which are 
attached by three carbon atoms (Figure 2); they are classified as flavones, isoflavones, and 
anthocyanin [21,22]. Chemically, hesperetin is a trihydroxyflavone with three hydroxy groups 
located at positions 3, 5, and 7, with an additional methoxy substitute also present at position 4 [23]. 

Figure 1. Pathogenesis of neurodegenerative diseases. A diagram showing the role of activated
astrocytes, microglia, neuroinflammation, and elevated oxidative stress in the procession of
neurodegeneration. Aβ: Amyloid beta, ROS: Reactive oxygen species, Nrf2: Nuclear factor-2 related
factor-2, HO-1: Heme-oxygenase-1, PSD-95: postsynaptic density protein 95, SNAP25: Synaptosome
Associated Protein 25, Syn: Syntaxin.

Oxidative stress and neuroinflammation are the initiators of neurodegenerative disorders.
Oxidative stress is produced from various factors like the accumulation of abnormal protein,
disturbance in the balance of peroxidation and polyunsaturated fatty acids, and high trafficking
of Ca2+ across the neurons [6]. Elevated oxidative stress is responsible for the activation of several
biochemical pathways that induce oxidative damage of other molecules like lipids, proteins, and DNA,
leading to neuronal cells death and neurodegeneration [7,8]. Neuroinflammation is inflammation
of the central nervous system (CNS), and is due to a complex immune response of the brain to
injury, leading to the activation of glial cells and release of inflammatory cytokines, causing serious
consequences related to neurodegenerative diseases [9].
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Recently, greater attention has been given to phytonutrients obtained from different plant
sources, to boost the immune system and counteract the progression of neurodegeneration in
different experimental settings. Among the phytonutrients, the flavonoids are a diverse group
of natural compounds, which has been extensively studied for the treatment and prevention of
various neurological diseases [10]. The word flavonoid is taken from the Latin word meaning yellow,
as they have yellow color. Flavonoids are polyphenolic secondary metabolites, occurring naturally
in vegetables, herbs, fruits, different types of grains, and some beverages [11,12]. Flavonoids are
found in fruits and vegetables with a variable phenolic structure. The flavonoids, soused in various
pharmaceutical and medical supplements [13,14], have many beneficial effects on health, including their
anti-inflammatory, anti-apoptotic and anti-oxidant effects. They have the ability to scavenge reactive
oxygen species (ROS) and activate enzymes that are anti-oxidant in nature, and they can reduce the
concentration of substances that have an active role in producing ROS [15–17].

Hesperetin, an important bioactive compound in Chinese traditional medicine, has antioxidant
and anticarcinogenic properties. Hesperetin is found in abundance in orange and grape juices
(200–590 mg L−1) consumed in the daily diet [18]. Both Hsd and its aglycone hesperetin have shown
various biological activities. For example, hesperetin possesses vitamin-like activity and can decrease
capillary permeability (vitamin P), leakiness, and fragility [19]. Currently, it has been indicated that
hesperetin confers marked antioxidant, anti-inflammatory, and neuroprotective effects in different
models of neurodegeneration [12,20]. The current review is a comprehensive review covering the
current research progress on the role of hesperetin in the management of different diseases, with special
emphasis on neurodegenerative conditions.

2. Methods

2.1. Search Methods

We extensively reviewed the research articles showing the beneficial effects of hesperetin in
different models of neurodegeneration. The studies were searched from several databases: such as
Google Scholar and PubMed. We used different keywords, such as “neuroprotective”, neuroprotection”,
and “hesperetin” for the search. The reviewer (Amjad Khan) collected the studies by studying the
abstracts of the collected articles.

2.2. Inclusion and Exclusion Criteria

a. Studies conducted on any species, age, and sex were included. b. Studies where a comparison
between different groups was given (e.g., control group, diseased group, and treated with hesperetin
group), where the control mice had administered a physiological placebo/saline or a similar vehicle,
were included. Administration of drugs, administration route, and treatment schedule were not
considered. No duplicate references, incomplete data, and review articles were included. All studies
where the effects of hesperetin on animal models of neurodegeneration were included.

