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Abstract: The aim of this study is the analysis of the in vitro digestion of corn oil, and of the effect of 

its enrichment with three levels of gamma- and alpha-tocopherol, by using, for the first time, 1H 

nuclear magnetic resonance (1H NMR) and a solid phase microextraction followed by gas 

chromatography/mass spectrometry (SPME-GC/MS). The attention is focused on the hydrolysis 

degree, the degradation of oil’s main components, the occurrence of oxidation reactions and main 

compounds formed, as well as on the bioaccessibility of oil’s main components, of compounds 

formed in the oxidation, and, of gamma- and alpha-tocopherol. The lipolysis levels reached are high 

and show a similar pattern in all cases. The oxidation of corn oil components during in vitro 

digestion is proven, as is the action of gamma-tocopherol as an antioxidant and alpha-tocopherol as 

a prooxidant. In the more alpha-tocopherol enriched samples, hydroperoxy-, hydroxy-, and keto-

dienes, as well as keto-epoxy-monoenes and aldehydes, are generated. The bioaccessibility of the 

oil’s main components is high. The compounds formed in the oxidation process during in vitro 

digestion can also be considered bioaccessible. The bioaccessibility of alpha-tocopherol is smaller 

than that of gamma-tocopherol. The concentration of this latter compound remains unchanged 

during the in vitro digestion of the more alpha-tocopherol enriched oil samples. 

Keywords: corn oil; in vitro digestion; 1H NMR; SPME-GC/MS; gamma- and alpha-tocopherols; 

antioxidant; prooxidant; bioaccessibility 

 

1. Introduction 

During gastrointestinal digestion, several reactions take place, which have important 

repercussions in food component bioaccessibility. The hydrolysis of proteins, carbohydrates and 

triglycerides is the main one, giving rise to smaller building blocks which are able to be absorbed. 

Some evidence suggests that other reactions may also be possible, such as the Maillard reaction, 

esterification and oxidation [1–3]. Of these, oxidation could be a cause for concern, because it is 

known that certain compounds resulting from lipid oxidation are toxic and have been held 

responsible for several degenerative diseases [4–6]. 

Nowadays, it seems to be well established that diets high in vegetable and fruit content are 

healthy, mainly due to these commodities being rich in compounds with antioxidant ability. For this 

reason, the enrichment of foods with compounds of natural origin with potential antioxidant ability 
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is becoming common in the industry, for both technological and health reasons. In spite of this, the 

knowledge of the effect that this enrichment provokes in foods when they are submitted to different 

processes is scarce. Recently, it has been shown that some compounds, attributed to antioxidant 

ability, act as prooxidants in some foods, when submitted to certain oxidative conditions [7–9]. 

Taking into account all of the above mentioned, the study of the effect of the enrichment of lipid foods 

with compounds, with potential antioxidant ability on their behavior during digestion, is important 

for both industry and consumers.  

Vegetable oils, widely consumed around the world, are the quintessential lipid foods, and their 

enrichment with natural antioxidants may be considered of interest. The great number of natural 

compounds with potential antioxidant ability include tocopherols, which may be considered very 

suitable for enriching oils, due to their lipophilicity and because they are also minor components in 

vegetable oils.  

Nevertheless, so far, no study has been carried out on the effect of gamma-tocopherol enrichment 

on the digestion of lipid foods. With regard to the effect enrichment with alpha-tocopherol, some 

studies have been published; however, their results are not conclusive. Some of these studies have 

concluded that this latter enrichment does not cause changes in the digestion of lipid foods [10,11], 

or that the changes are not clear [12]. Others have found a decrease in the values of certain oxidation 

parameters, from which it follows that alpha-tocopherol acts as an antioxidant [2,12–15]. Finally, other 

ones have reported that alpha-tocopherol acts as a prooxidant [14,16]. These discrepancies between 

results may be due to several reasons, which may include: the kind of lipid food involved; the degree 

of enrichment in alpha-tocopherol; the digestion model employed; and the methodology used to 

evaluate the oxidation level of the digestate. 

In this context, the aim of this study is to analyze the effect of enriching corn oil, with either 

alpha-tocopherol or with gamma-tocopherol, on its in vitro digestion. Corn oil is an edible oil consumed 

worldwide, and alpha- and gamma-tocopherol are two natural forms of vitamin E, to which 

antioxidant ability has been attributed. The study will simultaneously deal with various subjects such 

as: the lipolysis degree reached and the bioaccessibility of the compounds coming from oil main 

component hydrolysis; the occurrence of oxidation reactions during digestion and the nature of the 

main oxidation compounds formed, if any; the elucidation of the effect of enrichment with each 

tocopherol on the potential oil component oxidation during digestion; and, finally, gamma-tocopherol 

and alpha-tocopherol bioaccessibility, as well as the influence of the alpha-tocopherol added on the 

bioaccessibility of naturally present gamma-tocopherol in corn oil. Furthermore, in order to analyze 

the influence of tocopherol concentration on all the above mentioned issues, the study will be carried 

out with three different enrichment degrees of each tocopherol; it should be remembered that the 

current legislation allows one to add this kind of compounds to refined vegetable oils under the 

“quantum satis” principle. All of these matters will be studied using data obtained by1H nuclear 

magnetic resonance (1H NMR) spectra of the oil samples and of the lipid extracts of the digestates. 

Furthermore, solid phase microextraction (SPME), followed by gas chromatography/mass 

spectrometry (GC/MS), will be used, as a complementary technique, to ensure the occurrence and 

level of oxidation reached during digestion. This will be elucidated by the presence and abundance 

of oxidation markers in the headspace of the digestate. Although different digestion models can be 

used, a classical in vitro model, which has given satisfactory results for some time [17], will be used 

in this study; nevertheless our laboratory is in a process of change in this respect and we plan to use 

a consensus model in the future. 

2. Materials and Methods  

2.1. Samples Subject of Study 

The study was carried out with refined corn oil C, acquired in a local supermarket. Its 

composition in molar percentages of linolenic (Ln), linoleic (L), oleic (O) and saturated (S) acyl groups 

is, 0.6 ± 0.0%, 49.2 ± 0.5%, 34.1 ± 0.3% and 16.1 ± 0.1% respectively. This was determined from 1H NMR 

spectral data as in previous studies [18,19]. The tocopherols used were alpha-tocopherol (αT) (purity 
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of 98.2%) purchased from Sigma-Aldrich (St. Louis, MO, USA), and gamma-tocopherol (γT) (purity 

of ≥ 90%) provided by Eisai Food & Chemical Co. Ltd. (Tokyo, Japan). Aliquots of the oil were 

enriched with alpha-tocopherol or gamma-tocopherol at 0.2%, 2% and 5% by weight in each case. The 

samples submitted to in vitro digestion were the original oil C, and all samples enriched in αT 

(C0.2αT, C2αT and C5αT) and in γT (C0.2γT, C2γT and C5γT).  

2.2. Digestion Experiments 

Aliquots (0.5 g) of the above-mentioned samples were digested, following the semi-static in vitro 

gastrointestinal digestion model developed by Versantvoort, et al. (2005) [20]. This validated method 

was optimized, in order to improve the lipids digestion, attempting to reach lipolysis levels of a 

similar order to in vivo digestion [21]. It has three-stages which simulate digestive processes in 

mouth, stomach, and small intestine, by sequentially adding the corresponding digestive juices 

(saliva, gastric juice, duodenal juice and bile), of which the compositions is given in Table S1 (see 

Supplementary Material). The first stage begins by adding 6 mL of saliva to the sample. After 5 min 

of incubation, 12 mL of gastric juice is added and the mixture is rotated head-over-heels at 40 rpm 

for 2 h at 37 ± 2 °C. One hour after the start of the gastric stage, pH is set between 2 and 3 with HCl 

(37%), simulating the gradual acidification of the chyme occurring in vivo. After 2 h of the gastric 

stage, 2 mL of sodium bicarbonate solution (1 M), 12 mL of duodenal juice and 6 mL of bile juice are 

added. Subsequently, pH was set between 6 and 7, and the mixture is again rotated at 40 rpm and 

incubated at 37 ± 2 °C for 4 h. All the reagents and enzymes for the preparation of digestive juices 

were acquired from Sigma-Aldrich (St. Louis, MO, USA): α-amylase from Aspergillus oryzae (10065, 

~30 U/mg); pepsin from porcine gastric mucosa (P7125, ≥400 U/mg protein); amano lipase A from 

Aspergillus niger (534781, ≥120,000 U/g); pancreatin from porcine pancreas (P1750); lipase type II crude 

from porcine pancreas (L3126, 100–500 U/mg protein (using olive oil, 30 min incubation)) and bovine 

bile extract (B3883). The digested samples were named after the original samples, but preceded by D 

(DC, DC0.2αT, DC2αT, DC5αT, DC0.2γT, DC2γT and DC5γT). Three digestion experiments, each 

including duplicate samples, were performed. Blank samples corresponding to the mixture of juices 

submitted to digestive conditions were also taken for further analysis. 

