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Abstract: Atopic dermatitis (AD) is a chronic, inflammatory skin disease that persists or repeatedly
recurs in both childhood and adulthood. Urtica thunbergiana (UT) is an aroma herb with little-known
pharmacological effects and anti-inflammatory activities against AD. This study investigated the
immunomodulatory efficacy of 50% ethanol-extracted UT in necrosis factor-alpha/interferon-
gamma (TNF-a/IFN-y)-stimulated HaCaT cells in vitro and AD-Biostir-induced NC/Nga mice in
vivo. The results showed that UT exhibits a dose-dependent increase in scavenged free radicals,
reaching 76.0% + 1.4% of scavenged 1,1-diphenyl-2-picrylhydrazyl at a concentration of 250
pg/mL. In addition, UT significantly downregulated the mRNA expression of the following pro-
inflammatory cytokines and chemokines in TNF-a/IFN-y-stimulated HaCaT cells: interleukin (IL)-
6, IL-8, thymus- and activation-regulated chemokine, macrophage-derived chemokine, and
regulated on activation normal T expressed and secreted. UT-treated HaCaT cells showed inhibition
of the overexpression of chemokine-regulated signaling molecules, such as nuclear factor-kappa B,
inhibitor of kappa B (IxBa), signal transducer and activator of transcription 1, and mitogen-
activated protein kinases (MAPKSs). UT dietary administration in AD-Biostir-induced NC/Nga mice
treated and improved AD-like symptoms, such as scales, epidermal thickening, the dermatitis
severity score, high trans-epidermal water loss, reduced skin hydration, increased mast cells,
elevated serum immunoglobulin E levels, and an enlarged spleen. UT treatment inhibited the
expression of phosphorylated forms of MAPKSs, nuclear factor of activated T-cells 1, and regulator
IBa. It also upregulated filaggrin (FLG) production. Therefore, UT shows high anti-AD activity
both in vitro and in vivo, and can be a useful anti-AD agent.

Keywords: Urtica thunbergiana; atopic dermatitis; NC/Nga mice; keratinocytes; Biostir; TNF-ot/IFN-
v

1. Introduction

Atopic dermatitis (AD) is a chronic, relapsing inflammatory disease of the skin, which is
characterized by inflamed skin, pruritus, redness, and blisters with oozing and crusting through dry,
rough skin. Intense pruritus leads to the behavior of scratching, which is an important symptom of
AD associated with filaggrin (FLG)-regulated epidermis disruption [1]. AD onset is attributed to
defective immune cells, including keratinocytes, monocytes, and Langerhans cells. These defective
cells are hypersensitive to environmental agents, such as dust mites, food, weeds, and bacteria,
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leading to an overwhelming immune and inflammatory response. CC chemokines, such as thymus-
and activation-regulated chemokine/CC chemokine ligand 17 (TARC/CCL17), macrophage-derived
chemokine/CC chemokine ligand 22 (MDC/CCL22), regulated on activation normal T expressed, and
secreted/CC chemokine ligand 15 (RANTES/CCLS5), and interleukins (ILs), are key mediators in the
inflammatory response in skin diseases such as AD, subsequently upregulating the B-cell synthesis
of immunoglobulin E (IgE) [2]. Studies have shown that cell inflammatory signaling molecules, such
as Janus kinase (JAK)/signal transducer, and activator of transcription (STAT), mitogen-activated
protein kinases (MAPKSs), and nuclear factor-kappa B (NF-kB), are involved in the development,
immunity, cellular differentiation, and homeostasis of AD [3].

Topical corticosteroids are important anti-inflammatory drugs that alleviate redness, itching,
and inflammation, and have been the mainstay of AD treatment for the past few decades [4]. Topical
corticosteroids are not ideal because when used for a long time, they have side effects, such as
cutaneous atrophy, immunosuppression, and thinning of the skin [5]. Tacrolimus, an
immunosuppressive agent, is an alternative to topical corticosteroids, as a calcineurin inhibitor [6,7].
It is useful for treating thin-skin areas, such as the face and flexures [6]. However, tacrolimus has side
effects, such as skin burning, hypertension, nephrotoxicity, and renal injury [8,9]. Therefore, it is
necessary to improve treatment safety and find an alternative cure for AD.

