SUPPLEMENTARY MATERIAL

Oxylipins associated to current diseases detected for the first time in the oxidation

of corn oil as a model system of oils rich in omega-6 polyunsaturated groups. A

global, broad and in-depth study by ¹H NMR spectroscopy

J. Alberdi-Cedeño, María L. Ibargoitia, María D. Guillén*

Food Technology. Faculty of Pharmacy. Lascaray Research Center. University of the

Basque Country (UPV-EHU). Paseo de la Universidad nº 7, 01006 Vitoria-Gasteiz,

Spain, Telf: 34-945-013081, Fax: 34-945-013014.

E-mail: mariadolores.guillen@ehu.es*

Signal	Chemical shift (ppm)	Multiplicity		Functional group			
	Main components ^a						
A ₁	0.879	t	-C <u>H</u> 3	Saturated, monounsaturated ω-9 and/or ω-7 acyl groups			
A_2	0.889	t	-C <u>H</u> 3	Unsaturated ω -6 acyl groups			
В	0.972	t	-C <u>H</u> 3	Unsaturated ω -3 acyl groups			
С	1.221-1.419	m	-(C <u>H</u> 2)n-	acyl groups			
D	1.522-1.700	m	-OCO-CH2-C <u>H</u> 2-	acyl groups			
E1+E2	1.941-2.139	m	-C <u>H</u> 2-CH=CH-	Monounsaturated ω -9 acyl groups			
F	2.305	dt	-OCO-C <u>H</u> 2-	Unsaturated ω-6 acyl groups Acyl groups			
G	<u>2.765</u>	t	=HC-C <u>H</u> 2-CH=	Unsaturated ω -6 acyl groups			
TG	<u>4.139, 4.303</u>	dddd	-C <u>H</u> 2OCOR	Glyceryl groups			
Н	5.225-5.296	m	>C <u>H</u> OCOR	Glyceryl groups			
Ι	5.296-5.470	m	-C <u>H</u> =C <u>H</u> -	Acyl groups			
Some minor components							
Δ7A ^b	<u>0.540</u>	S	-C <u>H</u> ₃ (C-18)	Δ 7-avenasterol**			
STN ^b	<u>0.651</u>	S	-C <u>H</u> ₃ (C-18)	Sitostanol**			
S+C+A5A ^b	0.684	S	-C <u>H</u> 3 (C-18)	β -sitosterol, campesterol and $\Delta 5$ -avenasterol**			
ST+B ^b	0.704	S	-C <u>H</u> ₃ (C-18)	$\Delta 5$ -stigmasterol and brassicasterol			
γ-T ^c	<u>6.360</u>	S	-C <u>H</u> (Aromatic C-5)	γ-tocopherol**			

Table S1. ¹H NMR signals, obtained in CDCl₃, of protons of main and of some minor corn oil components shown in Figures 1a, 1b, 1c and 1d, their chemical shifts, multiplicities and assignments to protons of different functional groups present in the corn oil. The signal letters agree with those given in the above mentioned Figures.

Abbreviations: s: singlet; d: doublet; t: triplet; m: multiplet; dddd: double of double doublet. *Area of the signals due to the protons in bold, were used for the quantification of each compound,

using the equation [eq. 1] showed in the Materials and Methods.

^{**}The assignment of the ¹H NMR signals of the protons was made with the aid of standard compounds.

***The assignment of the ¹H NMR signals of the protons was made with the data taken from the literature:

^aAssignments of main components taken from:

Guillén, M.D., & Ruiz, A. (2003). Eur. J. Lipid Sci. Tech. 105(11), 688-696.

^bAssignments of sterols-stanols taken from:

Sopelana, P., Arizabaleta, I., Ibargoitia, M.L., & Guillén, M.D. (2013). Food Chem. 141(4), 3357-3364.

Ibargoitia, M.L., Sopelana, P., & Guillén, M.D. (2014). Food Chem. 165, 119-128.

^cAssignments of γ-tocopherol taken from:

Baker, J.K., & Myers, C.W. (1991). Pharm. Res. 8(6), 763-770.