2.3. Digestate Lipid Extraction 

Lipids of the digestates were extracted using dichloromethane as solvent (CH2Cl2, HPLC grade, 

Sigma-Aldrich, St. Louis, MO, USA), following a methodology that also allows fatty acid extraction 

as in previous studies [22]. This methodology involves a three-stage liquid-liquid extraction process, 

with 20 mL of CH2Cl2 each. Afterwards, to ensure the complete protonation of fatty acids and/or the 

dissociation of the potential salts formed, the remaining water phase was acidified to pH 2 with HCl 

(37%) and a second extraction was carried out in three steps. All the CH2Cl2 extracts of each sample 

were mixed and any solvent was eliminated by means of a rotary evaporator under reduced pressure 

at room temperature, in order to avoid lipid oxidation. The extraction yield was, in all cases, near 

85%. These extracts contain triglycerides, diglycerides and monoglycerides, as well as fatty acids and 

tocopherols and other minor lipophilic compounds, either present in the original oil samples or 

formed from oil components in the digestion process. 

2.4. Study by 1H NMR of Oil Samples and Lipid Extracts of Digestates 

2.4.1. Operating Conditions 

The 1H NMR spectra of the original oil C, and of the oil samples enriched with each one of the 

tocopherols at the different concentrations (C0.2αT, C2αT, C5αT; C0.2γT, C2γT and C5γT), and of 

the lipids extracted from their digestates (DC, DC0.2αT, DC2αT, DC5αT, DC0.2γT, DC2γT and 

DC5γT), were acquired in duplicate using a Bruker Avance 400 spectrometer operating at 400 MHz. 

For this purpose, the above-mentioned samples (approximately 0.16 g) were dissolved in 400 µL of 

deuterated chloroform, which contained tetramethylsilane (TMS), as an internal reference (Cortec, 
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Paris, France). The acquisition conditions were the same as those used in previous studies [23]. It 

must be noted that the relaxation delay and acquisition time allow the complete relaxation of the 

protons, the signal areas thus being proportional to the number of protons that generate them, 

making it possible to use them for quantitative purposes. 

2.4.2. Identification of the Components 

The identification of the components present in the original oil, in the oil samples enriched with 

tocopherol and in the lipid extracts of their digestates, was carried out on the basis of the assignments 

of the 1H NMR signals, present in  Figure 1;  Figure 2, to the different kinds of hydrogen atoms, and 

to the different compounds.  

Figure 1. Region comprised between 0.0 and 4.9 ppm, of corn oil C 1H NMR spectrum, and region 

comprised between 3.5 ppm and 5.10 ppm, conveniently enlarged, of the 1H NMR spectra of the oil 

C and of the lipids extracted from the several digestates (DC, DC0.2γT, DC2γT, DC5γT and DC0.2αT, 

DC2αT, DC5αT), in which signals of protons of their main components appear. The signal letters 

agree with those of Tables S2 and S3. 
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Figure 2. Some regions of the 1H NMR spectra of oil C and of the lipids extracted from the digestates 

of some enriched in tocopherol samples, conveniently enlarged, where signals of protons belonging 

to oxidation compounds and to gamma- and to alpha-tocopherol appear. The signal letters agree with 

those of Tables S4 and S5. The singlet marked with * is a satellite peak of chloroform. 

These signals, their chemical shifts and assignments are given in Tables S2–S5 (Supplementary 

Material). Their assignments were made, taking into account previous studies as indicated in each 

table, or on the basis of the signals of standard compounds acquired for this study. Among the latter 

are: trans-12,13-epoxy-9-keto-10(E)-octadecenoic acid, linolein hydroperoxides, linolein hydroxides, 

9-oxo-10E,12Z-octadecadienoic acid and 13-oxo-9Z,11E-octadecadienoic acid purchased from 

Cayman Chemical (Ann Arbor, MI, USA), 9(S)-Hydroxy-10(E),12(E)-octadecadienoic acid 

(Dimorphecolic acid), acquired from Larodan (Malmö, Sweeden).  

Table S2 shows 1H NMR signals of specific protons of the different glyceride structures, such as 

triglycerides, diglycerides and monoglycerides. Table S3 shows the 1H NMR signals of protons of 

linolenic, linoleic, oleic and saturated acyl groups and fatty acids, and the signals of methylenic 

protons supported on carbons atoms in alpha position, in relation to carbonyl-carboxyl groups. Table 

S4 shows 1H NMR signals of protons of oxidation compounds coming from the main oil components 

degradation, which occurred during digestion. Finally, Table S5 gives 1H NMR signals of protons of 

alpha- and gamma-tocopherol. The areas of some of these spectral signals were used to quantify the 

concentration of the different kinds of the above-mentioned structures in the corresponding samples, 

as it will be explained below.  

2.4.3. Quantifications Made from 1H NMR Spectral Data 

This technique allows the estimation of the concentrations, expressed in different ways, of all 

the identified compounds mentioned above. This is possible because, as has been explained above, 

the area of the 1H NMR signals is proportional to the number of protons that generate the signal. The 

quantification of the different kinds of compounds or structures is explained below. 

(A) Estimation of the Molar Percentage of the Different Kinds of Glycerides in the Digestates 

The estimation of the molar percentage of each kind of glyceride structures can be carried out, 

by using the intensity of some signals indicated in Tables S2 and S3, which can also be observed in 

Figure 1. Although glycerol is formed during digestion, due to its polar nature, it is not present in the 

lipid extract of the digestates. However, its concentration can be estimated indirectly. This is possible 

because the concentration of total fatty acids plus acyl groups, of only acyl groups, and of fatty acids 

released in the formation of diglycerides and monoglycerides can be determined from 1H NMR data. 

Thus, the estimation of the molar percentage of triglycerides (TG), 1,2-diglycerides (1,2-DG), 1,3-

diglycerides (1,3-DG), 2-monoglycerides (2-MG), 1-monoglycerides (1-MG) and glycerol (Gol), in 

relation to the total glyceryl structures present in the digestate, was carried out using equations [eq. 
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S1–eq. S10] given in Supplementary Material. They are based exclusively on the area of 1H NMR 

spectral signals [24]. 

(B) Estimation of the Percentage of Fatty Acids Plus Acyl Groups that have Linoleic Structure in 

Relation to the Total of all Types of Fatty Acids and Acyl Groups in Digestates 

In refined oils, the concentration of fatty acids is very small and unappreciable in comparison 

with the concentration of acyl groups. However, as is known, hydrolysis during oil digestion 

provokes the transformation of a certain number of acyl groups into fatty acids. The fatty acids 

formed maintain the same number of carbon atoms and unsaturation pattern as the starting acyl 

groups. Acyl groups and fatty acids having the same structure provide NMR spectra signals with a 

high degree of overlapping, which allows their joint quantification. In this study, the molar 

percentage of the linoleic acyl groups plus linoleic fatty acids in the digestates was estimated, in 

relation to the total number of moles of all kinds of fatty acids plus acyl groups. This estimation was 

made using the equation [eq. S11], given in Supplementary Material, in which the areas of some 

signals that are shown in Figure 1 and in Table S3 are involved. This equation is the same as employed 

in previous studies [18,19], but using the signal of methylenic protons supported on carbon atoms in 

alpha position in relation to carbonyl-carboxyl groups, instead of the signal of triglyceride protons 

used in edible oil studies.  

(C) Estimation of the Concentration of Specific Compounds (SC) in Oil Samples and in the 

Digestates 

The concentration of oxidation compounds, and of other ones, such as gamma- and alpha-

tocopherol, either in oils or in digestates, can be estimated by using the general equation [eq. S12] 

given in Supplementary Material and the intensity of one of their non-overlapped 1H NMR spectral 

signal, which are shown in Figures 1 and 2, in Figure S1 and in Tables S3, S4 and S5. This equation 

allows one to estimate the concentration of any compound in oils or in digestates in relation to the 

concentration of fatty acids plus acyl groups, which are considered the internal reference. 

2.5. Study by SPME-GC/MS of the Headspace of Digestates and of the Mixture of the Digestive Juices 

Submitted to Digestion Conditions with the Corn Oil  

The extraction of the volatile components constituting the headspace of several samples (0.5 g in 

a 10 mL screw-cap vial) was carried out automatically using a CombiPAL autosampler (Agilent 

Technologies, Santa Clara, CA, USA). The samples studied were several digestates (DC, DC0.2αT, 

DC2αT, DC5αT, DC0.2γT, DC2γT and DC5γT) and the mixture CDJ of digestive juices DJ, after 

submission to digestion conditions, and corn oil C. The comparison of the headspaces of the several 

samples enables one to deduce differences provoked in them by in vitro digestion. 