Herbal plant extracts are promising agents in AD treatment because they have fewer side effects
and are safer to use compared to chemical medicines. Urtica thunbergiana (UT) is a Korean traditional
medicine used to treat a variety of diseases, such as eczema, hematuria, jaundice, menorrhagia,
autoimmune disorders, cancer, diabetes, and anemia [10]. However, its effects on AD pathogenesis
have not been studied. The pharmacological activities of U. dioica, on the other hand, such as its anti-
inflammatory, antiallergic, immunomodulatory, antioxidant, anticolitis, and anticancer activities,
have been widely investigated (Table 1). In ethanol-extracted UT, the active phenolic compounds are
caffeic acid (CA) and chlorogenic acid (CGA), which can ameliorate allergic diseases (Table 2). This
study investigated the promising inhibitory effects of UT on in vitro and in vivo AD models. In in
vitro experiments, the tumor necrosis factor-alpha/interferon-gamma (TNF-a/IFN-y)-induced
production of pro-inflammatory cytokines and chemokines, as well as the regulatory mechanism of
the signaling pathway, were analyzed in human immortal keratinocyte HaCaT cells. In in vivo
experiments, clinical dermatitis severity scores, histological changes, serum IgE levels, skin barrier
abnormalities, and the expression of AD-related protein markers were examined in an AD-Biostir-
induced NC/Nga mice model, which is a well-described animal model for AD, possessing typical
clinical traits of AD. NC/Nga mice do not exhibit AD-like symptoms in specific-pathogen-free (SPF)
conditions; however, the recruitment of antigen exposure is able to develop dermal immunologic
hypersensitivity reactions [11].

Table 1. Pharmacological activities of Urtica species.

Pharmacological ~ Animals/Cell Reference
. . . Inducers
Activity Lines PMID* or DOI**

Swiss mice Acetic acid-induced writhing

. ’ and carrageenan-induced paw 25050274 [12]
Wistar rats

edema
A high-fat di low-
Albino rats igh-fat diet and low-dose 23159471 [13]
streptozotocin

Anti- Trinitrobenzene sulfonic acid
inflammatory Rats . .. 21861725 [14]
induced colitis
effect T
Nicotine-induced damage on
Mice sperm parameters, testosterone,

and testis tissue

25071848 [15]

Macrophage

immune cells Lipopolysaccharide treatment 23092723 [16]
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In-vitro assay

Biosynthesis of arachidonic acid
metabolites in Rheumatoid
arthritis

Wistar rats

Streptozotocin-induced diabetic

3 of 16

8821518 [17]

23036051 [18]

rats
Human 50 women with type 2 diabetes 28078249 [19]
Rats Ove.llbumm-m'duced 28385108 [20]
inflammation
Ischaemia and reperfusion
Rats 27389487 [21]
model
Anti-oxi t tetrachloride-treat

nti-oxidan Rats Carbon tetrachloride-treated 16425366 [22]

effect

rats

In-vitro assay

DPPH scavenging activities

Rats

Imidacloprid on endocrine
disruption and ovarian
morphometric

26788318 [23]

29091903 [24]

Anti-arthritic

Balb/c mice

Type II collagen-induced

22001857 [25]

effect arthritis
Anti-rheumatic Human
chondrocyte IL-1beta treatment 11962753 [26]
effect
cells
BHK-21 cell
line « Dengue virus serotype 2 29548293 [27]
Anti-viral effect Feline Kid
eline kidney L o .
Crandell cells Feline immunodeficiency virus 15814267 [28]

Anti-bacterial
effect

In vitro assay

DPPH, ABTS, 3-carotene, and
FRAP scavenging activities

28084125 [29]

Against food spoiling Bacillus
pumilus, Shigella spp. and
Enterococcus gallinarum, and
Clavibacter michiganensis,

23067263 [30]

Anti-dementia

offect Rats Sporadic Alzheimer's disease 27563424 [31]
Mice D-galactose-induced aging 27352539 [32]
Anti-aging effect Mice, . . 10.1016/;.jf£.2017.07.004
Fibroblasts UVB-induced aging 33]
Human
Anti-cancer effect  prostate cancer None 27064877 [34]
cells
Anti-diabetic Sprague-

Streptozotocin-induced diabetes

29749986 [35]

effect Dawley rats
* PMID: PubMed Identifier; ** DOI: Digital Object Identifier.
Table 2. Pharmacological activities of active phenolic compounds.
. . . . Reference
Phytochemical Structure Pharmacological Activity
PMID
Anti-inflammation 23146752 [36]
Anti-atopic dermatitis 26104582 [37]
Caffic acid Anti-bacteria 12495706 [38]

Anti-oxidation 22209001 [39]

Immunomodulation 8799159 [40]
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2N Anti-proliferation 21116690 [41]

Anti-inflammation 25172696 [42]

o 0‘1}_0“ Anti-atopic dermatitis 27104513 [43]

\ Anti-tumor 18456581 [44]

Chlorogenic acid oL Anti-oxidant 20933071 [45]
|}f i ! Immunomodulation 25414772 [46]

07N Anti-viral 28393840 [47]

H

PMID: The PubMed IDentifier is a unique number assigned to each Pubmed record. The structures
were downloaded from pubchem.