3. Chemical Structure, Bioavailability and Blood–Brain Barrier Permeability of Flavonoids

The basic structure of flavonoids contains 15 carbon atoms with two benzene rings,
which are attached by three carbon atoms (Figure 2); they are classified as flavones, isoflavones,
and anthocyanin [21,22]. Chemically, hesperetin is a trihydroxyflavone with three hydroxy groups
located at positions 3, 5, and 7, with an additional methoxy substitute also present at position 4 [23].
As interest is growing in the use of dietary flavonoids to combat the oxidative stress-mediated
neurodegeneration in CNS-associated pathophysiological processes, including Alzheimer’s disease
and Parkinson’s disease, there is a growing concern regarding its entry into the CNS and penetration
through the blood–brain barrier. Before absorption from the gut, flavonoids must be released from
plant sources by chewing or by the action of the digestive enzymes in the gastrointestinal tract [24,25].
After ingestion, the absorption of flavonoids depends on its physicochemical properties such as
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molecular size, lipophilicity, solubility, and pKa values [25]. Several studies have analyzed the
penetration of flavonoids through the BBB, which has added value to the studies conducted so far. Here,
in the case of hesperetin, some studies have been conducted in animals and brain endothelial cells,
which showed that citrus flavonoids like hesperetin, naringenin, dietary anthocyanin and polyphenols
are taken up by brain cells [26,27]. Studies conducted on rats and pigs have shown that anthocyanin
can pass through the blood–brain barrier in these animal models [28]. Another study has also shown
that quercetin, kaempferol, and isorhamnetin are detected in the brain of rats after ingestion of gingko
biloba extract [29]. The main flavonoid of green tea is epigallocatechin-3-gallate, which, when it
was intraperitoneally injected into rats, reached the rat brains [30]. The current in vitro and in vivo
studies have shown that flavonoids can cross the BBB and reach the brain to produce its effects.
A more comprehensive study related to the absorption, metabolism and execution of its effects has
been summarized in a review article [31].
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Figure 2. Chemical Structures of different types of flavonoids and hesperetin. a. Chemical structure
of flavan, flavonol, flavone, isoflavone, flavon-3-ols, and anthocyanidin. b. Chemical structure
of hesperetin.

4. Flavonoids and Neuroprotection

Alzheimer’s disease is the most common type of dementia, where, out of 6.8 million people
diagnosed with dementia, 5 million had Alzheimer’s disease. In AD, there is an abnormal production of
amyloid-beta (Aβ) in the brain, which leads to memory and cognitive dysfunction. The accumulation
of Aβ leads to elevation of oxidative stress, neuroinflammation, and neurodegeneration [32]. Currently,
there is no effective treatment available for the treatment and prevention of AD [33]. Flavonoids are
natural anti-oxidants, which reduce the oxidative stress (Nrf2, HO-1) and amyloid-beta burden
(Aβ and BACE-1) in the animal models of AD [34,35]. Quercetin, rutin, silibinin, naringin, hesperidin,
and the anthocyanins are the most studied flavonoids that are used to reduce the neuroinflammation
and oxidative stress in various types of neurodegenerative diseases [36]. In Figure 3, we show the
effects of flavonoids against different types of neurodegenerative diseases.

Similarly, Parkinson’s disease (PD) is the most common neurodegenerative disorder after
Alzheimer’s disease, and occurs due to the loss of dopaminergic neurons in the substantia nigra resulting
in a decrease in the production of dopamine in the striatum and, subsequently, motor dysfunction [37].
The exact cause of Parkinson’s disease is unknown but it occurs due to the accumulation of abnormal
proteins, oxidative stress, environmental toxins, and accumulation of α-synuclein [38]. Several studies
have shown the rescuing effects of flavonoids against Parkinson’s disease models, both in vivo and
in vitro, where it has been shown that flavonoids reduce oxidative stress and neuroinflammation,
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and inhibit the formation of α-synuclein. For example, baicalein has shown to decrease the elevated
level of α-synuclein by induction of autophagic flux in a rat model of PD [39,40]. In addition,
berries containing a variety of flavonoids have shown beneficial effects against animals and cellular
models of PD [41].
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Figure 3. Role of flavonoids in the management of neurodegenerative diseases. A diagram showing
the role of hesperetin in the management of neurodegenerative diseases. The image highlights the role
of flavonoids against aging, Parkinson’s disease, and Alzheimer’s disease-induced neurodegenerative
conditions. As with neurodegeneration, there is an elevation in the level of reactive oxygen species,
which facilitates the neuroinflammation by activating the NF-kB and MAP kinases, and release of
inflammatory cytokines and neurodegeneration. Interestingly, these effects were markedly reduced
with the administration of flavonoids.