Chemical shift (nnm)	Multiplicity	Functional group	Compounds and/or family of compounds		
Monohydroperoxides (mHPOs)					
8.48	dd	-00 <u>H</u>			
<u>6.55</u> ^a	dddd	-С <u>Н</u> =СН-	9-hydroperoxy-10E,12Z-octadecadienoate		
5.99	ddtd	-C <u>H</u> =C <u>H</u> -	13-hydroperoxy-9Z,11E-octadecadienoate		
5.57	ddm	-С <u>Н</u> =СН-	$(mHPO-c(Z,E)-dEs)^{**}$		
5.48	dtm	-CH=C <u>H</u> -			
8.42	br	-OO <u>H</u>			
<u>6.24</u> ª	ddm	-С <u>Н</u> =СН-	9-hydroperoxy-10E,12E-octadecadienoate		
6.03	ddtd	-C <u>H</u> =C <u>H</u> -	13-hydroperoxy-9E,11E-octadecadienoate		
5.72	dtm	-С <u>Н</u> =СН-	$(mHPO-c(E,E)-dEs)^{**}$		
5.47	ddm	-CH=C <u>H</u> -			
Dihydroperoxides (dHPOs)					
5.36-5.50	m	-С <u>Н</u> =СН-	0 12 dupo 10 <i>E</i> 13 <i>E</i> de +		
<u>4.82</u> ^b	dd	-С <u>Н</u> -ООН	9,12-diff $0-10E,15E$ -dE + 10.12 dHDO 8E 11E dE		
4.30-4.39	m	-C <u>H</u> -OOH	(dHPO nc(FF) dFs)		
2.33	t	-C <u>H</u> 2-	(dHFO-HC(E,E)-dES)		
Hydroperoxy-epoxy-monoenes (HPO-EPO-mEs)					
<u>5.85</u> °	dd	-С <u>Н</u> =СН-			
5.47	dd	-C <u>H</u> =C <u>H</u> -			
4.33	m	-С <u>Н</u> -ООН	9-HPO-12,13-E-EPO-10E-octadecenoate		
3.11	dd	- <u>H</u> COCH-	(HPO-E-EPO-mEs)		
2.84	m	-HCOC <u>H</u> -			
2.30	t	-C <u>H</u> 2-			
Total hydroperoxides					
<u>8.3-9.3</u> ª	br	-00 <u>H</u>	Total hydroperoxide groups		
			Total-OOH		

Table S2. Chemical shift assignments and multiplicities of the ¹H NMR signals in CDCl₃ of protons of some hydroperoxides coming from the oxidation of main components detected in the corn oil during the oxidation process.

Abbreviations: d: doublet; t: triplet; m: multiplet, br: broad singlet, dddd: double of double doublet ^{*} area of the signals due to the protons in bold, together with the area of the sn-1 and sn-3 signals of TG shown, in Table S1 and in Figure 1, were used for the quantification of each compound, using the equation [eq. 1] showed in the Materials and Methods.

The assignment of the ¹H NMR signals of the protons was made with the aid of standard compounds. *The assignment of the ¹H NMR signals of the protons was made with the data taken from the literature:

^aAssignments of monohydroperoxides (mHPOs) taken from:

Guillén, M.D., & Ruiz, A. (2005a). Eur. J. Lipid Sci. Tech. 107(1), 36-47.

Guillén, M.D., & Ruiz, A. (2005b). J. Sci. Food Agri. 85(14), 2413-2420.

^bAssignments of dihydroperoxides (dHPOs) taken from:

Zhang, W. (2008). Synthesis and Fragmentation Reactions of Linoleic Acid-Derived Hydroperoxides (Doctoral dissertation, Case Western Reserve University).

Zhang, W., Sun, M., & Salomon, R.G. (2006). J. Org. Chem. 71(15), 5607-5615.

^eAssignments of hydroperoxy-epoxy-monoenes (HPO-EPO-mEs) taken form:

Gardner, H.W., Weisleder, D., & Kleiman, R. (1978). Lipids, 13(4), 246-252.