2. Materials and Methods

2.1. Sample Preparation

Dried UT leaves were purchased from Luvama Nature Co., Ltd. (Gyeonggi-do, Korea), and 5 g
of dried UT was extracted using 500 mL of 50% ethanol in a digital orbital shaker (SHO-1D; Daihan,
Korea) for 24 h at 24-25 °C three times. After incubation, the extract was filtered and evaporated
under vacuum at 40 °C, providing a yield of 14.6% (w/v). The active phenolic compounds of UT
detected were the same as described by Hwang et al. [33].

2.2. DPPH Scavenging Activity

The antioxidative activity of UT was determined using a 1,1-diphenyl-2-picrylhydrazyl (DPPH)
assay. Samples and the positive control, ascorbic acid (Sigma-Aldrich, St, Louis, MO, USA), were
analyzed at various concentrations of 1, 10, 50, 100, and 250 pg/mL, with 0.2 mM DPPH. The
absorbance wavelength was recorded at 520 nm using a FilterMax F5 microplate reader (Molecular
Devices, San Francisco, CA, USA).

2.3. Cell Culture, UT Treatment, and Stimulation

HaCaT cell lines originating from human keratinocytes were purchased from the Korea cell line
bank (Seoul, Korea). HaCaTs were cultured in Dulbecco’s Modified Eagle Medium (DMEM) with
10% heat-inactivated fetal bovine serum (FBS; Gibco-BRL, NY, USA). The cells were seeded at
densities of 5.0 x 10° cells/mL and 1.0 x 10° cells/mL. Inflammatory responses were stimulated in
HaCaT cells by treatment with 10 ng/mL of TNF-a/ IEN-y (Sigma-Aldrich). Next, 1-100 ug/mL of the
UT extract was supplemented to the cell culture. Samples were first incubated for 30 min, and the
cells were subsequently induced with 10 ng/mL of TNF-a and IFN-y for 30 min or 24 h.

2.4. MTT Assay

3-(4,5-dimethylthiazol-2-Y1)-2,5-diphenyltetrazolium bromide (MTT) reagent (Sigma-Aldrich)
at the concentration of 1 mg/mL was added to the cell culture at 37 °C in a CO:2 incubator. After all
supernatants were discarded, formazan crystals was dissolved by using dimethyl sulfoxide (DMSO).
The absorbance wavelength was recorded at 570 nm using a FilterMax F5 microplate reader.

2.5. Reverse Transcription Polymerase Chain Reaction
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RNA was extracted from HaCaT cells using TRIzol (Invitrogen, MA, USA), according to the
manufacturer’s instructions. Complementary DNA (cDNA) was synthesized using reverse
transcriptase and oligo-(dT)1s dimer (Bioneer Co., Korea). A polymerase chain reaction (PCR) was
performed using a PCR premix (Bioneer Co.) in a Veriti Thermal Cycler (Applied Biosystems, CA,
USA). Primers for TARC/CCL17, MDC/CCL22, RANTES, IL-6, and IL-8 are described in Table 3.
Finally, PCR products were separated by agarose gel electrophoresis.

Table 3. Polymerase chain reaction (PCR) primers used in this experiment.

Gene Sense Antisense
TARC/CCL17 ATGGCCCCACTGAAGATGCT TGAACACCAACGGTGGAGGT
MDC/CCL22 AGGACAGAGCATGGCTCGCCTACAGA TAATGGCAGGGAGGTAGGGCTCCTGA
RANTES CCCCGTGCCCACATCAAGGAGTATTT CGTCCAGCCTGGGGAAGGTTTTTGTA
IL-6 CTCCTTCTCCACAAGCGCC GCCGAAGAGCCCTCAGGC
IL-8 TCAGTGCATAAAGACATACTCC TGGCATCTTCACTGATTCTTG

2.6. Induction of AD-Like Skin Lesions and Topical Application

Six-week-old male NC/Nga mice (body weight of 21-26 g) were purchased from Central Lab
Animals, Inc. (Seoul, Korea). The mice were randomly divided into five groups of five mice per cage
in standardized conditions. They were adapted for 2 weeks before the study, during which time, one
mouse died. The experimental protocol KHUASP(SE)-17-014 was approved by the Institutional
Animal Care and Use Committee of Kyung Hee University, Korea.