Huntington’s disease (HD) is another neurodegenerative disease, characterized by psychiatric
disturbances, involuntary movements, dementia, and cognitive impairments. Genetically it is associated
with the expansion of cytosine adenine guanine trinucleotide repeats in the Huntingtin gene [41,42].
There is no treatment available for the management of HD, although in pre-clinical studies several
flavonoids have shown promising protective effects against HD, e.g., hesperidin and naringin in a rat
model of HD [43]. Other studies conducted on quercetin, rutin, and myricetin have also reduced the
symptoms of HD in animal models of the disease [44,45].

Amyotrophic lateral sclerosis (ALS) is another neurodegenerative disease that targets motor
neurons, and whose pathophysiological basis is unknown. Numerous studies attempting to define the
pathogenesis of ALS have identified several molecular pathways leading to motor neuron degeneration,
which include oxidative stress, glutamate excitotoxicity, apoptosis, abnormal neurofilament function,
protein misfolding and subsequent aggregation, impairment of RNA processing, defects in
axonal transport, changes in endosomal trafficking, increased inflammation, and mitochondrial
dysfunction [46,47]. Similarly, the administration of ginkgo biloba extract has shown promising effects
in a transgenic mouse model of ALS, where it improved motor performance and increased survival
time [48]. Genistein is a dietary flavone, which has also shown promising therapeutic effects in a mice
model of ALS [49]. The above lines of evidence have shown that flavonoids may confer neuroprotection,
by regulating multiple aspects of neurodegeneration.
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5. Citrus Flavonoids: Hesperetin, Dosage and Route of Administration

Flavonoids that are present in citrus fruits like oranges, grapefruits, limes, mandarins, pomelos,
and bergamots, are called citrus flavonoids. The most important flavonoids that are found in citrus
fruits are naringin, naringenin, quercetin, diosmin, rutin, and hesperetin [50,51]. The citrus flavonoids
have shown several beneficial effects including anti-oxidant and anti-inflammatory properties and
anti-apoptotic effects. Hesperetin is one of the citrus flavonoids found mainly in the juices, which have
been suggested to possess a wide range of pharmacological effects [12]. Hesperetin has been used
both orally and intraperitoneally. There is a wide variation in the dosing frequency, but the majority of
authors have used it for 4 weeks at a dose of 50 mg/kg/day [12,20].

5.1. Absorption, Distribution, and Metabolism of Hesperetin

After extraction, the other main factors that aid in the efficacy of bioactive compounds is their
absorption, distribution, and metabolism. It has been indicated that after 20 min of administration of
hesperetin, it is converted to hesperetin 7-O-glycoside by an enzymatic reaction. Here, the flavone
aglycone is hydrolyzed by beta-glucosidase in the small intestine or colon [52]. A study conducted on
humans has shown that the peak plasma concentration of hesperetin is markedly enhanced after the
oral intake of orange and grapefruit juices [53]. In regards to blood–brain barrier (BBB) permeability,
it has been suggested that hesperetin reaches the CNS, where it may exert neuroprotective effects by
counteracting the free radicals generated during cellular metabolism [54].

5.2. Neuroprotective Effects of Hesperetin in Neurodegenerative Diseases

The neuroprotective effects of hesperetin have been extensively highlighted in different models of
neurodegenerative disease. Some of the main effects of hesperetin are covered here.