The fiber used for the headspace components extraction was coated with 

Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS, 50/30 µm film thickness, 1 cm 

long; acquired from Supelco (Sigma-Aldrich, St. Louis, MO, USA)). It was inserted into the headspace 

of the sample and maintained for 55 min at 50 °C, after a pre-equilibration time of 5 min. The fiber 

containing the components extracted was desorbed for 10 min in the injection port (splitless mode 

with 5 min purge time) of a 7890A gas chromatograph, equipped with a 5975C inert MSD with a 

Triple Axis Detector (Agilent Technologies, Palo Alto, CA, USA) and a computer operating with the 

ChemStation program. A fused silica capillary column was used (60 m length, 0.25 mm inside 

diameter, 0.25 µm film thickness; from Agilent Technologies Inc., Palo Alto, CA, USA), coated with 

a nonpolar stationary phase (HP-5MS, 5% phenyl methyl siloxane). The operation conditions were 

the following: the injector and interface temperatures were held at 250 °C and 305 °C respectively, 

and helium at a constant pressure of 117 kPa (16.9 psi) was used as the carrier gas. The oven 

temperature was initially held at 50 °C for 5 min, increased from 50 to 300 °C at a rate of 4 °C/min, 

and then held at 300 °C for 30 min. Mass spectra were recorded at an ionization energy of 70 eV, with 

data acquisition in Scan mode. The temperatures of the ion source and the quadrupole mass analyzer 
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were kept at 230 and 150 °C, respectively. A reference sample of known composition was periodically 

analyzed, in order to verify the sensitivity of the SPME-GC/MS experiments, as in previous studies 

[25]. 

Identification of the headspace components was performed using several commercial standard 

compounds, acquired from Sigma-Aldrich (St. Louis, MO, USA). When standard compounds were 

not available, the identification was made by matching the spectra obtained, higher than 85%, with 

those of commercial libraries (Wiley W9N08, Mass Spectral Database of the National Institute of 

Standards and Technology) or with those spectra provided by the scientific literature, as in previous 

studies [25] 

Semi-quantification of the compounds was based on the area counts of the base peak (Bp) of the 

mass spectrum of each compound, divided by 10.6 When the Bp of a compound overlapped with 

some ion peak of the mass spectrum of another compound, an alternative ion peak was selected for 

the semi-quantification of the former [25]. Although the chromatographic response factor of each 

compound is different, the area counts thus determined are useful for the comparison of the 

abundance of each compound in the different samples. The detection limit was established at an 

abundance of 50,000 area counts. Data given in the following tables are average values of duplicate 

experiments  

2.6. Statistical Analysis  

The significance of the differences in the several kinds of data among samples was determined 

by a one-way variance analysis (ANOVA) followed by Tukey b test at p < 0.05, using SPSS Statistics 

24 software (IBM, NY, USA). 

3. Results 

3.1. Extent and Pattern of Lipolysis Produced by the in Vitro Digestion in the Several Samples 

As is known, the main components of the edible oils are triglycerides, and when they are 

submitted to digestion, hydrolysis of their ester bonds occurs, yielding diglycerides and 

monoglycerides, as well as fatty acids and glycerol. For this reason, in the 1H NMR spectral region 

shown in Figure 1 of corn oil C, almost the only signal observable, due to glycerides, is the signal O 

of triglyceride protons. Nevertheless, in the same spectral region of the lipid extract of the corn oil 

digestates (DC, DC0.2γT, DC2γT DC5γT, DC0.2αT, DC2αT and DC5αT), which is also shown in 

Figure 1, signals J, P and R of 1,2-diglicerydes, signals K and Q of 2-monoglycerides, signal M of 1,3-

diglycerides, and signals I, L and N of 1-monoglycerides, are clearly observable. In addition, signal 

O of triglycerides also appears, but in much lower intensity than in the oil C spectrum. This indicates 

that triglyceride hydrolysis has taken place during this digestion. The extent of the hydrolysis can be 

inferred from the molar percentages of each kind of glyceride structure in relation to the total. These 

molar percentages were estimated, in all these samples, by means of the equations [eq. S1–eq. S10], 

by using the intensity of some signals given in Tables S2 and S3 and shown in Figure 1, as described 

in the Supplementary Material. The results obtained are given in Table 1. 

(1) Lipolysis extent in corn oil digestate. It may be observed in Table 1 that the lipolysis extent 

provoked by the in vitro digestion in corn oil C is fairly high. About 78% of triglycerides have been 

hydrolyzed partially or totally. Monoglycerides and glycerol are the main glycerides formed (the 

yield of each one of these two kinds of compounds is approximately 31%); however, only about 15% 

of the triglycerides have been transformed into diglycerides. In general terms, this hydrolysis pattern 

is similar to that previously found in other edible oils submitted to the same digestion model [26]. 
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Table 1. Lipolysis extent. Molar percentages of triglycerides (TG), diglycerides (1,2-DG and 1,3-DG), 

monoglycerides (2-MG and 1-MG) and glycerol (Gol), in relation to the total glyceride structures, in 

corn oil C, in the digestates of this oil DC and in those of the samples enriched in gamma- and alpha-

tocopherol (DC0.2γT, DC2γT, DC5γT DC0.2αT, DC2αT and DC5αT). In vitro bioaccessibility of oil 

main components BOMC, defined by the ratio (mol [FA]+[MG])D/mol ([FA]+[AG])D. Different letter 

within each column indicate statistically significant difference among the samples (p < 0.05). 

Sample 
Lipolysis Extent  

TG (%) 1,2-DG (%) 1,3-DG (%) 2-MG (%) 1-MG (%) Gol (%) BOMC 

C 99.8 ±0.2a 1.1±0.1a - - - - - 

DC 22.3±5.9b 14.0±1.6b 1.8±1.0a 26.6±5.6a 4.4±1.1a 30.8±1.8a 0.67±0.07a 

DC0.2γT 22.2±4.4b 14.7±1.0b 1.7±0.2a 26.0±1.6a 4.1±0.7a 31.3±1.6a 0.67±0.04a 

DC2γT 20.7±3.4b 14.1±2.2b 1.4±0.5a 28.2±2.7a 5.3±0.4a 30.3±2.6a 0.69±0.02a 

DC5γT 17.0±7.8b 14.3±0.6b 1.7±0.9a 30.2±6.0a 5.1±2.3a 31.7±0.2a 0.72±0.08a 

DC0.2αT 20.1±4.3b 13.9±0.7b 1.5±0.5a 28.0±2.9a 5.0±0.5a 31.4±1.9a 0.70±0.05a 

DC2αT 21.8±1.8b 14.1±1.1b 1.9±0.2a 28.5±2.9a 5.3±0.4a 28.5±0.6a 0.68±0.02a 

DC5αT 24.8±2.0b 14.9±0.9b 1.5±0.7a 24.7±2.9a 4.3±0.2a 29.9±1.1a 0.64±0.03a 

Different letter within each column indicate statistically significant difference among the samples (p 

< 0.05). This is already defined in the heading of the table; -: not detected. 

(2) Lipolysis extent in the enriched in tocopherol corn oil digestates. As the data in Table 1 show, 

the triglyceride hydrolysis pattern of these samples is very similar to that found in the digestate of 

corn oil: monoglycerides and glycerol are the main hydrolytic products, followed by diglycerides, 

whose concentration is approximately half that of the other two hydrolytic products. Statistical 

treatment finds no significant differences between the lipolysis pattern and the extent occurred 

during in vitro digestion of the original oil and of the tocopherol enriched samples. Nevertheless, the 

results suggest that enrichment with tocopherols could have had some influence on the hydrolysis 

extent. Data in Table 1 could suggest that a slightly higher degree of hydrolysis took place in samples 

enriched with gamma-tocopherol, than it did in the unenriched oil. However no conclusive results 

were found in the samples enriched with alpha-tocopherol. This potential small effect in the 

tocopherol-enriched samples could be attributed to, among other reasons, to the different interactions 

that these compounds are able to establish with the components of the complex mixture involved in 

the digestion. It must be remembered that these two tocopherols have structural differences that 

translate into differences in polarity and lipophilicity etcetera, and as a consequence in differences in 

their behavior [27]. 

3.2. Bioaccessibility of Oil Main Components 

The bioaccessibility of a compound or a group of compounds has been defined as the quantity 

or fraction of this compound or of the group of compounds, which is released from the food matrix 

into the gastrointestinal tract and becomes available for absorption [28]. As mentioned before, several 

reactions take place during digestion, and consequently, the food components undergo modifications 

in such a way that the amount of food components absorbable after digestion is different from the 

amount present in the original food. The methodology used in this study allows one to determine the 

bioaccessibility of the oil main components. 