	CC55.	F				
Chemical shift (norm)	Multiplicity	Functional	Structures			
<u>smit (ppm)</u> Monohudrorri	anning and de	group				
<u>aviononyaroxy-</u>	-conjugatea ale	<u>CU-CU</u>				
<u>0.48</u> " 5.07		-C <u>H</u> =CH-	$(\overline{Z}\overline{E})$ conjugated double hands are sisted with			
5.97		-C <u>H</u> =C <u>H</u> -	(Z, E)-conjugated double bonds associated with			
5.66	dd 14	-C <u>H</u> =CH-	hydroxides (OH) $(7 F) - 4F a^{**}$			
5.45	đť	-CH=C <u>H</u> -	mHO-c(Z,E)-dEs			
4.15	m	-C <u>H</u> -OH				
Hydroxy-epoxy	<u>y-monoenes (H</u>	<u>O-EPO-mEs</u>				
<u>5.94</u> 6	dd	-C <u>H</u> =CH-				
5.54	ddd	-C <u>H</u> =C <u>H</u> -	9-HO-12,13-E-EPO-10E-octadecenoate /			
4.13	m	-С <u>Н</u> -ОН	13-HO-9,10- <i>E</i> -EPO-11 <i>E</i> -octadecenoate			
3.09	dt,br	-СНО <u>Н</u> С-	(HO- <i>E</i> -EPO- <i>E</i> -mEs)			
2.81	dt	-C <u>H</u> OHC-				
<u>5.95</u> °	dd	-С <u>Н</u> =СН-	9-HO-12 13-7-EPO-10 <i>E</i> -octadecenoate /			
5.54	ddd	-C <u>H</u> =C <u>H</u> -	13-HO-9 10-Z-FPO-11 <i>E</i> -octadecenoate			
3.41	dd	-CHO <u>H</u> C-	$(HO_2Z-EPO_F-mF_s)$			
3.07	dt	-С <u>Н</u> ОНС-	(110-2-11-0-12-111123)			
5.65 ^d	dt	-C <u>H</u> =C <u>H</u> -				
5.32	dd	-С <u>Н</u> =СН-	11-HO-12,13-E-EPO-9Z-octadecenoate /			
4.63	dd	-С <u>Н</u> -ОН	11-HO-9,10-E-EPO-12Z-octadecenoate**			
2.98	m	-CHO <u>H</u> C-	(HO-E-EPO-Z-mEs)			
2.77	d	-OH-HC-C <u>H</u> OHC-				
5.54 ^e	m	-C <u>H</u> =C <u>H</u> -	Emithma 11 UO 12 12 E EBO 0E acta dagana acta/			
4.25	dd	-С <u>Н</u> -ОН	Erythro-11-HO-12,13-E-EPO-9E-octadecenoate/			
2.92	m	-C <u>H</u> OHC-	Erythro-11-HO-9, 10-E-EPO-12E-octadecentoate			
2.78	dd	-CHO <u>H</u> C-	(Erythro-HO-E-EPO-E-mes)			
5.78	dtr	-С <u>Н</u> =СН-				
5.53	ddtr	-CH=CH-	Threo-11-HO-12,13-E-EPO-9E-octadecenoate			
<i>3.96</i> ^e	q	-CH-OH	Threo-11-HO-9,10-E-EPO-12E-ctadecenoate			
2.93	dtr	-CHOHC-	(Threo- HO-E-EPO-E-mEs)			
2.78	dd	-CHOHC-				
Hydroxy-keto-	Hvdroxv-keto-monoenes (HO-KO-mEs)					
6.83 ^f	dt	-CH=CH-				
6.05	dt	-CH=CH-	9-HO-11-KO-12E-octadecenoate			
3.98-4.04	m	-CH-OH	(HO-KO- <i>E</i> -mEs)			
3.24	d	C=O-CH ₂ -	()			
2.58	dd	-CH2-				
5.54	m	-CH=CH-				
4.23	dd	-CH-OH	9-HO-10-KO-12Z-octadecenoate /			
3. 24g	t	C=O-CH ₂ -	13-HO-12-KO-9Z-octadecenoate**			
$\frac{2.00}{2.00}$	m	-CH2-	(HO-KO-Z-mEs)			

Table S3. Chemical shift assignments and multiplicities of the ¹H NMR signals in CDCl₃ of protons of some hydroxy derivatives coming from the oxidation of main components detected in the corn oil during the oxidation process.

Abbreviations: s: singlet; d: doublet; t: triplet; m: multiplet, br: broad singlet, ddd: double of double doublet; q: quadruplet.

^{*}area of the signals due to the protons in bold, together with the area of the sn-1 and sn-3 signals of TG shown, in Table S1 and in Figure 1, were used for the quantification of each compound, using the equation [eq. 1] showed in the Materials and Methods.

**The assignment of the ¹H NMR signals of the protons was made with the aid of standard compounds.

^{***}The assignment of the ¹H NMR signals of the protons was made with the data taken from the literature:

^aAssignments of mHO-c(*Z*,*E*)-dEs taken from:

Manini, P., Camera, E., Picardo, M., Napolitano, A., & d'Ischia, M. (2005). Chem. Phys. Lipids, 134(2), 161-171.