5.2.1. Effects of Hesperetin against Alzheimer’s Disease

For the evaluation of the neuroprotective effects of hesperetin in animal models, different models
have been developed. In one study, the effects of hesperetin were analyzed in a rat model of AD.
The authors concluded that hesperetin and hesperetin nanoparticles at a dose of 10 and 20 mg/kg
for 3 weeks significantly improved the learning and cognitive impairments by reducing the elevated
oxidative stress. Moreover, they suggested that the nanoparticles of hesperetin are more effective
than simple powdered hesperetin [55]. Similarly, another study conducted by our group evaluated
the effects of hesperetin against amyloid beta-induced AD. According to our collective findings,
hesperetin significantly reduced the oxidative stress-mediated neuroinflammation, apoptotic cell death,
and neurodegeneration. We targeted the endogenous anti-oxidant mechanisms, TLR4-mediated glial
cell-mediated neuroinflammation and neurodegeneration. In addition, our findings suggested
that hesperetin reduced the cognitive and memory dysfunction in mice, as analyzed by the
Morris Water Maze test and Y-maze test [37]. Neuroinflammation is the main inducer of AD [56],
so inflammation-mediated neurodegenerative disease models have been extensively used in different
experimental settings. LPS is a biomolecule present in the outer membrane of Gram-negative bacteria.
LPS targets the toll-like receptor (TLR) 4, and activation of transcription factors, which, in turn, induce a
series of inflammatory genes and mediators [57]. Using the LPS-induced neurodegeneration mouse
model of AD, we evaluated the effects of hesperetin. Our findings supported the notion that hesperetin
significantly reduced LPS-induced neurodegeneration and memory impairment. Figure 4 depicts the
hypothesis that hesperetin reduces toxin-induced neuroinflammation and neurodegeneration.
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Figure 4. Role of hesperetin in the management of AD-like pathological changes in mice brains.
A simple illustration showing the effects of Aβ and LPS on the mice’s brains. The injection of Aβ and
LPS into the mice by intracerebroventricular or intraperitoneal injection hesperetin induces oxidative
stress, amyloidogenesis, neuroinflammation, and cognitive dysfunction in the mice brains. These
effects were markedly reduced with the administration of hesperetin.

5.2.2. Effects of Hesperetin against Parkinson’s Disease

Parkinson’s disease is another devastating neurodegenerative disease. The pathophysiology
of PD involves the loss of dopaminergic neurons in the substantia nigra, which leads to motor and
cognitive dysfunction. 6-hydroxydopamine (6-OHDA) is an environmental neurotoxin that is used for
the induction of PD–like symptoms in animals. To analyze the effects of hesperetin against PD-like
conditions, hesperetin has been used at a dose of 50 mg/kg for one week. According to the findings,
hesperetin reduced oxidative stress by regulating the transcription factor Nrf2, neuroinflammation
(NF-kB), and apoptotic cell loss (mitochondrial apoptosis). Moreover, they showed that hesperetin
markedly reduced the motor dysfunction in the 6-OHDA-induced PD rats [58] (Figure 5).
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Figure 5. Role of hesperetin in the management of PD-like changes in the mice brains. A simple
diagram showing the effects of 6-hydroxydopamine, a potent and known environmental neurotoxin
that is used for modeling of PD-like symptoms in mice. Unilateral injection of 6-hydroxydopamine
into the striatum of the mice induced oxidative stress, neuroinflammation, and motor dysfunction in
mice. These effects were markedly reduced with the administration of hesperetin.
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5.2.3. Effects of Hesperetin against Temporal Lobe Seizures

Another very common neurodegenerative condition is known as temporal lobe epilepsy,
also called temporal lobe seizure. Temporal lobe seizure is often called focal seizures with decreased
awareness. Here, the individual remains aware of what is happening, but during intense conditions,
the patient is unresponsive. The lips and hands may become paralyzed. Several studies have
suggested that repeated seizures affect cognitive function, including executive functions, intelligence,
judgment, attention, and problem solving [59]. Kainic acid is used to induce epilepsy in the mouse.
The main pathogenesis of kainic acid is to induce seizures and neuroinflammation. Dose-dependent
oral administration of hesperetin (5, 10, or 20 mg/kg/day) delayed the onset of a seizure by inhibiting
the proinflammatory kinases in the hippocampus of the epileptic mice [54].