The only compounds released during digestion as a result of triglyceride hydrolysis which can 

be absorbed by enterocytes of the intestinal wall are fatty acids and monoglycerides. For this reason, 

the bioaccessibility of oil main components (BOMC), which is totally dependent on the extent and 

pattern of the hydrolysis occurring during digestion, is defined by the ratio between the 

concentration of compounds really absorbable present in the digestate, which are fatty acids plus 

monoglycerides ([FA] + [MG])D and the concentration of all potentially absorbable compounds before 

digestion, which coincides with that of fatty acids plus all acyl groups ([FA] + [AG])D, as indicated in 

the following equation: BOMC = ([FA] + [MG])D/([FA] + [AG])D. All these concentration data can be 
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estimated from the intensities of certain 1H NMR signals of the corresponding samples, by using the 

equations given in the Supplementary Material. The data obtained are given in Table 1. 

These data indicate that the bioaccessibility of these compounds is around 0.70 mol([FA] + 

[MG])D/mol([FA] + [AG])D not only in the corn oil digestate, but also in the digestates of the oil 

samples enriched in tocopherols. That is to say, from every hundred original acyl groups supported 

in the oil triglycerides, nearly seventy are transformed, either into fatty acids or into monoglycerides, 

during digestion, and for this reason are available for absorption. As in the case of the molar 

percentages of the different kinds of glyceryl structures, the differences found between the 

bioaccessibility of oil main components in the original oil and in that enriched with tocopherol are 

not statistically significant. However, the data may suggest that enrichment with gamma-tocopherol 

could slightly favor the bioaccessibility of corn oil triglycerides, whereas enrichment with alpha-

tocopherol could slightly reduce this bioaccessibility. 

3.3. Study of the Occurrence of Oxidation Reactions during in Vitro Digestion of Corn Oil and of Corn Oil 

Samples Enriched in Tocopherols 

As mentioned in the introduction, the occurrence of oxidation reactions during in vitro digestion 

has been described previously [1,2]. In a lipid system, such as corn oil, it is well accepted that 

oxidation first provokes the progressive degradation of its unsaturated acyl groups [29]. This 

degradation yields the so-called primary oxidation compounds, which evolve to give rise to the 

formation of secondary oxidation compounds of very varied nature and size. The study of the 

oxidation process of edible oils can be tackled by means of very different methodologies and 

techniques. Nevertheless, there are two that have great interest, not only by their efficiency, 

versatility, simplicity and rapidity, but also because they are very environmentally friendly and do 

not provoke any chemical modification of the sample, namely 1H NMR spectroscopy and SPME-

GC/MS. The first allows detection of the occurrence of oxidation reactions, not only because it is able 

to quantify the concentration of the different kinds of acyl groups and fatty acids in oil or in lipid 

extracts, but also because it is able to detect, identify, and quantify the compounds formed in 

oxidation processes. SPME-GC/MS is much more sensitive than 1H NMR and allows one to identify 

and semi-quantify only volatile components, among which there may be oxidation markers. For all 

these reasons, both techniques were used to study the potential occurrence of oxidation reactions 

during in vitro digestion. 

3.3.1. Information Provided by 1H NMR Spectroscopy about the Occurrence of Oxidation Reactions 

during in Vitro Digestion  

As mentioned, two main procedures take place during oxidation, namely the degradation of 

unsaturated acyl groups and unsaturated fatty acids and the formation of compounds derived from 

them. This technique is able to evaluate both. 

 Evaluation of the Concentration of Acyl Groups and Fatty Acids Having Linoleic Structure in 

the Corn Oil, in Its Digestate and in Those of Corn Oil Samples Enriched in Tocopherols 

Linoleic is the main unsaturated acyl group in corn oil. After hydrolysis provoked by in vitro 

digestion, linoleic structures of acyl groups and of fatty acids are also the main unsaturated lipid 

structures in the digestates. For this reason, analysis of the concentration of this unsaturated 

structure, both in corn oil and in the lipid extracts of several digestates, will provide information 

concerning the occurrence of its degradation during in vitro digestion. 

As before mentioned, linoleic structures of fatty acids and acyl groups give 1H NMR signals, 

very or totally overlapped, for which reason their concentration can be determined jointly. This can 

be carried out by using equation [eq. S11], given in Supplementary Material. The data obtained, given 

in molar percentage in relation to the total fatty acids plus acyl groups, are shown in Table 2. 
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Table 2. Molar percentage of linoleic fatty acids (FA) plus acyl groups (AG) (FA+AG), in relation to 

the total moles of all kinds of AG and FA, in the corn oil C, in the digestates of this oil DC, and in 

those of the oil samples enriched in gamma- and alpha-tocopherol (DC0.2γT, DC2γT, DC5γT, DC0.2αT, 

DC2αT and DC5αT). Concentration of some oxidation compounds, expressed by mmol per mol of 

AG+FA in the above samples. Different letters within each column indicate statistically significant 

difference among the samples (p < 0.05). 

Samples 

 

Linoleic 

FA+AG (%) 

Concentration of some Oxidation Compounds (mmol/mol(AG + FA)) 

 

  
HPO-

c(Z,E)dEs 

HOc(Z,E) 

dEs 

HO-c(E,E) 

dEs 

KO-c(Z,E) 

dEs 

KO-E-

EPO-E-

mEs 

n- 

Alkanals 

C 49.2±0.5a - - - - - - 

DC 41.3±0.0b 1.8 ±0.31a - - - - - 

DC0.2γT 43.3± 0.0c 1.54±0.27a - - - - - 

DC2γT 43.1±0.2c - - - - - - 

DC5γT 44.4± 0.3c - - - - - - 

DC0.2αT 40.5±0.6b 2.77±0.25 b - - - - - 

DC2αT 40.8± 0.0b 2.21±0.31a,b 1.22±0.07a 2.27±0.00a 0.53±0.03a 0.71±0.00a - 

DC5αT 40.6±1.2b 2.06±0.38a,b 2.78±0.19b 2.43±0.71a 1.09±0.14b 1.12±0.16b 0.27±0.09 

-: not detected; HPO-c(Z,E)dEs: hydroperoxy-conjugated-(Z,E)-dienes; HO-c(Z,E)dEs: hydroxy-

conjugated-(Z,E)-dienes; HO-c(E,E)dEs: hydroxy-conjugated-(E,E)-dienes; KO-c(Z,E)dEs: keto-

conjugated-(Z,E)-dienes; KO-E-EPO-E-mEs: keto-(E)-epoxy-(E)-monoenes. Different letter within 

each column indicate statistically significant difference among the samples (p < 0.05). This is already 

defined in the heading of the table. 

From these data, it is evident that a significant and clear reduction of the molar percentage of 

linoleic structures occurs during the corn oil in vitro digestion, which evidences their degradation. 

However, in the samples enriched with gamma-tocopherol, this reduction is significantly smaller 

than in the non-enriched oil. It can be inferred from these results that this compound has a protective 

effect against the degradation of linoleic structures. Finally, the loss of linoleic structures in the 

digestion of the samples enriched with alpha-tocopherol is slightly higher than that found in the non-

enriched oil, although the differences are not statistically significant. Taking into account that the 

main cause of degradation of these unsaturated structures is oxidation, it could be thought that the 

in vitro digestion of corn oil provokes its oxidation and that while gamma-tocopherol reduces this 

degradative process, alpha-tocopherol could have the opposite effect. If lipid oxidation reactions have 

taken place during in vitro digestion, primary or secondary oxidation compounds, or both, should 

have been generated and they could be detected and quantified by 1H NMR spectroscopy. 

 Study of the Formation of Oxidation Compounds during in Vitro Digestion of Corn Oil and of 

Corn Oil Samples Enriched in Tocopherols 

The first oxidation compounds formed in any oil oxidation process are hydroperoxydes, and 

when they come from linoleic groups, as is the case here, these hydroperoxides are supported on 

chains which also have conjugated dienic systems. These give well known signals in the 1H NMR 

spectra [29]. The degradation of these intermediate compounds generates secondary oxidation 

compounds of very varied nature. Among these latter can be cited hydroxy-dienes [30] and keto-

dienes [7], with known 1H NMR spectral signals. In addition, other derived compounds having much 

more complex structures can also be formed, such as keto-epoxy-monoenes [8] and other ones formed 

in the rupture of secondary oxidation compounds [31] such as aldehydes.1H NMR spectral signals of 

all these compounds are given in Table S4. Their concentration can be estimated from the intensity of 

some of their signals in the spectrum and using equation [eq. S12] as is indicated in point 2.4.3, C. 