Eight-week-old male NC/Nga mice were exposed to Biostir-AD (Biostir, Kobe, Japan), according
to the manufacturer’s instructions [48]. The hair of mice was removed, and 150 uL of 4% (w/v) sodium
dodecyl sulfate (SDS) was applied to the dorsal skin. After drying, 100 mg/mouse/time of Biostir-AD
was applied twice a week for 3 weeks. Twenty-five mice were divided into five groups of five mice
per cage: group 1, normal (distilled water only); group 2, control (Biostir-AD + distilled water); group
3, 0.1% tacrolimus (Biostir-AD + 0.1% tacrolimus in distilled water [positive control]; 4 mice/cage);
group 4, 0.1% UT (Biostir-AD + 0.1% UT in distilled water); and group 5, 1% UT (Biostir-AD + 1% UT
in distilled water). Samples were applied thrice a week for 3 weeks.

2.7. Measurement of Secretion Proteins

MDC/CCL22 and TARC/CCL17 concentrations of cell supernatants were measured using
commercially available enzyme-linked immunosorbent assay (ELISA) kits (R&D Systems, MN, USA).
In in vivo experiments, blood was drawn from NC/Nga mice and centrifuged at 14,000 x g for 20 min
at 4 °C. The supernatant’s serum IgE levels were evaluated using a mouse IgE ELISA kit (BD
Bioscience, San Jose, CA, USA), based on the manufacturer’s instructions.

2.8. Evaluation of AD-Like Skin Symptoms

The relative AD severity was evaluated macroscopically on the basis of the following five
symptoms: erythema, edema, erosion, dryness, and lichenification [49-51]. The total dermatitis
severity score was defined as the sum of component scores (0, no symptoms; 1, mild; 2, moderate; 3,
severe), ranging from 0 to 15. Dermatitis scoring was recorded by using a blind test during the
experimental period.

2.9. Evaluation of Scratching Behavior

Scratching behavior was measured once a week for 3 weeks [52]. All groups were videotaped
for 15 min per mouse using a digital camera placed on the top of the cages. One scratching bout was
defined as a series of scratching movements by the hind paw.

2.10. Measurement of Physiological and Histological Skin Functions
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Subcutaneous hydration, trans-epidermal water loss (TEWL), and the erythema index (EI) were
measured using appropriate probes (DermaLab® Combo, Cortex Technology, Denmark). The mice
were euthanized, and the skin of mice was fixed in 4% paraformaldehyde for 24 h. Dorsal skin
specimens were embedded in paraffin, 10-pm-thick slices were cut, and the slices were stained with
hematoxylin and eosin (H&E) or toluidine blue (TB).

2.11. Western Blot Analysis

Cell lysates were prepared in lysis buffer. Protein concentrations were determined using
Bradford reagent (Bio-Rad, Hercules, CA, USA) with bovine serum albumin (BSA) as the standard.
Equal amounts of total protein were electrophoresed using SDS-polyacrylamide gel electrophoresis
(SDS-PAGE) and then transferred to a nitrocellulose membrane (Amersham Pharmacia Biotech,
Buckinghamshire, UK). Transfer membranes were blocked, and a primary antibody was added
(Santa Cruz Biotechnologies, CA, USA) overnight. After incubation with a secondary antibody (Cell
Signaling, MA, USA), protein levels were determined using electrochemiluminescence (ECL)
detection reagents (Fujifilm, LAS-4000, Tokyo, Japan) and ImageMaster™ 17 2D Elite software
version 3.1 (Amersham Pharmacia Biotech, Piscataway, NJ, USA).

2.12. Statistical Analysis

Data were expressed as the mean + standard deviation (SD). One-way analysis of variance
(ANOVA) was used for a statistical comparison of different treatments. GraphPad Prism 5.0
(GraphPad Software Inc., San Diego, CA, USA) was used. P < 0.05 was considered statistically
significant. *P < 0.05 was considered statistically significant compared to either basal cells or Biostir-
untreated mice, while "P < 0.05 was considered statistically significant compared to either only TNE-
a/IFN-y-induced keratinocytes or only the AD-induced group.

3. Results

3.1. Antioxidative Activity of UT

The free-radical inhibition activity of UT increased dose-dependently; the DPPH inhibition ratio
of UT at a concentration of 250 pug/mL was 76.0% + 1.4% (Figure 1A).
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Figure 1. Antioxidant activity and effects of UT on secreted protein expression in TNF-a/IFN-vy-
stimulated HaCaT cells. (A) DPPH radical-scavenging activity of UT. (B) Effects of UT on cell viability,
(C) TARC secretion, and (D) MDC secretion. Values shown are the mean + SD. #Significant differences
from group 1 and the TNF-a/IFN-y-induced group (*/P < 0.001). *Significant differences from the
TNEF-a/IFN-y-induced group and groups 3, 4, and 5 (*P < 0.05; **P < 0.01; **P < 0.001). UT, Urtica
thunbergiana;, TNF-a, tumor necrosis factor-alpha; IFN-y, interferon-gamma; DPPH, 1,1-diphenyl-2-
picrylhydrazyl; TARC, thymus- and activation-regulated chemokine; MDC, macrophage-derived
chemokine; SD, standard deviation.

