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Abstract: In recent years, the interest in natural compounds exerting immunoregulatory effects
has enormously increased. Among these, the polyphenol resveratrol, found in a variety of foods
and beverages, including red grapes and red wine, has been demonstrated to exert both in vitro
and in vivo biological activities. More specifically, it has antiaging, cardioprotective, antioxidant,
immunomodulatory, anti-inflammatory and chemopreventive activities. Due to its anti-proliferative,
pro-apoptotic and immunoregulatory effects, resveratrol has gained substantial attention for the
treatment of cancer or autoimmunity, which represent frequently diagnosed diseases with important
consequences for the health of the patients affected. The aim of the present review is to focus on
the role of resveratrol in the modulation of cancer as well as of several organ-specific or systemic
autoimmune diseases, including autoimmune hepatitis, type 1 diabetes mellitus, inflammatory bowel
disease, rheumatoid arthritis, systemic lupus erythematosus and multiple sclerosis.
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1. Introduction

Traditional medicine, often recognized as complementary, alternative, or nonconventional
medicine [1,2], relies on the use of bioactive natural compounds [3]. Many of these compounds are
well known in scientific literature since they are traditionally used by various cultures worldwide [3,4].

In this regard, several classes of agents exerting anti-mutagen and anti-carcinogen activities
have been identified in foods and beverages of natural origin [5]. A wide variety of polyphenolic
compounds, described especially in vegetables and fruits (in particular in grapes and their derivatives),
have attracted attention for their beneficial health properties as promising antitumor agents [6].

Resveratrol (trans 3,5,4′-trihydroxystilbene) is a natural non-flavonoid polyphenol found in
its trans isomer form produced by many different plant species, such as red grapes varieties [7],
peanuts [8], blueberries [9], and rhubarb [10]. This compound plays several biological activities
having anticancer [11,12], antimicrobial [13,14], antioxidative [15], anti-neurodegenerative [16],
anti-inflammatory and immunomodulatory properties in vitro and in vivo [17,18] and estrogenic
effects in vitro [19]. Indeed, this polyphenol exerts a role towards adverse conditions including
environmental stress, injury, or pathogenic attack, i.e., UV irradiation and fungal infection [20].

Firstly identified by Takaoka from white hellebore (Veratrum grandiflorum) in 1939, resveratrol
was afterwards considered as a phytoalexin [21]. Remarkably, in 1992, Siemann [22] discovered its
presence in red wine. This result was later used to explain the so-called “French Paradox”, referring to
the low rates of coronary heart disease mortality in some areas of France, despite the elevated intake of
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fat and cholesterol through the daily diet of residents [23]. In 1997, Jang and coworkers discovered that
resveratrol could prevent cancer development [24]. Several benefits from resveratrol are attributed to
its antioxidant properties although its cardioprotective, immunomodulatory, anti-inflammatory and
chemopreventive activities rely on other mechanisms [24].

Regarding the antioxidant potential of resveratrol, this compound is both a free radical scavenger as
well a strong antioxidant due to its ability to induce the activities of numerous antioxidant enzymes [25].
In particular, the antioxidant capacity of polyphenolics is attributed to the redox properties of their
phenolic hydroxyl groups and the potential for electron delocalization across the chemical structure [26].
Over the last ten years, several studies have highlighted the critical role played by reactive oxygen
species (ROS) in arbitrating the development of oxidative stress [27]. Whereas reduced levels of ROS
synthesis allow the maintenance of physiological functions, such as proliferation, signal transduction,
gene expression and host defense [27], an excess in ROS accumulation could be harmful due to the
oxidative changes affecting cellular macromolecules (lipid, proteins and nucleic acids) characterized
by detrimental potential.

Indeed, deoxyribonucleic acid (DNA) injury by ROS, which can cause potential single- and
double-stranded DNA breaks by reacting with the nitrogenous bases and the sugar phosphate
backbone, has been correlated with mutagenesis, oncogenesis and aging [28]. Among the oxidative
lesions in DNA there are not only strand breaks but also base modifications, sugar damage, and abasic
sites [29]. Due to the ability of oxidants, antioxidants and other determinants of the intracellular
redox state to modulate gene transcription, ROS changes within mammalian cells can also modify the
expression of numerous mammalian genes, such as oncogenes and amyotrophic lateral sclerosis-linked
genes during transcription, as recently demonstrated by Li [30].

In the last years, there has been quick progress in clarifying the molecular mechanisms responsible
for the antitumor effects of resveratrol [31]. More specifically, the chemopreventive ability of
resveratrol has been linked to its ability to halt the activation of different carcinogens and/or to
promote their detoxification, to avoid oxidative damage of target cell DNA, to lower inflammation and
to reduce the proliferation of tumor cells [31,32]. The chemotherapeutic potential of resveratrol both
in vitro and in vivo is sustained by the inhibition of angiogenic and metastatic processes of cancer
progression and attenuation of chemotherapy resistance [33]. Resveratrol promotes the apoptosis of
various premalignant or cancerous cells by regulating or inhibiting multiple pathways including the
PI3K/Akt/mTOR and the mitogen-activated protein kinase pathways (MAPK) [34]. These abilities can
underlie its chemopreventive and chemotherapeutic potential.