^bAssignments of 9-HO-12,13-*E*-EPO-10*E*-octadecenoate / 13-HO-9,10-*E*-EPO-11*E*-octadecenoate taken from:

Gardner, H.W., Weisleder, D., & Kleiman, R. (1978). Lipids, 13(4), 246-252.

Gardner, H.W., & Kleiman, R. (1981). BBA-Lipid Lipid Met. 665(1), 113-125.

Schieberle, P., Trebert, Y., Firl, J., & Grosch, W. (1988). Chem. Phys. Lipids, 48(3-4), 281-288.

Ramsden, C.E., Domenichiello, A.F., Yuan, Z.X., Sapio, M.R., Keyes, G.S., Mishra, S. K., ... & Davis, J.M. (2017). Sci. Sign. 10(493), eaal5241.

^eAssignments of 9-HO-12,13-Z-EPO-10*E*-octadecenoate / 13-HO-9,10-Z-EPO-11*E*-octadecenoate taken from:

Hidalgo, F.J., Zamora, R., & Vioque, E. (1992). Chem. Phys. Lipids, 60(3), 225-233.

^dAssignments of 11-HO-12,13-*E*-EPO-9*Z*-octadecenoate / 11-HO-9,10-*E*-EPO-12*Z*-octadecenoate taken from:

Gardner, H.W., Kleiman, R., & Weisleder, D. (1974). Lipids, 9(9), 696-706.

Ramsden, C.E.; Domenichiello, A.F.; Yuan, Z.X.; Sapio, M.R.; Keyes, G.S.; Mishra, S.K.; Gross, J.R.; Majchrzak-Hong, S.; Zamora, D.; Horowitz, M. S.; et al. (2017). *Sci. Sign.* 10(493), eaal5241.

^eAssignments of Erythro-11-HO-12,13-*E*-EPO-9*E*-octadecenoate / Erythro-11-HO-9,10-*E*-EPO-12*E*-octadecenoate and Threo-11-HO-12,13-*E*-EPO-9*E*-octadecenoate / Threo-11-HO- 9,10-*E*-EPO-12*E*-ctadecenoate taken from:

Gardner, H.W., Kleiman, R., & Weisleder, D. (1974). Lipids, 9(9), 696-706.

Gardner, H.W., & Kleiman, R. (1981). BBA-Lipid Lipid Met. 665(1), 113-125.

Gardner, H.W., & Crawford, C.G. (1981). BBA-Lipid Lipid Met. 665(1), 126-133.

Schieberle, P., Trebert, Y., Firl, J., & Grosch, W. (1988). Chem. and Phys. Lipids, 48(3-4), 281-288.

^fAssignments of 9-HO-11-KO-12*E*-octadecenoate taken from:

Lin, D., Zhang, J., & Sayre, L.M. (2007). J. Org. Chem. 72(25), 9471-9480.

^gAssignments of 9-HO-10-KO-12Z-octadecenoate / 13-HO-12-KO-9Z-octadecenoate taken from: Gardner, H.W., Kleiman, R., Christianson, D.D., & Weisleder, D. (1975). *Lipids*, *10*(10), 602-608.

Oxidation process	5.		
Chemical shift (nnm)	Multiplicity	Functional group	Structures
Monoketo-co	njugated dien	es (mKO-c-dEs)	
<u>7.13</u> ª	dm	-C <u>H</u> =CH- (C-11)	(E,E) conjugated double hands approximated with
6.15-6.19	m	-C <u>H</u> =C <u>H</u> -(C-12,13)	(<i>E,E</i>)-conjugated double bonds associated with
6.07	d	-C <u>H</u> =CH- (C-10)	wKO $a(E, E) dEa^{**}$
2.54	t	-C <u>H</u> 2-CO	$\operatorname{IIIKO-c}(E,E)$ -dES
<u>7.49</u> ª	ddd	-CH=C <u>H</u> - (C-11)	
6.16	d	-C <u>H</u> =CH- (C-10)	(Z, E)-conjugated double bonds associated with
6.12	m	-C <u>H</u> =CH- (C-12)	ketodiene of linoleic acyl groups
5.91	dt	-C <u>H</u> =CH- (C-13)	$mKO-c(Z,E)-dEs^{**}$
2.54	t	-C <u>H</u> 2-CO	
Keto-epoxy-m	ionoenes (KO	-EPO-mEs)	
6.52	dd	-C <u>H</u> =CH-	
<u>6.38</u> ^b	d	-CH=C <u>H</u> -	13-keto-9,10-E-epoxy-11E-octadecenoate /
3.20	dd	-HCOC <u>H</u> -	9-keto-12,13-E-epoxy-10E-octadecenoate**
2.91	td	- <u>H</u> COCH-	(KO-E-EPO-E-mEs)
2.53	t	-C <u>H</u> 2-	
<u>6.66^b</u>	dd	-С <u>Н</u> =СН-	
6.40	d	-CH=C <u>H</u> -	13-keto-9,10-Z-epoxy-11E-octadecenoate /
3.52	dd	-HCOC <u>H</u> -	9-keto-12,13-Z-epoxy-10E-octadecenoate
3.20	dd	- <u>H</u> COCH-	(KO-Z-EPO- <i>E</i> -mEs)
2.55	t	-C <u>H</u> 2-	
<u>7.02</u> °	dt	-С <u>Н</u> =СН-	
6.23-6.16	dt	-CH=C <u>H</u> -	11-keto-12,13-E-epoxy-9E-octadecenoate /
3.34-3.28	d	-HCOC <u>H</u> -	11-keto-9,10-E-epoxy-12E-octadecenoate
3.04-2.98	ddd	- <u>H</u> COCH-	(KO-E-EPO-E-mEs)
2.25	t	-C <u>H</u> 2-	