3.2. Effects of UT on Cell Viability and TARC and MDC Production in TNF-a/IFN-y-Stimulated HaCaT
Cells

UT treatment induced no remarkable cytotoxicity compared to unstimulated conditions (Figure
1B). Therefore, we used UT concentrations of 10 and 100 pg/mL in subsequent experiments. TNF-
a/IFN-y stimulation increased TARC and MDC production in HaCaT cells by 579.4% and 1193.0%,
respectively, compared to unstimulated cells (Figure 1C,D). However, a UT concentration of 100
pg/mL inhibited TARC overproduction by 57.7% and MDC overproduction by 68.7% compared to
only TNF-a/IFN-y-stimulated cells.

3.3. Inhibitory Effects of UT on mRNA Expression of Pro-Inflammatory Cytokines and Chemokines in TNF-
a/IFN-y-Stimulated HaCaT Cells

TNF-a/IFN-y treatment increased the mRNA expression of TARC, MDC, RANTES, IL-6, and IL-
8 by 354.3%, 381.4%, 173.5%, 123.3%, and 150.7%, respectively, compared to unstimulated conditions
(Figure 2A-F). UT treatment significantly inhibited this overexpression; a UT concentration of 100
ug/mL decreased TARC expression by 67.6% and IL-8 expression by 62.8% compared to only TNF-
a/IFN-y-stimulated cells.
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Figure 2. Effect of UT on mRNA expression in TNF-o/IFN-y-stimulated HaCaT cells. (A) mRNA
expression of IL-6, IL-8, TARC, MDC, and RANTES in HaCaT cells under TNEF-o/IFN-y-treated
conditions. An equimolar quantity of mRNA was quantified compared to GAPDH: IL-6 (B), IL-8 (C),
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TARC (D), MDC (E), and RANTES (F). Values shown are the mean + SD. #Significant differences from
group 1 and the TNF-a/IFN-y-induced group (*P < 0.01; ##P < 0.001; **P < 0.001). *Significant
differences from the TNF-a/IFN-y-induced group and groups 3, 4, and 5 (*P < 0.05; **P < 0.01; **P <
0.001). UT, Urtica thunbergiana; TNF-a, tumor necrosis factor-alpha; IFN-y, interferon-gamma;
mRNA, messenger RNA; IL, interleukin; TARC, thymus- and activation-regulated chemokine; MDC,
macrophage-derived chemokine; RANTES, regulated on activation normal T expressed and secreted;

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; SD, standard deviation.

3.4. Inhibitory Effects of UT on NF-xB/STAT1 and MAPKs in TNF-a/IFN-y-Stimulated HaCaT Cells

As shown in Figure 3, TNF-a/IFN-y treatment triggered NF-kB, inhibitor of kappa B alpha
(IxBa), inhibitor of kappa B kinase alpha/beta (Ixka/), STATI, c-Jun N-terminal kinase (JNK), p38,
and extracellular-signal-regulated kinase (ERK) phosphorylation by 236.3%, 987.1%, 165.6%, 361.9%,
180.1%, 1677.0%, and 232.6%, respectively. More importantly, UT pretreatment reversed these
changes, and UT treatment at concentrations of 10 and 100 pg/mL effectively inhibited the
phosphorylation of these signaling molecules.
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Figure 3. Effect of UT on NF-kB/STAT1 and MAPK signaling pathways in TNF-a/IFN-y-stimulated
HaCaT cells. (A) NF-xB, IxBa, Ickat/, STAT1, JNK, p38, and ERK phosphorylation was assessed by
western blot analysis. Band intensities for p-NF-«B (B), p-Iickat/3 (C), p-IxBa (D), p-STAT1 (E), p-JNK
(F), p-p38 (G), and p-ERK (H) were quantified by densitometry, normalized to the level of B-actin,
and calculated as a percentage of the basal response. Values shown are the mean + SD. #Significant
differences from group 1 and the TNF-a/IFN-y-induced group (P < 0.001). *Significant differences
from the TNF-a/IFN-y-induced group and groups 3, 4, and 5 (*P < 0.05; **P < 0.01; **P < 0.001). UT,
Urtica thunbergiana, NF-kB, nuclear factor-kappa B; STATI, signal transducer, and activator of
transcription 1; MAPK, mitogen-activated protein kinase; TNF-a, tumor necrosis factor-alpha; IFN-v,
interferon-gamma; IxBa, inhibitor of kappa B alpha; Ixia/p, inhibitor of kappa kinase alpha; JNK, c-
Jun N-terminal kinase; ERK, extracellular-signal-regulated kinase; SD, standard deviation.