(1) Oxidation compounds in corn oil digestate. As Figure 2 shows, the1H NMR spectrum of the 

corn oil (C) has no signals of protons of oxidation compounds. This indicates that this oil has not been 
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oxidized. However, the spectrum of the lipid extract of its digestate (DC) contains signals of protons 

of hydroperoxy-conjugated-(Z,E)-dienes (HPO-c(Z,E)dEs) (see Table S4 and Figure 2). The 

concentration of these compounds in DC is given in Table 2. This is clear evidence that in vitro 

digestion provokes the oxidation of corn oil generating this specific kind of primary oxidation 

compound. 

(2) Oxidation compounds in the digestates of corn oil enriched in gamma-tocopherol. The 1H 

NMR spectrum of the lipid extract of the digestate of corn oil enriched with gamma-tocopherol at the 

lowest concentration essayed (DC0.2γT) also contains signals of hydroperoxy-conjugated-(Z,E)-

dienes (HPO-c(Z,E)dEs) (Figure 2) but, as Table 2 shows, in smaller concentrations than in DC. It is 

noteworthy that, in the 1H NMR spectra of the extracts of the digestates DC2γT and DC5γT, no 

signals of hydroperoxy-conjugated-(Z,E)-dienes, nor those of any other oxidation compound, are 

present (Table 2 and Figure 2). This confirms that gamma-tocopherol acts as an antioxidant during 

this in vitro digestion, reducing the oxidation of corn oil (at an enrichment of 0.2%), or avoiding it 

totally (at enrichments of 2% and 5%). 

(3) Oxidation compounds in the digestates of corn oil enriched in alpha-tocopherol. The effect 

provoked by the enrichment with alpha-tocopherol is the opposite of that provoked by the enrichment 

with gamma-tocopherol. The lipid extract of the digestates of all samples enriched with the first 

compound have a higher oxidation degree than DC. The 1H NMR spectrum of the extract of DC0.2αT 

only shows signals of hydroperoxy-conjugated-(Z,E)-dienes(HPO-c(Z,E)dEs), but as Table 2 shows, 

at a higher concentration than in the extract of DC. At higher concentrations of enrichment with alpha-

tocopherol, the effect is even clearer. As can be observed in Figure 2, not only are there signals of 

hydroperoxy-conjugated-(Z,E)-dienes (HPO-c(Z,E)dEs) in the spectra of extracts of DC2αT and 

DC5αT, but also those of secondary and further oxidation compounds. These latter include signals 

of hydroxy-conjugated-(Z,E)-dienes, (HO-c(Z,E)dEs), such as those of hydroxy-conjugated-(E,E)-

dienes (HO-c(E,E)dEs), such as of keto-conjugated-(Z,E)-dienes (KO-c(Z,E)dEs), as well as of keto-

(E)-epoxy-(E)-monoenes (KO-E-EPO-E-mEs) and of saturated aldehydes. The concentration of 

primary oxidation compounds, in both samples DC2αT and DC5αT, is only slightly higher than in 

DC, but these samples contain other secondary and further oxidation compounds in even higher 

concentrations than those of the primary oxidation compounds, as shown in Table 2. Figure 3 shows 

some of the oxidation compounds with the above-mentioned structures. 
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Figure 3. Chemical structures of some potential oxidation compounds present in the digestates of the 

corn oil samples enriched in alpha-tocopherol. 

These results may lead to several observations:  

(a) In spite of alpha-tocopherol and gamma-tocopherol being known as two forms of Vitamin E, 

their behaviour is totally different during in vitro digestion. The first acts as a prooxidant at the three 

concentrations essayed, in agreement with some previous studies [14,16], whereas the second acts as 

an antioxidant. This difference in behaviour has been also observed in studies of edible oils enriched 

in these compounds submitted to conditions of accelerated storage. In these studies, alpha tocopherol 

exhibits a prooxidant effect, which increases in line with its concentration, whereas gamma-tocopherol 

only accelerates oxidation at very early oxidation stages. However, the global effect in the total 

oxidation process could be considered antioxidant [7–9]. 

(b) Elucidation of the behaviour of a compound as either antioxidant or prooxidant during 

digestion cannot be made exclusively on the basis of the estimation of a parameter such as peroxide 

value or other equivalents. In this study, the concentration of hydroperoxides is fairly similar in DC 

and DC5αT, as Table 2 shows, and from these data it could be concluded that alpha-tocopherol has 

no great influence on the oxidation occurred during digestion, against the evidence. 

(c) In in vitro digestion, which takes place at 37 °C, oil oxidation advances very quickly in 

comparison with experiments on corn oil, or on other oils of similar composition, submitted to 

accelerated storage conditions at 70 °C. In the in vitro digestion of this corn oil, primary and secondary 

or further oxidation compounds are present in the digestates after 6 h and in concentrations of a 

similar order. However, in experiments with corn oil, or with other oils which are rich in linoleic 

groups, submitted to accelerated storage conditions, hydroperoxides can be detected only after at 

least 48 h, or even later, and the appearance of secondary oxidation compounds is sequential, with 

differences of many hours between them, and in very different concentrations [8,29]. These 

differences suggest that both oxidation pathways are very different.  

(d) The fact that fatty acids have smaller oxidative stability than alkyl and glyceryl esters 

suggests that the structural units formed in the oxidation during in vitro digestion, shown in Table 2 

and Figure 3, belong to fatty acids instead of to acyl groups. The immediate consequence is that these 

oxidized fatty acids are able to be absorbed. Their concentrations, given in Table 2 in mmol per mol 

of FA + AG in the digestate, coincide with their bioaccessibility. It should be commented on that the 

bioaccessibility of these oxidation compounds is very low, in the range of between 0.3–2.8 mmol per 

mol of FA + AG in the digestate. The total bioaccessibility of these kinds of compounds ranges from 

1.5 mmol (in the sample enriched with the lowest concentration of gamma-tocopherol) to 8.9 mmol 

(in the sample enriched with the highest level of alpha-tocopherol). Nevertheless, taking into account 

that these oxidized fatty acids are toxic, their absorption has direct detrimental effects on human 

health [6,32–34]. By contrast, these compounds are not present in the digestates of the samples 

enriched with 2% and 5% of gamma-tocopherol, because in the digestion of these samples, no 

oxidation is produced. 

(e) These results are in agreement with the degradation observed in the linoleic structures during 

digestion in the different samples (see Table 2). They also reinforce the differences (not statistically 

significant) found in the BOMC values (see Table 1). 

(f) From all the above mentioned, it can be deduced that an in-depth analysis, case by case, of 

the safety of enriching foods with compounds considered antioxidant should be mandatory, and 

caution should be taken in the indiscriminate intake of certain supplements. It would also be 

advisable to review the suitability of the European legislation that permits enrichment of refined 

edible oils with alpha-tocopherol under the principle of “quantum satis”. 

3.3.2. Information Provided by SPME-GC/MS about the Occurrence of Oxidation Reactions during 

in Vitro Digestion 

The aim of this section is to analyse if the results obtained from 1H NMR data in previous sections 

are confirmed by the information provided by SPME-GC/MS. This technique allows us to estimate 
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the abundance of volatile oxidation markers present in the headspace of the samples. Taking into 

account that the liquid matrix of the samples’ subject of study is similar, the abundance of the same 

volatile component in the different samples is valid for comparative purposes. The most common 

volatile oxidation markers formed in the oxidation of edible oils are well known. These are alkanals, 

(E)-2-alkenals, (E,E)-alkadienals, (Z,E)-alkadienals and oxygenated alpha,beta unsaturated aldehydes. 

Likewise, some furanones and furan derivatives are also well known oil oxidation markers [25]. 

Table 3 gives the abundances of the most important oxidation markers found in the headspace 

of the mixture made up of digestive juice, previously submitted the digestion conditions, and corn 

oil, in the same proportions as those employed in the digestion of the oil, this sample being 

considered as reference sample CDJ. Table 3 also gives the same information referring to the 

digestates of the corn oil DC, and of the corn oil samples enriched in both kinds of tocopherols, with 

a different enrichment degree (DC0.2γT, DC2γT, DC5γT and DC0.2αT, DC2αT, DC5αT). As an 

example, Figure S2 shows the region between 4–34 min of the total ion chromatogram obtained by 

SPME-GC/MS of the digestate of corn oil sample enriched in alpha-tocopherol DC5αT. In it, the peaks 

and retention times of some of the volatile oxidation compounds can be observed.  
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Table 3. Abundances of some aldehydes (alkanals, (E)-2-alkenals, 2,4-alkadienals and oxygenated alpha,beta unsaturated aldehydes), furanones and furan derivatives 

identified by SPME-GC/MS, in the headspace of the mixture of digestive juices and non-enriched corn oil sample (CDJ), in the digestates of the corn oil (DC) and in those 

of oil samples enriched in gamma- and alpha-tocopherol (DC0.2γT, DC2γT, DC5γT DC0.2αT, DC2αT and DC5αT). Data are given in area counts of their mass spectra base 

peak (Bp) multiplied by 10-6, and obtained as an average of two determinations, together with their standard deviations. 