Table S4. Chemical shift assignments and multiplicities of the ¹H NMR signals in CDCl₃ of protons of some keto derivatives coming from the oxidation of main components detected in the corn oil during the oxidation process.

Abbreviations: s: singlet; t: triplet; d: doublet; m: multiplet; ddd: double of double doublet *area of the signals due to the protons in bold, together with the area of the sn-1 and sn-3 signals of TG shown, in Table S1 and in Figure 1, were used for the quantification of each compound, using the equation [eq. 1] showed in the Materials and Methods.

The assignment of the ¹H NMR signals of the protons was made with the aid of standard compounds. *The assignment of the ¹H NMR signals of the protons was made with the data taken from the literature:

^aAssignments of mono-keto-conjugated dienes (m-KO-c-dEs) taken from:

Dufour, C., & Loonis, M. (2005). Chem. Phys. Lipids. 138(1), 60-68.

^bAssignments of 13-keto-9,10-*E*-epoxy-11*E*-octadecenoate / 9-keto-12,13-*E*-epoxy-10*E*-octadecenoate and 13-keto-9,10-*Z*-epoxy-11*E*-octadecenoate / 9-keto-12,13-*Z*-epoxy-10*E*-octadecenoate taken from: Hidalgo, F.J., Zamora, R., & Vioque, E. (1992). *Chem. Phys. Lipids.* 60(3), 225-233.

Lin, D., Zhang, J., & Sayre, L.M. (2007). J. Org. Chem. 72(25), 9471-9480.

Ramsden, C.E.; Domenichiello, A.F.; Yuan, Z.X.; Sapio, M.R.; Keyes, G.S.; Mishra, S.K.; Gross, J.R.; Majchrzak-Hong, S.; Zamora, D.; Horowitz, M. S.; et al. (2017). *Sci. Sign.*, *10*(493), eaal5241.

^cAssignments of 11-keto-12,13-*E*-epoxy-9*E*-octadecenoate / 11-keto-9,10-*E*-epoxy-12*E*-octadecenoate from:

Lin, D., Zhang, J., & Sayre, L.M. (2007). J. Org. Chem. 72(25), 9471-9480.

Chemical shift (ppm)	Multiplicity	Functional group	Structures			
Monoepoxy-monoenes (mEPO-mEs)						
5.56-5.47	m	-CH=C <u>H</u> -	0.10 E EBO 127 actadagamenta /			
5.42-5.33	m	-C <u>H</u> =CH-	9,10-E-EFO-12Z-octadecentrate /			
<u>2.73-2.66</u> ^a	m	-C <u>H</u> O <u>H</u> C-	(E) EDO Z mE ^{**}			
2.30	t	-C <u>H</u> 2-	(E)-EFO-Z-IIIE			
5.46-5.55	m	-CH=C <u>H</u> -	9,10-Z-EPO-12Z-octadecenoate /			
5.43-5.34	m	-С <u>Н</u> =СН-	12,13-Z-EPO-9Z-octadecenoate			
<u>2.98-2.88</u> ª	m	-C <u>H</u> O <u>H</u> C-	Z-EPO-Z-mE**			

Table S5. Chemical shift assignments and multiplicities of the ¹H NMR signals in CDCl₃ of protons of some epoxy derivatives coming from the oxidation of main components detected in the corn oil during the oxidation process.