3.5. Effect of UT on AD Symptoms on Mouse Skin

We observed the typical symptoms of AD on NC/Nga mouse skin, including increased
scratching behavior, followed by the rapid development of erythematous and erosive lesions with
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edema, resulting in skin lichenification (Figure 4A). These skin lesions were treated by 0.1%
tacrolimus and 1% UT (Figure 4B). Compared to group 1, no noticeable changes in body weight were
observed in the other groups (Figure 4C). Furthermore, no abnormal symptoms were recorded in all
groups, indicating that the tested samples ensure safety, without toxicity or adverse effects.

The dermatitis severity was determined on the basis of the sum of the score for each symptom
once a week for 3 weeks. In AD-induced mice, skin symptoms such as erythema, edema, erosion,
dryness, and lichenification were observed [50,51]. After 3 weeks, topical Biostir-AD-administered
mice exhibited all typical symptoms of AD, with a maximum dermatitis score of 7.2 + 2.2. The topical
application of tacrolimus and UT significantly improved these symptoms (Figure 4D). The most
effective sample in decreasing AD symptoms on NC/Nga mouse skin was 1% UT compared to 0.1%
tacrolimus and 0.1% UT.

A variety of responses in AD can influence the weight of immune organs, such as the spleen. In
group 2, the spleen weight significantly increased by 202.7% compared to group 1 (Figure 4E,F).
However, the use of tacrolimus and UT decreased the spleen weight. In groups 4 and 5, the spleen
weight significantly decreased by 28.4% and 31.8%, respectively, compared to group 2.

In group 2, the number of scratches was significantly increased by 25 times by the topical
application of Biostir-AD, compared to group 1. The topical application of tacrolimus and UT for 3
weeks significantly decreased the number of scratches by 87.6% in group 3, 84.7% in group 4, and
76.6% in group 5, compared to group 2 (Figure 4G).
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Figure 4. Effect of UT on AD symptoms on NC/Nga mouse skin. NC/Nga mice exposed to Biostir-AD
after 3 weeks (A), AD-like symptoms on mouse skin (B), effect of UT treatment on body weight (C),
dermatitis severity score (D), spleen size (E), spleen weight (F), and number of scratches (G) after 3
weeks of Biostir-AD exposure. Values shown are the mean + SD. (1 = 5 mice per group; #P <0.01 and
##P < 0.001 group 1 vs. group 2; *P < 0.05, **P < 0.01, and ***P < 0.001, group 2 vs. groups 3, 4, and 5).
UT, Urtica thunbergiana; AD, atopic dermatitis; SD, standard deviation.
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3.6. Effect of UT on Histological and Biophysical Characteristics of AD-Induced Skin

Epidermal thickness significantly decreased in groups 3, 4, and 5 compared to group 2 (Figure
5A,B). In group 5, epidermal thickness improved to 16.9 + 5.2 um, while in group 1, this was 12.7 +
2.7 um. Groups 3, 4, and 5 also showed a decrease in the elevated number of mast cells on the skin
(Figure 5C).

AD can cause skin dryness and increased EI [53,54]. At the end of 3 weeks, subcutaneous
hydration decreased by 87.2% in group 2 compared to group 1. In contrast, TEWL and EI increased
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by 278.1% and 962.2%, respectively (Figure 5D,E). The topical application of tacrolimus and UT
improved these physiological changes. Subcutaneous hydration significantly increased by >600%,
while TEWL and EI decreased by 40.9% and 49.7% in group 5.

In group 2, serum IgE levels increased by 3320.5% compared to group 2 (Figure 5F) and
significantly decreased in groups 3, 4, and 5. Both groups 4 and 5 exhibited a reduction of serum IgE
levels by 66.8% and 62.0%, respectively, compared to group 2 (Figure 5G).

< 'pCc01% C  Normal Conrolg PC0.1% E

[ SC hydration
N TEWL

UT 0.1% UT 1%

N c PC 0.1% UT 0.1%UT 1%

: i
B _ i
Normal I Control PCO.}% I
UT 0.1% i UT l%:

Figure 5. Clinical observations of effects of UT treatment on AD-like skin lesions in NC/Nga mice.
Photomicrographs of H&E-stained sections (A), epidermal thickness (B), and TB-stained sections (C).
Effects of UT treatment on EI (D), skin barrier function (E), and serum IgE levels (F). Values shown
are the mean + SD. (n = 5 mice per group; #P < 0.01 and ##P <0.001 group 1 vs. group 2; *P < 0.05, **P
<0.01, and ***P <0.001, group 2 vs. groups 3, 4, and 5). UT, Urtica thunbergiana; AD, atopic dermatitis;
H&E, hematoxylin and eosin; TB, toluidine blue; EI, erythema index; SD, standard deviation.