5.2.4. Effects of Hesperetin against Ischemic-Reperfusion Injury

Ischemia-reperfusion injury (IRI) is the acceleration of cellular death and loss of function following
the reinstatement of blood flow to ischemic cells. Restoration of blood flow is important to heal
the ischemic tissues. However, this reperfusion causes more injury, disturbing the normal function,
and affects the viability of the organ [60]. IR injury is induced by increasing the intraocular pressure
of mice to 110 mmHg for 40 min, which causes ganglionic cell injury, oxidative stress, inflammation,
and cell death. To evaluate the effects of hesperetin against ischemia-reperfusion (I/R) injury,
the mice were treated with either normal saline (NS, 0.3 mL/day) or with water-soluble hesperetin
(0.3 mL, 200 mg/kg/day). According to the reported effects, hesperetin protected ganglion cells
from ischemic reperfusion injury by reducing oxidative damage (LPO) and reducing apoptotic cell
death (Bax and Caspase-3). In addition, hesperetin reduced the inflammatory effects through the
downregulation of microglial cells, such as Iba-1 [61].

5.2.5. Effects of Hesperetin against Cadmium-Induced Neurodegeneration

Cadmium is a heavy metal and environmental pollutant that accumulates in human and animal
bodies. The accumulation of cadmium can cause various health hazards and it can affect the permeability
of the blood–brain barrier, which causes oxidative stress and neurodegeneration [62,63]. To analyze
the effects of hesperetin against cadmium-induced neurodegeneration and memory impairment,
the authors administered hesperetin (40 mg/kg for 3 weeks), which reduced oxidative stress,
restored mitochondrial dysfunction, reduced apoptosis, and upregulated antioxidant transcription
factors in the brains of rats [64]. Chronic administration of hesperetin (five weeks, 10 and 50 mg/kg)
showed neuroprotective effects by protecting the mice’s brain against oxidative stress, as revealed
by the reduced level of lipid peroxidation, and activation of the endogenous antioxidant defense
mechanisms, including the catalases, total SOD and GSH-related enzymes. Moreover, hesperetin did
not cause apoptosis in the brain, even at the higher dose. These qualities of hesperetin make it a useful
antioxidant and neuroprotective agent in the management of neurodegenerative diseases [65].

5.2.6. Neuroprotective Effects of Hesperetin in Cellular Models of Neurodegeneration

To further strengthen the hypothesis that hesperetin protects the brain against neurodegeneration,
various studies have analyzed the effects of hesperetin against different models of neurodegeneration
in neuronal cell lines, including neuroblastoma SH-SY5Y, PC12 cells, and mouse hippocampal HT22
cells [66]. In a study conducted on neuroblastoma SH-SY5Y cells, where the neuronal injury was
induced by hydrogen peroxide (75 µmol/L), interestingly, there was significant protection against
the peroxide-induced neuronal damage when treated with hesperetin and 5-nitro-hesperetin at a
concentration of 0.01 µmol/L. Similarly, caspase activity (caspase-3 and caspase-9) were significantly
decreased with the administration of hesperetin. ERK1 and ERK2 are serine/threonine kinases,
which participate in the control of numerous processes including apoptosis, cell proliferation,
immune responses, nervous system function, and RNA synthesis and processing. According to the data
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shown, hesperetin (100–300 nM, 15 min) markedly increased the level of ERK1/2 phosphorylation in a
dose-dependent manner [67,68]. H2O2 causes cytotoxicity in PC12 cells, which induces cell damage,
reduces the mitochondrial membrane potential, reduces antioxidant enzymes, such as catalase (CAT)
and glutathione peroxidase (GSH-Px), induces the release of cytochrome C into the cytosol, activates
caspase-3, induces reactive oxygen species, and depletes glutathione in PC12 cells. Interestingly,
these effects were significantly inhibited with the administration of hesperetin [69]. Similarly,
to evaluate the effects of hesperetin against a rotenone-induced in vitro Parkinson disease model,
human neuroblastoma SH-SY5Y cells were treated with rotenone with or without hesperetin.
The findings indicated that hesperetin reversed the elevated oxidative stress and mitochondria
dysfunction. Out of seven used flavonoids, hesperetin protected more than 50% of the cells at different
concentrations. It was also noted that hesperetin had a medium potency against GSK-3β and no
activity against CK-1δ, which needs more comprehensive studies (59).