Abbreviations: t: triplet; m: multiplet.

*area of the signals due to the protons in bold, together with the area of the sn-1 and sn-3 signals of TG shown, in Table S1 and in Figure 1, were used for the quantification of each compound, using the equation [eq. 1] showed in the Materials and Methods.

**The assignment of the ¹H NMR signals of the protons was made with the aid of standard.

***The assignment of the ¹H NMR signals of the protons was made with the data taken from the literature:

^aAssignments of mono-epoxy-monoenes (m-EPO-mEs) taken from:

Nilewski, C., Chapelain, C.L., Wolfrum, S., & Carreira, E.M. (2015). Org. Lett. 17(22), 5602-5605.

Table S6. Chemical shift assignments and multiplicities of the ¹H NMR signals in CDCl₃ of protons of other oxidation compounds coming from the oxidation of main components detected in the corn oil during the oxidation process.

Chemical shift (ppm)	Multiplicity	Functional group	Structures
Dihydroxy (dH	IO)/polyhydrox	су (р-НО)	
5.61-5.52	m	-С <u>Н</u> =СН-	9,10-dHO-12Z-octadecanoate /
5.46-5.36	m	-C <u>H</u> =C <u>H</u> -	12,13-dHO-9Z-octadecanoate
<u>3.48-3.37</u> ª	m	-OHC <u>H</u> -C <u>H</u> OH-	dHO-mE ^{**}
			p-HO
Formic acid			
<u>8.01</u> b	S	<u>Н</u> -СООН	Formic acid
Formates or p	oly-formates ((p-F)	
<u>8.17-8.03</u> °	m	-H2C-O-C <u>H</u> =O	Polyformates
			pF^{**}
Furane grou	ps (Frs)		
<u>7.45</u> ^d	dd	-CH=C <u>H</u> - (ar.C-4)	
6.11	dd	-C <u>H</u> =CH- (ar.C-3)	5-pentyl-(5H)-furan-2-one
5.04	m	-C <u>H</u> - (ar.C-5)	
7.27	dd	O-C <u>H</u> =CH- (ar.C-5)	
6.24	m	-CH=C <u>H</u> -(ar.C-4)	Alkyl-furans ^{**}
5.94	m	-C <u>H</u> =C- (ar.C-3)	

Abbreviations: s: singlet; d: doublet; m: multiplet.

^{*}area of the signals due to the protons in bold, together with the area of the sn-1 and sn-3 signals of TG shown, in Table S1 and in Figure 1, were used for the quantification of each compound, using the equation [eq. 1] showed in the Materials and Methods.

The assignment of the ¹H NMR signals of the protons was made with the aid of standard compounds. *The assignment of the ¹H NMR signals of the protons was made with the data taken from the literature:

^aAssignments of dihydroxy monoenes (dHO-mEs) taken from:

Nilewski, C., Chapelain, C.L., Wolfrum, S., & Carreira, E.M. (2015). *Org. Lett.* 17(22), 5602-5605. ^bAssignments of formic acid taken from:

Babij, N. R., McCusker, E. O., Whiteker, G. T., Canturk, B., Choy, N., Creemer, L. C., ... & Li, F. (2016). Org. Process Res. Dev. 20(3), 661-667.

^cAssignments of poly-formates taken from:

Abdullah, B.M., Zubairi, S. I., Huri, H.Z., Hairunisa, N., Yousif, E., & Basu, R.C. (2016). *PloS one*, 11(3), e0151603.

Harry-O'kuru, R.E., Biresaw, G., Tisserat, B., & Evangelista, R. (2016). *J. Lipids, ID 3128604,* 12. ^dAssignments of 5-pentyl-(5H)-furan-2-one taken from:

Bonete, P., & Najera, C. (1994). J. Org. Chem. 59(11), 3202-3209.

Braukmüller, S., & Brückner, R. (2006). Eur. J. Org. Chem. 2006(9), 2110-2118.