c
-

7
-3

CJ 1 Week
g B 2 Weeks
3 3 Weeks

s
8

500

Erythema index (% of Normal)

N C PCO0.1% UT0.1% UT 1%

3.7. Effect of UT on AD-Related Proteins of NC/Nga Mice Skin

FLG, a skin barrier function regulator, decreased in group 2 compared to group 1 (Figure 6A-
E). p-p38 and p-JNK expression increased in group 2 by 1277.4% and 163.8%, respectively, while IxBa
expression significantly decreased by 98.3% compared to group 1. The topical application of
tacrolimus and UT downregulated p-p38 and p-JNK expression and upregulated FLG and IxBa
expression. In group 5, p-p38 and p-ERK expression decreased by 84.9% and 58.9%, respectively,
while FLG and IxBa expression increased by 438.8% and 3359.4%, respectively, compared to group
2.

Nuclear factor of activated T-cells 1 (NFATc1) is used to develop immune modulatory drugs,
such as tacrolimus and cyclosporine A, for controlling immune diseases. Therefore, we examined the
expression of phosphorylated NFATcl and found that its expression significantly increased by
3867.2% in group 2 (Figure 6F,G). As expected, 0.1% tacrolimus treatment ameliorated this change.
Interestingly, both groups 4 and 5 showed a strong inhibition of p-NFATc1 expression by 94.3% and
97.0%, respectively, compared to group 2.
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Figure 6. Effect of UT on FLG, MAPK, IkBa, and NFATcl expression in AD-induced NC/Nga mice.
FLG, phosphorylated p38, JNK, and IxBa expression (A) and NFATcl phosphorylation (F) were
assessed by western blot analysis. Band intensities for FLG (B), p-p38 (C), p-JNK (D), p-IxkBa (E), and
p-NFATc1 (G) were quantified by densitometry, normalized to the level of 3-actin, and calculated as
a percentage of the basal response. Values shown are the mean + SD. #Significant differences from
groups 1 and 2 (P < 0.01; #*P < 0.001). *Significant differences from groups 2, 3, 4, and 5 (*P < 0.05;
**P <0.01; **P <0.001). FLG, fillagrin; MAPK, MAPK, mitogen-activated protein kinase; IixBa, inhibitor
of kappa B alpha; NFATCcl, nuclear factor of activated T-cells 1; AD, atopic dermatitis; JNK, c-Jun N-
terminal kinase; SD, standard deviation.

4. Discussion

UT is found in Korea, China, Japan, and Taiwan. Traditionally, UT is a perennial herb used to
treat inflammatory-related skin diseases. The phenolic components of Urtica spp. include
hydroxycinnamic acid derivatives, flavones and flavonols, C- and O,C-glycosides, and 3-hydroxy-3-
methylglutaroyl derivatives, which contribute to the antioxidant potential and anti-inflammatory
activity of UT. This study clarified the inhibitory effects of UT with effective anti-AD activity in both
TNF-a/IFN-y-induced HaCaT cells and Biostir-induced NC/Nga mice, opening up new approaches
for its further exploitation in the pharmaceutical industry.

Keratinocytes are the most abundant cell type in the epidermis, one of the foremost protection
layers of the immune system. They are also an important source of activating dendritic cells to prime
naive T helper cells producing their pro-inflammatory cytokines. Following mechanical stimulation,
such as scratching or exposure to TNF-a and IFN-y, keratinocytes of AD patients secrete a variety of
cytokines and chemokines. In particular, keratinocyte-derived TARC/CCL17, MDC/CCL22, and
RANTES/CCL5 play a major role in AD initiation. In addition, IL-6 is mainly found in human
keratinocytes regulating T-cell maturation, chemokine production, antibody secretion, and B-cell and
dendritic cell development. Besides IL-6, IL-8 is an important cytokine that activates chemotaxis in
neutrophils and granulocytes, which then migrate toward the infection site. In this study, UT dose-
dependently inhibited both mRNA and secreted protein expression of pro-inflammatory cytokines
IL-6 and IL-8 and chemokines TARC, MDC, and RANTES in TNF-a/IFN-y-induced HaCaT cells. We
believe that UT has potential for application as an anti-AD agent.