Compound (Molecular Weight)  Bp CDJ DC DC0.2γT DC2γT DC5γT DC0.2αT DC2αT DC5αT 

Aldehydes          

Alkanals          

Pentanal (86)* 44 17.8 ± 0.9 41.4 ± 1.8 36.0 ± 0.5 48.4 ± 2.9 22.3 ± 1.8 41.4 ± 5.4 52.4 ± 7.3 83.9 ± 6.4 

Hexanal (100)* 44 12.9 ± 3.2 76.0 ± 3.1 79.1 ± 11.8 72.4 ± 4.9 45.6 ± 4.9 184.4 ± 12.3 480.6 ± 75.3 604.0 ± 56.0 

Heptanal (114)* 70 0.7 ± 0.0 3.0 ± 1.2 4.4 ± 0.7 3.5 ± 0.5 2.4 ± 0.4 6.8 ± 0.1 51.2 ± 11.7 164.3 ± 2.1 

Octanal (128)* 41 - - - - - - 34.0 ± 6.4 46.4 ± 5.1 

Nonanal (142)* 57 3.3 ± 0.2 11.4 ± 0.3 11.3 ± 0.5 17.0 ± 1.7 17.1 ± 1.1 12.4 ± 1.2 42.6 ± 2.4 69.7 ± 11.4 

Decanal (156)* 41 - - - - - - - 4.6 ± 0.5 

Total  34.7 ± 2.1 131.8 ± 0.1 130.8 ± 12.47 141.3 ± 10.1 87.5 ± 8.3 245.1 ± 5.9 660.8 ± 103.1 972.9 ± 64.4 

 

(E)-2-alkenals 
         

(E)-2-Butenal (70)* 70 19.5 ± 2.8 20.6 ± 3.4 20.8 ± 5.8 16.1 ± 2.3 15.2 ± 2.6 18.2 ± 3.3 20.7 ± 2.3 23.0± 7.8 

(E)-2-Pentenal (84) 55 - - - - - - 1.3 ± 0.0 5.1 ± 1.1 

(Z)-4-Heptenal (112) 41 - - - - - - 3.9 ± 0.7 5.4 ± 0.5 

(E)-2-Heptenal (112)* 41 2.3 ± 0.3 47.4 ± 8.1 40.2 ± 6.4 16.5 ± 8.9 8.8 ± 3.0 64.5 ± 8.7 186.3 ± 28.3 275.0 ± 47.7 

(E)-2-Octenal (126)* 70 - - - - - 42.3 ± 2.2 186.3 ± 26.2 346.3 ± 58.9 

(E)-2-Nonenal (140)* 55 - 1.2 ± 0.2 1.1 ± 0.1 1.4 ± 0.1 1.8 ± 0.1 1.3 ± 0.1 2.8 ± 0.8 4.7 ± 0.4 

(E)-2-Decenal (154)* 70 - - - - - 4.1 ± 0.6 6.7 ± 1.0 10.8 ± 1.8 

(E)-2-Undecenal (168)* 70 - - - - - 0.2 ± 0.0 1.4 ± 0.3 3.0 ± 0.4 

Total  21.8 ± 3.1 69.2 ± 4.9 62.08 ± 12.28 38.9 ± 4.4 25.8 ± 5.4 130.6 ± 8.3 409.3 ± 58.1 673.3 ± 102.0 

2,4-Alkadienals          

(Z,E)-2,4-Heptadienal (110) 81 - - - - - 3.8 ± 0.1 24.0 ± 4.9 38.6 ± 1.6 

(E,E)-2,4-Heptadienal (110)* 81 - - - - - 3.5 ± 0.5 24.4 ± 3.0 36.4 ± 10.5 

(Z,E)-2,4-Octadienal (124) 81 - - - - - - - 1.9 ± 1.0 

(E,E)-2,4-Octadienal (124) 81 - - - - - 0.8 ± 0.0 3.4 ± 0.1 6.1 ± 0.8 
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(E,E)-2,4-Nonadienal (138) 81 - 1.0 ± 0.1 0.7 ± 0.2 0.7 ± 0.1 0.4 ± 0.1 1.2 ± 0.2 1.9 ± 0.2 2.4 ± 0.5 

(Z,E)-2,4-Decadienal (152) 81 - 0.6 ± 0.0 0.4 ± 0.0 0.4 ± 0.1 0.3 ± 0.0 2.6 ± 0.8 19.3 ± 3.1 38.4 ± 10.1 

(E,E)-2,4-Decadienal (152)* 81 - 0.8 ± 0.1 0.5 ± 0.0 0.3 ± 0.1 0.3 ± 0.1 3.3 ± 0.3 15.8 ± 0.5 29.0 ± 13.2 

Total  - 2.4 ± 0.2 1.6 ± 0.3 1.3 ± 0.1 1.0 ± 0.2 15.3 ± 1.6 88.7 ± 11.7 152.8 ± 37.6 

Oxigenated α,β-unsaturated          

4,5-epoxy-(E)-2-heptenal (126) 68 - - - - - - 0.9 ± 0.2 3.1 ± 1.0 

4,5-epoxy-2-decenal (isomer) (168) 68 - - - - - 0.4 ± 0.1 2.7 ± 0.2 4.3 ± 2.2 

4,5-epoxy-(E)-2-decenal (168)* 68 - - - - - 1.1 ± 0.2 10.9 ± 0.4 31.8 ± 0.0 

Total  - - - - - 1.5 ± 0.3 15.0 ± 0.1 41.1 ± 3.2 

Furanones          

5-butyl-5H-furan-2-one (140) 84 - - - - - - 0.9 ± 0.0 1.6 ± 0.1 

5-pentyl-2(3H)-furanone (154) (or isomer) 98 - - - - - - 0.5± 0.0 0.9± 0.2 

5-pentyl-2(5H)-furanone (154) 84 - - - - - - 2.7 ± 0.3 4.4 ± 0.9 

Total  - - - - - - 4.1 ± 0.4 6.9 ± 1.2 

Furan derivatives          

Furan, 2-ethyl (96) 81 - - - - - 0.2 ± 0.1 0.3 ± 0.1 0.6 ± 0.0 

Furan, 2-propyl (110) 81 - - - - - 0.2 ± 0.0 0.6 ± 0.0 0.9 ± 0.1 

Furan, 2-butyl (124) 81 - 0.5 ± 0.0 0.6 ± 0.2 0.6 ± 0.1 0.5 ± 0.1 0.6 ± 0.0 2.5 ± 0.5 5.4 ± 0.1 

Furan, 2-pentyl (138)* 81 4.7 ± 1.4 21.5 ± 1.5 19.8 ± 0.8 19.4 ± 0.5 17.6 ± 1.1 43.5 ± 2.1 186.8 ± 42.8 308.3 ± 21.4 

Furan, 2-heptyl (166) 81 - - - - - - 0.7 ± 0.2 8.3 ± 1.7 

Total  4.7 ± 1.4 22.4 ± 1.5 20.4 ± 0.6 20.1 ± 0.4 18.1 ± 1.0 44.5 ± 2.2 190.8 ± 43.5 316.0 ± 21.5 

*Asterisked compounds were acquired commercially and used as standards for identification purposes; -: not detected. 
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(1) Headspace of the mixture CDJ. It can be observed in Table 3 that, as expected, the headspace 

of the sample reference, CDJ, which contains the undigested corn oil, has the lowest number and 

concentration of oxidation markers of all samples. This is because the oil has not undergone digestion 

and as a consequence has not been oxidized. For this reason, its headspace only contains a reduced 

number of aldehydes, mainly alkanals, at a basal concentration, which is common in all non-oxidized 

edible oils. 

(2) Corn oil digestate headspace. The headspace of the digestate DC contains a higher 

concentration of alkanals, of (E)-2-alkenals and of furan, 2-pentyl than CDJ and some 2,4-alkadienals, 

which are absent in the headspace of CDJ, all well known oxidation markers. The presence of these 

compounds in the headspace of DC proves that the corn oil has undergone oxidation during 

digestion.  

(3) Gamma-tocopherol enriched corn oil samples headspace. The antioxidant effect exhibited by 

gamma-tocopherol can also be inferred by comparison of the headspace composition of DC0.2γT, 

DC2γT and DC5γT samples, with that of the headspace of the sample DC. In the headspace of the 

digestates of the three in gamma-tocopherol enriched samples, the same oxidation markers have been 

found as in DC but in a small abundance in all cases. This may be due to these three samples having 

undergone an oxidation process of a much smaller intensity than DC, resulting from the action of the 

added gamma-tocopherol. In agreement with the results obtained by 1H NMR, this effect is much 

more evident in the most gamma-tocopherol enriched samples (DC2γT and DC5γT), in which the 

abundance of (E)-2-alkenals is of a similar order to that found in CDJ. 