Chemical shift (ppm)	Multiplicity	Functional group	Compounds and/or family of compounds
<u>9.00</u> ª	d	-C <u>H</u> O	2.2
3.20	m	- <u>H</u> COCH-	2,3-epoxyaikanais
3.10	dd	-HCOCH-	(2,3-EPO-aikanais)
<u>9.49</u> ^b	d	-С <u>Н</u> О	
6.86	tt	СНО-СН=С <u>Н</u> -	2E allemals**
6.11	qt	-С <u>Н</u> =СН-	2E-alkellais
2.32	q	-C <u>H</u> 2-	
<u>9.52</u> ^b	d	-C <u>H</u> O	
7.09	m	СНО-СН=С <u>Н</u> -	
6.33	m	-CH=C <u>H</u> -	2E, 4E-alkadienals ^{**}
6.08	dd	СНО-С <u>Н</u> =СН-	
2.22	m	-C <u>H</u> 2-	
<u>9.55</u> ^b	d	-C <u>H</u> O	
6.55	dd	СНО-СН=С <u>Н</u> -	4 5-enoxy-2 F -alkenals**
6.39	dd	СНО-С <u>Н</u> =СН-	$(4.5 - \text{EPO}_2 - 2E - \text{alkenals})$
3.33	dd	-HCOC <u>H</u> -	(+,5-EI 0-2E-alkelials)
2.96	td	- <u>H</u> COCH-	
<u>9.57</u> ^b	d	-C <u>H</u> O	
6.82	dd	СНО-СН=С <u>Н</u> -	4-hydroxy-2 <i>E</i> -alkenals ^{**}
6.31	dddd	СНО-С <u>Н</u> =СН-	(4-HO-2 <i>E</i> -alkenals)
4.42	m	-С <u>Н</u> -ОН	
<u>9.58</u> ^b	d	-C <u>H</u> O	
9.30	br,s	-OO <u>H</u>	1-bydroperovy-2F-alkenals **
6.81	dd	СНО-СН=С <u>Н</u> -	(4-HPO-2F-alkenals)
6.29	m	СНО-С <u>Н</u> =СН-	(+-III O-2L-aikenais)
4.63	dd	-С <u>Н</u> -ООН	
<u>9.75</u> ^b	t	-C <u>H</u> O	n-alkanals**
2.40	dt	-C <u>H</u> 2-	ii aikailais
<u>9.77</u> ^b	d	-C <u>H</u> O	
6.87	d	СНО-С <u>Н</u> =СН-	4-oxo-2 <i>E</i> -alkenals
6.78	dd	СНО-СН=С <u>Н</u> -	(4-KO-2 <i>E</i> -alkenals)
2.69	t	-C=OC <u>H</u> -	

Table S7. Chemical shift assignments and multiplicities of the ¹H NMR signals in CDCl₃ of protons of aldehydes (A) coming from the oxidation of main components detected in the corn oil during the oxidation process.

Abbreviations: d: doublet; t: triplet; m: multiplet; br: broad singlet; dd: double doublet;

^{*}area of the signals due to the protons in bold, together with the area of the sn-1 and sn-3 signals of TG shown, in Table S1 and in Figure 1, were used for the quantification of each compound, using the equation [eq. 1] showed in the Materials and Methods.

^{**}The assignment of the ¹H NMR signals of the protons was made with the aid of standard compounds. ^{***}The assignment of the ¹H NMR signals of the protons was made with the data taken from the literature:

^aData taken from:

Daiboun, T., Elalaoui, M.A., Thaler-Dao, H., Chavis, C., & Maury, G. (1993). *Biocatalysis*, 7(4), 227-236.

^bData taken from:

Guillén, M.D., & Ruiz, A. (2004). Eur. J. Lipid Sci. Tech. 106(10), 680-687.

Guillén, M.D., & Ruiz, A. (2005a). Eur. J. Lipid Sci. Tech. 107(1), 36-47.

Guillén, M.D., & Ruiz, A. (2005b). J. Sci. Food Agric. 85(14), 2413-2420.

Goicoechea, E., & Guillen, M.D. (2010). J. Agric. Food Chem. 58(10), 6234-6245.

Table S8. Chemical shift assignments and multiplicities of the ¹H NMR signals in CDCl₃ of protons of some sterols oxidation products coming from the oxidation of minor components detected in the corn oil during the oxidation process.

Chemical shift (ppm)	Multiplicity	Functional group	Compounds
Sterols oxidati	ion products		
<u>0.61</u>	S	-C <u>H</u> 3 (C-18)	$5\alpha, 6\alpha$ -epoxysitosterol + campesterol
<u>0.64</u>	S	-C <u>H</u> ₃ (C-18)	5β , 6β -epoxysitosterol + campesterol

Abbreviations: s: singlet.