Similar results were obtained when the H2O2- and l-glutamate-treated cortical rat neuronal cells
were treated with hesperidin and hesperetin. The findings showed that hesperetin is a more effective
anti-oxidant than hesperidin [70]. Moreover, when the hippocampal HT22 and murine microglia
BV2 cells were co-treated with or without hesperetin and lipopolysaccharide (LPS), the findings
suggested that hesperetin significantly reduced the LPS-induced neuroinflammation, as indicated by
the representative western blot results of TL4, p-NF-kB, GFAP and Iba-1 [13]. Based on its various
pharmacological actions demonstrated in these studies, hesperetin may protect the neuronal cells
against neurodegeneration. The in vitro findings support the notion that hesperetin is effective against
in vivo and in vitro neurodegenerative disease models.

5.3. Anti-oxidative Effects of Hesperetin

Oxidative stress is an imbalanced redox state, showing either excessive production of reactive
oxygen species (ROS) or impairment of the antioxidant defense system of the cells. The brain is the
most susceptible organ to the effects of ROS, because of its high demand for oxygen and the presence of
peroxidation-susceptible lipid cells. Extensive research has highlighted that oxidative stress is playing
a crucial role in the progression of neurodegenerative disorders such as Alzheimer’s disease and
Parkinson’s disease. Agents that counteract excessive level of ROS are attaining the highest interest in
the management of neurodegenerative conditions [71].

Currently, several natural and plant-derived compounds are showing efficacy in the management
of neurodegenerative conditions [72]. Hesperetin has shown tremendous antioxidant effects by
scavenging the elevated ROS and by boosting the endogenous antioxidant defense mechanisms,
specifically by upregulating the expression of transcription factor nuclear factor-2 erythroid-2 (Nrf2)
and its downstream target heme oxygenase-1 (HO-1). In a previous study, oxidative stress was induced
by H2O2 in RPE-19 cells and treated by hesperetin. The results showed that hesperetin significantly
protected the RPE-19 cells from the elevated oxidative stress, by inhibiting apoptotic cell death
(by regulating the expression of Bax, Bcl2, and caspase-3), production of ROS and MDA, and enhancing
the expression of SOD and GSH, which may cause the activation of Keap-1, and Nrf2/HO-1 signaling [73].
Similarly, in rats, hyperuricemia was induced by IP (intraperitoneal) injection of potassium oxonate
(250 mg/kg), with or without hesperetin (5 mg/kg), and orange juice (5 ml/kg for two weeks).
The findings showed that orange juice and hesperetin prevented oxidative stress by boosting the
antioxidant mechanism and decreasing lipid peroxidation [74]. Another study induced cataracts
in rats by sodium selenite (20 µmol/kg body weight), and then injected the rats with hesperetin.
The findings suggested that hesperetin and its derivatives reduced the oxidative stress in the cataract
lens, although it had less effects on systemic antioxidant levels [75].