(4) Alpha-tocopherol enriched corn oil samples headspace. The comparison of the headspaces’ 

composition of the digestates of the oil samples enriched in alpha-tocopherol DC0.2αT, DC2αT and 

DC5αT with that of the headspace of DC evidence, beyond a doubt, the prooxidant behaviour of this 

compound. The headspace of this digestate contains not only the oxidation compounds detected in 

DC in much more abundance, but also new oxidation markers, not present in DC, including alkanals, 

(E)-2-alkenals, 2,4-alkadienals and even oxygenated alpha,beta unsaturated aldehydes of known 

toxicity, furanones and a significant number of furan derivatives, some of these in considerable 

abundance. The great abundance of 2,4-alkadienals and furan, 2-pentyl and the presence of a large 

number of oxidation markers which absent in the headspace of DC, evidences the greater prooxidant 

role of alpha-tocopherol, in line with its higher concentration in the oil sample. In summary, the results 

obtained by studying the headspaces of the digestates are in total agreement with those obtained by 
1H NMR.  

In addition, a consideration can also be made, from the comparison between the ratio of the 

abundances of some of these oxidation markers generated under in vitro digestion conditions and 

under accelerated storage conditions. It is known that the oxidation of oils rich in linoleic acyl groups, 

such as corn oil, under accelerated storage conditions, form (E,E)-2,4-decadienals in much more 

abundance than (Z,E)-2,4-decadienals (near 4 times higher) [25,35]. However, under in vitro digestion 

conditions, both alkadienals are formed in similar abundance (see data of DC, DC0.2γT, DC2γT, 

DC5γT and DC0.2αT in Table 3), and in fact the ratio between the abundances of these two oxidation 

markers is reversed in the samples enriched with the higher concentrations of alpha-tocopherol 

(DC2αT and DC5αT). Moreover, the ratio between furan, 2-pentyl and 2,4-decadienals abundances 

is fairly different between oils submitted to accelerated storage conditions and those submitted to in 

vitro digestion. In the first case, this ratio for oils rich in linoleic acyl groups is always smaller than 1 

[25,35]. However, in corn oil samples submitted to in vitro digestion, this ratio is always higher than 

1, with the highest values in those samples with the lowest oxidation level (15.3 ± 2.3 in DC, 22.0 ± 0.1 

in DC0.2γT, 27.7 ± 1.5 in DC2γT, 29.3 ± 2.7 in DC5γT). In fact, among all digestates, those coming 

from the samples enriched in alpha-tocopherol, which have the highest oxidation levels, exhibit the 

lowest values of this ratio (7.3 ± 2.3 in DC0.2αT, 5.3 ± 0.7 in DC2αT, and 4.6 ± 1.5 in DC5αT). This 

shows, in agreement with the previous comments regarding results obtained by 1H NMR, that 

different mechanisms are involved in these two oxidation processes. It should be taken into account 

that nothing happens randomly in oxidation processes, but rather that all reactions are governed by 
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the interactions established between all the components of the sample. Whenever a process is carried 

out under the same conditions with samples of the same composition, the same results are obtained. 

3.4. Bioaccessibility of Gamma- and Alpha-Tocopherols in the Different Digestates. INFLUENCE of 

the Enrichment with Alpha-Tocopherol on the Bioaccessibility of Gamma–Tocopherol Naturally 

Present in Corn Oil 

The concentration of these tocopherols in the corn oil or in the digestates can be determined from 

the intensity of some of their 1H NMR spectral signals, as indicated in the experimental section, by 

using the equation [S 12], shown in Supplementary Material. This is possible because, as Table S5, 

Figure 2 and Figure S1 show, both tocopherols have some spectral signals (gamma-tocopherol a 

singlet at 6.36 ppm and alpha-tocopherol another singlet at 2.16 ppm), not overlapping with either 

that of the oil component signals, nor with those of the oxidation compounds formed during 

digestion. 

In this case, data provided by 1H NMR spectroscopy allow one to estimate the bioaccessibility 

of these compounds, which can be expressed in two different ways, thus providing very complete 

information. One way of describing the bioaccessibility of tocopherols could be through the 

parameter BT, defined by the ratio between the concentration of tocopherol (T) in the digestate (D) 

and the concentration of fatty acids plus acyl groups in the same sample (BT = ([TD]/[FA + AG]D)). This 

parameter informs about the amount of tocopherol (given in mmol) that can be absorbed in relation 

to the amount of the main lipid components in the sample (given in mol). BT allows us to contextualize 

the importance of the bioaccessibility of tocopherols, in quantitative terms, in the whole digestate. In 

addition, this parameter also allows comparison with the bioaccessibility of the other compounds 

before mentioned, which are also present in the digestates, such as the bioaccessible main 

components of the oil and the toxic compounds formed in the oxidation process. 

Another way to express bioaccessibility, B´T, is through the ratio between the concentration of 

tocopherol in the digestate, TD (given in mmol), and the concentration of tocopherol in the oil before 

digestion TO (also given in mmol), (B´T = ([TD]/[TO])). Parameter B´T gives information about the 

amount of this compound lost during in vitro digestion and indicates the fraction of the original 

amount of this compound in the oil that, after digestion, is available to be absorbed. The 

bioaccessibility data obtained for the different samples, estimated using both approaches mentioned, 

are given in Table 4. 

Table 4. Bioaccessibility of gamma-tocopherol (γT) and alpha-tocopherol (αT) in the digestates of the 

different samples, in which these compounds are present, expressed in two different ways. BT = (mmol 

TD/mol (AF+GA) D) and B’T = (mmol TD/mmol TO). Values are the average of two determinations, 

together with their standard deviations. 

Samples BγT B´γT BαT B´αT 

DC 0.33 ± 0.00 0.67 ± 0.00   

DC0.2γT 0.89 ± 0.18 0.65 ± 0.14   

DC2γT 8.55 ± 0.00 0.70 ± 0.01   

DC5γT 35.65 ± 1.12 0.82 ± 0.03   

DC0.2αT 0.33 ± 0.03 0.67 ± 0.01 - - 

DC2αT 0.46 ± 0.02 0.94 ± 0.00 6.36 ± 0.00 0.58 ± 0.00 

DC5αT 0.47 ± 0.04 0.96 ± 0.01 12.91 ± 0.15 0.32 ± 0.00 

-: not detected. 

(1) Regarding the bioaccessibility of gamma-tocopherol naturally present in the corn oil C, the 

BγT value of DC digestate (0.33 ± 0.00 mmol/mol (FA + AG)) indicates that a certain amount of this 

compound remains after in vitro digestion without degrading. This amount is very small in 

comparison with that of the toxic oxidation compounds also present in the same sample (see data in 

Table 2). Moreover, B´γT is 0.67 ± 0.0 mmol/mmol(γTO), indicating that up to around 67% of the gamma-

tocopherol contained in the oil remains in the digestate without degrading and is able to be absorbed. 
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A similar value to this has been found with reference to gamma-tocopherol in the in vitro digestion of 

broccoli [36]. Both parameters, BγT and B´γT, also show that oxidation occurs during this in vitro 

digestion even having gamma-tocopherol, at this low concentration, without degrading. This is not 

surprising because oil oxidation and gamma-tocopherol degradation run in parallel in the oxidation 

of corn oil, under other conditions than these for a certain period of time, that is to say the presence 

of gamma-tocopherol does not avoid oil oxidation, but only slows down the process [35]. 

(2) Regarding the bioaccessibility of gamma-tocopherol in the digestates of the samples enriched 

with this compound. As Table4 shows the BγT values of the digestates are, as could be expected, higher 

as higher the enrichment degree of the sample is. These range between 0.89±0.18 and 35.65 ± 1.12 

mmol/mol (FA + AG). In sample DC0.2γT, in agreement with what takes place in the non-enriched 

sample, oxidation of the oil main components has been produced (see Table 2), although a certain 

amount of undegraded gamma-tocopherol remains in the sample. However, in the samples enriched 

with higher levels of gamma-tocopherol (DC2γT and DC5γT), this compound avoids the oxidation of 

corn oil main components during this in vitro digestion. The ratio between the amount of gamma-

tocopherol that remain undegraded after digestion and the initial, given by B’γT, also shows high 

values (see Table 4), but in all cases a certain amount (between 35%–18%) of gamma-tocopherol has 

been lost due to its degradation, in this case avoiding totally or partially the oil component oxidation 

during in vitro digestion. 