In this study, we investigated the early signaling pathways of AD-induced keratinocytes,
including MAPK and NF-kB/STAT1. The MAPK family includes ERK, JNK, and p38, which control
a variety of physiological processes. In keratinocytes, pro-inflammatory cytokines, such as TNF-
o/IFN-y, activate the intercellular MAPK signaling pathway, which activates NF-kB/STAT1, which,
in turn, regulates the expression of AD-related pro-inflammatory cytokines and chemokines.
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On the one hand, NF-kB is a well-known transcription factor that regulates many immune and
inflammatory responses. In the normal state, NF-kB combines with IxB in the cytoplasm. Stimulation
by agents such as TNF-a and IFN-vy activates the IKK complex, which, in turn, phosphorylates IkB,
leading to the proteasomal degradation of IxB. The free NF-«B is translocated to the nucleus, where
it activates target genes. On the other hand, STAT1 plays an essential role in the dysregulation of
immune responses in AD, including exaggeration of the Th2 cell response, the maturation of B-cells,
the suppression of regulatory T-cells, and the activation of eosinophils. STAT1 resides in the
cytoplasm before phosphorylation and translocates into the nucleus in order to control the
transcription of target genes, such as TARC, MDC, and RANTES. As expected, UT dramatically
inhibits the TNF-a/IFN-y-induced activation of MAPKs and NF-kB/STAT1 in AD-induced HaCaT
cells. Lee et al. (2018) showed a similar trend of a reversed effect of mineral-balanced deep seawater
(DSW) on STAT1 and JNK phosphorylation to UT, but DSW did not control NF-«B, IkBa, and ERK
phosphorylation [54].

On the basis of in vitro data, in vivo studies were performed to investigate the effect of UT on
AD-like skin lesions in Biostir-induced NC/Nga mice. The clinical, immunological, biochemical, and
histological features of NC/Nga mice resemble those typical of skin lesions observed in AD patients.
The NC/Nga mice model is useful for not only elucidating AD pathogenesis, but also evaluating new
therapeutic agents. Therefore, we used this model in pharmacological in vivo studies.

Previous studies have shown that the continuous application of Biostir induces AD-like skin
lesions in NC/Nga mice, which are characterized by an increase in serum IgE levels in the blood and
the number of mast cells in the skin, clinical and histological changes, and skin barrier abnormalities.
Elevated serum IgE levels and mast cell numbers are important features of AD development.
Although the role of mast cells is not fully understood, a large number of AD patients (80-85%) tend
to have greatly increased serum IgE levels. In this study, UT treatment significantly inhibited high
serum IgE levels, as well as the number of mast cells. In addition, AD is characterized by clinical and
histological changes, such as epidermal thickening, erythema, and skin dryness, which are commonly
observed in AD patients. Increased TEWL and reduced skin hydration are important indexes in
studies, which significantly decrease after the topical application of UT. Together, histological
analysis of the skin showed that UT significantly reduces the epidermal thickness.

The skin plays an important role in protecting the body from external stresses, including
chemical, physical, and biological stresses, and moisture loss. AD patients present with defects in the
skin barrier, resulting in inflammatory characteristics caused by facilitated pathogenic infection and
allergen infiltration. Therefore, this study assessed the effect of UT treatment on the protein
expression of FLG, a major component of the stratum corneum (SC), and the NF-kB-inhibitor IxBa.
We found that UT treatment recovers the FLG and IxBa expression downregulated by a TNF-a/IFN-
v mixture. In addition, UT treatment significantly regresses MAPK and NFATc1 phosphorylation in
AD-induced skin.

In our previous study, the anti-aging activity of an ethanolic UT extract was considered,
specifically that of hydroxycinnamic acids, including caffeic acid and chlorogenic acid [32]. We found
that chlorogenic acid significantly enhanced the production of type I procollagen by regulating
NFATc1 dephosphorylation. These phenolic bioactive compounds are well-known to possess high
antioxidant activity and potential inhibitory effects against various conditions, such as microbial
infections, inflammation, skin aging, cancer, obesity, hypertension, and neuron diseases [56-58]. In
both in vitro and in vivo experiments, caffeic acid and chlorogenic acid suppressed UVB-induced
skin aging and carcinogenesis through the MAPK/AP-1/NF-kB-regulated mechanism [32]. These
promising compounds are present in a variety of herbs, found in green tea and coffee, readily
accessible, cheap, and easy to isolate [59-61]. Both demonstrated significant biological activity, even
at low concentrations (1-10 pug/mL) [32]. Our data suggests that these compounds could contribute
to the anti-inflammatory role of UT.

5. Conclusions
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This study provided some important data on UT as an alternative therapeutic for treating AD-
like skin lesions. UT significantly downregulates the expression levels of MDC, TARC, RANTES, IL-
6, and IL-8 in TNF-o/IFN-vy-stimulated HaCaT cells via controlling MAPKs/IkBa/STAT1 signaling. In
in vivo experiments, the topical application of UT protects the skin by decreasing scratching behavior,
the epidermal thickness, and EI and IgE production, as well as promoting SC hydration, which, in
turn, can upregulate the expression of FLG and IxBa, and downregulate MAPK and NFATcl
phosphorylation in AD-induced skin. Therefore, UT is a potential candidate for AD therapy.
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