The antioxidant effects of hesperetin (50 mg/kg/day) were also evaluated in lead (500 mg Pb/L)
-treated adult rats. The results suggested that hesperetin could minimize the unwanted effects of lead
by reducing the oxidative damage, and may play a pivotal role in the management of lead-induced
neurotoxicity [76]. Similarly, it has been shown that administration of hesperetin (840 mg/kg day)
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to cadmium-treated rats (83 mg/kg/day/s.c for 21 days) reduced the levels of LPO, a marker of
thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxides (LOOH), and elevated the
levels of plasma non-enzymatic antioxidants, such as reduced glutathione (GSH) [77]. The same types of
findings were obtained, when hesperetin (10 and 50 mg/kg for 5 weeks) was given to 7,12-dimethylbenz
(a) anthracene (DMBA)-treated mice (34 mg/kg BW in corn oil two times a week for 2 weeks). Here,
hesperetin markedly reduced the level of lipid peroxidation and protein oxidation, while it enhanced the
expression of the antioxidant defense system by increasing the catalases, the SODs, and the GSH/GSSG
ratio [78]. When the hesperetin was tested in streptozotocin (STZ)-induced type 1 diabetes mellitus
(T1DM), the findings suggested that the level of LPO, GSH, and antioxidant genes (Nrf2 and HO-1)
were significantly upregulated with the administration of hesperetin [79]. The overall findings suggest
that hesperetin is a strong antioxidant flavonoid, which may reduce elevated oxidative stress, thereby
relieving oxidative damage.

5.4. Anti-neuroinflammatory Effects of Hesperetin

Inflammation is the main contributor to the progression of neurodegenerative conditions [62,80].
In the execution of neuroinflammation, different cells are involved, such as activated microglia
astrocytes [80]. To highlight the anti-inflammatory effects of hesperetin, different studies have been
conducted so far. In one study, we analyzed the effects of hesperetin against amyloid beta-induced
neuroinflammation and neurodegeneration. Collectively our findings have suggested that hesperetin
reduces Aβ-induced oxidative stress, thereby reducing activated astrocytes and microglial cells.
The suppression of the glial cells was accompanied by reduced phosphorylation of NF-kB, and the release
of inflammatory mediators. The rescuing effects of hesperetin against Aβ-induced neuroinflammation
were further confirmed with in vitro studies, showing that the inhibition of TLR4 and p-NF-kB by
hesperetin was comparable to the specific pharmacological inhibitor p-NF-kB [12]. In another study,
we treated the mice with lipopolysaccharide (LPS) and checked the anti-inflammatory effects.
The findings suggested that, with the administration of hesperetin, the inflammatory effect was
markedly reduced, as indicated by the reduced expression of TLR4, GFAP, Iba-1, and p-NF-kB.
We compared the inhibition of TLR and p-NF-kB with their specified pharmacological inhibitors,
and the collective findings supported the notion that hesperetin significantly reduced the inflammation
induced by LPS [20]. Another study showed potential anti-neuroinflammatory effects of hesperetin
against LPS-stimulated BV-2 microglial cells [81]. The authors showed strong inhibition of MAP
kinases with the administration of hesperetin, as hesperetin reduced the expression of p-ERK and p38,
thereby reducing the level of inflammatory cytokines [82]. Conclusively, the overall findings indicated
that hesperetin has potential neuroprotective effects against activated inflammatory mediators in
neurodegenerative disease models (Figure 6).
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6. Conclusions and Future Considerations

Neurodegenerative diseases are caused by a plethora of effectors, such as elevated oxidative
stress, neuroinflammation, and apoptotic cell death [82]. The pathophysiology and clinical outcomes
of neurodegeneration may be reversed with different types of flavonoids, one of which is hesperetin.
The ability of hesperetin to reverse the different inducers of neurodegenerative diseases, including
elevated oxidative stress, neuroinflammation, and apoptotic cell death, making hesperetin a candidate
drug for the prevention of neurodegenerative conditions. The safety, efficacy, and cheap availability of
these citrus flavonoids make them candidate drugs to be further studied and presented for pre-clinical
and clinical studies for the management of neurodegenerative disorders. However, the current
knowledge regarding the use of hesperetin is quite generalized and needs deeper investigations and
research. The translation of animal studies into human studies will need a more comprehensive
understanding of hesperetin. Special focus will be given to pharmacodynamic and pharmacokinetic
studies. There are still only a few studies available on the usage of hesperetin in the management of
neurological disorders. From the available literature, it can be concluded that hesperetin may serve as
a candidate drug for the management of neurodegenerative diseases.
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