^{*}area of the signals due to the protons in bold, together with the area of the sn-1 and sn-3 signals of TG shown, in Table S1 and in Figure 1, were used for the quantification of each compound, using the equation [eq. 1] showed in the Materials and Methods. ^{**}The assignment of the ¹H NMR signals of the protons was made as in previous studies (Zhang, X.,

^{**}The assignment of the ¹H NMR signals of the protons was made as in previous studies (Zhang, X., Geoffroy, P., Miesch, M., Julien-David, D., Raul, F., Aoudé-Werner, D., & Marchioni, E. (2005). *Steroids*, *70*(13), 886-895).

Compounds and / or	Time (day) of	Maximum
structures	maximum	concentration reached
	concentration	(mmol/mol1G)
Detected from day 4	10	10 5
mHPO-c(Z, E)-dEs	13	48.5 ± 2.4
mHPO-c(E, E)-dEs	13	140.9 ± 3.4
Detected from day 8		
mHO-c(Z ,E)-dEs*	13	4.0 ± 0.8
Datastad from day 0		
$\frac{dHPO}{dHPO} = p_{C}(F, F) dF_{S}$	13	10.2 ± 0.2
	15	19.2 ± 0.2
Detected from day 10		
HPO- <i>E</i> -EPO- <i>E</i> -m <i>E</i> s	14	38.7 ± 0.6
Detected from day 11		
$m-KO-c(E,E)-dEs^*$	15	11.2 ± 0.1
4-HPO-2 <i>E</i> -alkenals*	14	11.5 ± 1.5
2E-alkenals*	16	15.6 ± 0.7
	10	1010 - 017
Detected from day 12	10	
m-KO-c(Z, E)-dEs*	13	5.0 ± 0.8
dHO-Z-mEs* / p-OH	16	6.3 ± 0.3
Formic acid	16	2.2 ± 0.1
2E, 4E-alkadienals*	16	7.6 ± 0.1
n-alkanals*	16	10.0 ± 1.1
Signal at 3.98	16	14.2 ± 0.0
Detected from day 13		
HO-E-EPO-E-mEs*	14	4.8 ± 1.2
HO-Z-EPO-E-mEs		
Z-EPO-Z-mEs*	16	27.3 ± 3.1
<i>E</i> -EPO-Z-mEs*	16	17.0 ± 1.6
Poly-formates (pF)*	16	18.6 ± 2.1
5-pentyl-(5H)-furan-2-one	16	8.6 ± 0.5
4,5-EPO-2 <i>E</i> -alkenals*	16	6.9 ± 0.5
4-HO-2 <i>E</i> -alkenals*	16	19.8 ± 0.9
4-KO-2 <i>E</i> -alkenals*	16	1.9 ± 0.1
Signal at 3.62	16	10.2 ± 0.5
Signal at 4.23	16	40.3 ± 0.2
Defected from days 14		
Detected from day 14	17	2.0 ± 0.7
Inreo-HO-E-EPO-E-mEs	10	3.0 ± 0.7
HO-KO-Z-mEs*	15	1.8 ± 0.6
HO-KO-E-mEs	16	15.2 + 2.0
$KO-E-EPO-E-mES^*$	16	15.3 ± 2.0
KU-Z-EPU- <i>E</i> -mEs	10	3.6 ± 0.6
Alkyl-furans*	16	0.7 ± 0.1
Detected from day 15		
2,3-EPO-alkanals	16	0.9 ± 0.0

Table S9. Some oxidation compounds or structures detected in corn oil submitted to accelerated storage conditions, together with their detection time (day), the moment (day) in which they reach maximum concentration and the maximum concentration reached (mmol/molTG).

* Compounds with an asterisk were acquired commercially and used as standards for identification purposes.

Figure S1. Chemical structures of some oxidation compounds having hydroperoxy groups in their structures, that could be formed during linoleic acyl groups oxidation but that have not been observed in the oxidation of corn oil under the conditions of this study, as commented on. a) monohydroperoxy-non conjugated dienes; b) dihydroperoxy-non conjugated dienes and dihydroperoxy-conjugated dienes; c) hydroperoxy-epidioxy-monoene.

Figure S2. Enlargement of some regions of the ¹H NMR spectra of pure 9,10-EPO-12,13-EPOoctadecanoic acid, corn oil after 14 days under oxidative conditions enriched with 9,10-EPO-12,13-EPO-octadecanoic acid and corn oil after 14 days under oxidative conditions.