(3) Regarding the bioaccessibility of gamma-tocopherol in the digestates of the samples enriched 

with alpha-tocopherol. The BγT values of these samples, as expected, are small because this compound 

is a minor corn oil component. They are given in Table 4. It is noteworthy that in the digestate of the 

less alpha-tocopherol enriched sample DC0.2αT, BγT reaches the same value as in the digestate of the 

unenriched DC. This indicates that oil enrichment with this small amount of alpha-tocopherol has no 

effect on gamma-tocopherol degradation. Furthermore, in the other two enriched samples DC2αT and 

DC5αT, the BγT value is almost the same for both samples (near 0.46 mmol/mol (FA + AG)). Bearing 

in mind that the concentration of gamma-tocopherol naturally present in corn oil C is 0.49 ± 0.00 

mmol/mol (FA + AG), it is evident that this compound has almost undergone no degradation during 

in vitro digestion in the presence of high concentrations of alpha-tocopherol. As a result, B´γT has the 

same value (0.67 ± 0.01) in sample DC0.2αT as in DC, and reaches 0.94–0.96 values in samples DC2αT 

and DC5αT. It is noteworthy that although gamma-tocopherol acts as an antioxidant, and alpha-

tocopherol as a prooxidant, the concentration of gamma-tocopherol remains unaltered during the in 

vitro digestion in the presence of high concentrations of alpha-tocopherol. This could be due to the 

great difference in concentration between gamma- and alpha-tocopherol in these two latter samples. 

This leads one to think that this great difference in concentration significantly reduces the probability 

of gamma-tocopherol molecules being near the oxidation sites of the oil main components, in 

comparison with that of alpha-tocopherol. This could explain gamma-tocopherol concentration 

remaining unaltered during digestion in these samples. 

(4) Regarding the bioaccessibility of alpha-tocopherol in the digestates of the samples enriched 

with this compound. The bioaccesibility of alpha-tocopherol is null or small depending on the 

enrichment degree. BαT data given in Table 4 indicate that the added alpha-tocopherol degrade during 

digestion to a greater extent than the added gamma-tocopherol. In fact, alpha-tocopherol totally 

degrades in the sample having the smaller enrichment level. For this reason, BαT and B´αT values are 

zero in the less enriched sample. In addition, in the other two samples (DC2αT and DC5αT) B´αT 

shows small values, especially in the most enriched sample. These results are in agreement with 

others recently published [37]. The participation of this compound in the oxidative reactions taking 

place during in vitro digestion could explain their high level of degradation. 

4. Conclusions 

The lipolysis extent reached in the in vitro digestion of corn oil and of samples enriched in gamma- 

and alpha-tocopherol is high and of a similar order in all cases. The effect of the enrichment with these 

compounds does not provokes significant changes in this process, even if the results could suggest a 

slightly increase in lipolysis extent in the case of enrichment with gamma-tocopherol and a slight 
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decrease in the case of alpha-tocopherol. These subtle differences could be attributed to the small 

differences in polarity and in other molecular characteristics of both tocopherols. The lipolysis pattern 

is also very similar in all samples, glycerol and mono-glycerides being the main glyceride structures 

present in the digestates, followed by triglycerides. However, diglycerides are the structures of which 

abundance is the smallest. This hydrolytic pattern could be considered typical of the enzymatic 

cocktail and digestive juices used. As a consequence of the high lipolysis extent and of its pattern, 

high bioaccessibility is reached for oil main components, namely fatty acids and monoglycerides. 

This ranges between 0.64 and 0.72 mol ([FA] + [MG])D/mol([FA] + [AG])D. The subtle differences 

among samples, regarding the lipolysis extent, are also translated to bioaccesibility of oil main 

components: the highest value is exhibited by the sample most enriched with gamma-tocopherol, and 

the opposite is true for the sample most enriched with alpha-tocopherol. 

In agreement with several previous studies, it is again confirmed that in vitro digestion provokes 

lipid oxidation. This is confirmed by the clear diminution of linoleic structures in the digestate in 

relation to those existing in the oil, which prove their degradation during in vitro digestion. The 

analysis of the concentration of these linoleic structures in the digestates of the oil samples enriched 

in gamma- and in alpha-tocopherol indicates that the former tocopherol avoids, to a certain degree, the 

degradation of linoleic, acting as an antioxidant, whereas the opposite is true for the latter compound. 

It has been proved that enrichment of the oil with gamma-tocopherol at a level of 2% in weight or 

higher avoids oil component oxidation during in vitro digestion. However, an enrichment level of 0.2 

in the weight of gamma-tocopherol, barely brings about a reduction in oxidation degree. From these 

results, it is evident that this compound behaves as an antioxidant. However, alpha-tocopherol 

behaves as a prooxidant, in line with its higher enrichment degree. Oxidation under in vitro digestion 

conditions evolves at a very high rate, generating very different oxidation compounds in 

concentrations of a similar order, unlike what happens in other oxidation processes. At high 

enrichment degrees of alpha-tocopherol, hydroperoxy-, hydroxy- and keto-conjugated dienes as well 

as keto-E-epoxy-E-monoenes and aldehydes have been detected in the digestates, all of them well 

known oxidation markers, and some of them associated to degenerative diseases. The study of the 

volatile components of the different digestates leads to the same conclusions regarding the behaviour 

of gamma-tocopherol as an antioxidant and of alpha-tocopherol as a prooxidant. Once again, the 

usefulness of the two techniques employed in this study is proven, as well as the need to use as many 

oxidation markers as possible, in order to have the most complete picture as possible of the oxidation 

process, and in order to avoid erroneous interpretations. 

The bioaccessibility of the naturally present gamma-tocopherol in the corn oil cannot be 

considered low, although a certain amount of this compound has been lost during in vitro digestion. 

Nevertheless, this bioaccessibility is smaller than that of the toxic oxidation compounds generated 

during in vitro digestion. Gamma-tocopherol bioaccessibility in the samples enriched in this 

compound is higher, when the enrichment level is higher, showing high values, in addition to 

avoiding the oxidation of oil components during in vitro digestion. The bioaccessibility of the 

naturally present gamma-tocopherol in the oil samples enriched in alpha-tocopherol is nearly one 

hundred percent in the most enriched samples, in spite of alpha-tocopherol provoking oil component 

oxidation in line with its higher enrichment degree. By contrast, alpha-tocopherol exhibits a low 

bioaccessibility, being even null in the less enriched sample, probably due to its behaviour as a 

prooxidant. Thus, the safety of the intake of supplements which are rich in alpha-tocopherol should 

be the subject of broader and deeper studies. Likewise, the suitability of European legislation that 

allows enriching edible oils with this compound under the principle of “quantum satis” should be 

reviewed. 

Supplementary Materials: The following are available online at www.mdpi.com/2076-3921/9/3/246/s1, Table S1: 

Composition and pH values of the juices employed in the in vitro digestion model employed in this study; Table 

S2: Chemical shift assignments and multiplicities of the 1H NMR signals in CDCl3 of protons of glycerides. TG: 

triglycerides; DG: diglycerides; MG: monoglycerides. The signal letters agree with those given in Figure 1; Table 

S3: Chemical shift assignments and multiplicities of the 1H NMR signals in CDCl3 of protons of acyl groups and 

fatty acids. AG: acyl groups; FA: fatty acids. The signal letters agree with those given in Figure 1; Table S4: 
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Chemical shift assignments and multiplicities of the 1H NMR signals in CDCl3 of protons of some oxidation 

compounds detected in the digestates and formed during the in vitro digestion. The signal letters agree with 

those given in Figure 2; Table S5: Chemical shift assignments and multiplicities of the 1H NMR signals in CDCl3 

of protons of gamma- and alpha-tocopherol present in the samples before and after in vitro digestion. The signal 

letters agree with those given in Figure 2; Figure S1: Chemical structures of tocopherols involved in this of study, 

together with some chemical shifts (ppm) of some of their hydrogen atoms. Equations used for the quantification 

from 1H NMR spectral data of several compounds present in the starting samples and/or in the lipid extracts of 

the digestates. Figure S2: Region between 4-34 min of the total ion chromatogram obtained by SPME-GC/MS of 

the digestate of corn oil sample enriched in alpha-tocopherol DC5αT. Peaks identified: (1) pentanal; (2) hexanal; 

(3) furan, 2-butyl; (4) heptanal; (5) (E)-2-heptenal; (6) furan, 2-pentyl; (7) (Z,E)-2,4-heptadienal; (8) (E,E)-2,4-

heptadienal; (9) (E)-2-octenal; (10) nonanal; (11) (E)-2-nonenal; (12) decanal; (13) (E)-2-decenal; (14) (Z,E)-2,4-

decadienal; (15) (E,E)-2,4-decadienal; (16) 5-pentyl-2(5H)-furanone; (17) 4,5-epoxy-2-decenal (isomer); (18) 4,5-

epoxy-(E)-2-decenal. 
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