Approximately 18 years ago, resveratrol was proposed as an immune modulator able to
regulate both innate and adaptive immune responses through interaction with several molecular
pathways [35]. Indeed, experimental evidence in cell lines and animal models has demonstrated the
immunomodulatory activity of resveratrol with dose-dependent opposite effects. More specifically, the
compound acts as an immunosuppressive when administered at high doses, whilst at low doses it
stimulates the immune system [36].

The effect of the molecule has been observed on several immunotypes producing macrophage,
T cell and natural killer (NK) cell activation as well as being involved in the suppressive function of
CD4+CD25+ regulatory cell subsets [35,37]. The molecule has also effects on B cell proliferation and
autoantibodies production [17,38].

As reported by several in vivo studies conducted in animals and humans, resveratrol is
characterized by a low oral bioavailability [39] due to a very limited intestinal uptake of the molecule [40].
This leads to minimum amounts in the bloodstream because of the extensive metabolism occurring in
the gut [41] and liver [42]. The short initial half-life of the primary molecule is essentially caused by its
rapid metabolism. The bulk of an intravenous dose of resveratrol is processed in sulfate conjugates
in just 30 minutes in humans [43]. Several other natural stilbenoids, as well as those derived by the
synthetic modification of the stilbene scaffold [44–46], present a similar structure to resveratrol, linked
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to its potential metabolism. They could have some of the beneficial properties of the parent molecule
and produce even larger benefits [47].

Studies of these derivatives have constituted the basis for the development of novel resveratrol
analogues through specific changes of the stilbene scaffold-achieving molecules with a stronger
antitumor effect or other properties. The substitution of the hydroxyl groups with methoxyl groups
meaningfully enhances resveratrol bioavailability by boosting its intestinal absorption and increasing
hepatic stability [47]. For this reason, different methoxylated analogues of resveratrol have been
formulated with the purpose of obtaining novel agents for cancer chemoprevention.

Along with resveratrol, several other stilbenes, with a similar structure to resveratrol, are naturally
present in food. For example, pterostilbene (trans-3,5-dimethoxy-4’-hydroxystilbene), which is a
structural analog of resveratrol generated by the substitution of two hydroxyl groups with two
methoxyl groups, has been found in blueberries and has been studied most widely [48]. A higher
lipophilicity of pterostilbene over resveratrol has been obtained through the substitution of hydroxyl
with methoxyl groups resulting in better bioavailability. These differences in pharmacokinetics might
account for the higher biological activity of pterostilbene over the parental compound resveratrol [48].
Pterostilbene, as resveratrol, is also not toxic when used at high dosages in humans [49].

Pterostilbene has been reported to exert various pharmacologic effects, including anticancer,
anti-proliferative, pro-apoptotic, antioxidant, anti-inflammatory, anti-invasive and antimetastatic
activities [48]. Pterostilbene has also been demonstrated to act specifically against tumor cells without
triggering any acute toxicity to normal cells (reviewed in [50]).

In this review, we summarized the most recent updates on the effects of resveratrol in the
management of cancer and chronic inflammatory conditions, such as autoimmune diseases (Figure 1).
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2. Resveratrol and Cancer

During the development of cancer, there is a complex orchestrated progression wherein, due to
genetic mutations, normal cells do not stop to grow, invade normal tissues and metastasize. Despite
considerable efforts to find a treatment, this pathologic condition constitutes one of the most frequently
diagnosed diseases whose morbidity and mortality represents a significant health issue globally. More
specifically, it is the second cause of death in the world, having caused 9.6 million deaths in 2018 [51].

The ability of the compound to influence one step of this process attracts considerable attention
since it could putatively represent an anticancer drug, which could be used in clinical settings [34].

For decades, the attention towards resveratrol has increased for its role in preventing and treating
numerous pathologies, such as tumor, neurodegenerative, cardiovascular, inflammatory, and even
autoimmune diseases. A growing amount of research has demonstrated that resveratrol induces
cytotoxicity towards cancer both in vitro and in vivo and plays a chemopreventive role.

The properties of resveratrol so far identified can be summarized as the following: resveratrol is
able to induce the block of cell cycle causing the apoptosis of cancer cells, through the downregulation
of tumor-derived nitric oxide synthase; furthermore, it halts the growth of cancer cells and their
migration; its antioxidant ability avoids DNA damage responsible for tumor formation; and it regulates
nuclear factor NF-κB activation [52].

Resveratrol has antitumor activity in different human cancers such as hepatocellular carcinoma [53]
and ovarian carcinoma [54]. Recently, Zhong and colleagues [55] investigated the anti-tumoral effect
of resveratrol in vivo in a rat orthotopic ovarian cancer (OC) model reporting that its intraperitoneal
administration halted cancer cell proliferation without affecting normal tissues. In greater detail,
the blockade of glycolysis and inhibition of AMPK/mTOR signaling induced by resveratrol were
responsible for its antitumor activity in ovarian cancer cells [56]. Recently, Zhang and colleagues [57]
reported for the first time that resveratrol promoted not only apoptosis but also immunogenic cell
death of human and murine ovarian carcinoma cells.

In addition, resveratrol has been extensively investigated for its ability to enhance cell killing by
radiation [58] and ionizing radiation (IR) mediated apoptosis in cancer cells [59].

On a general ground, the cellular effects of polyphenols, such as anti-proliferative and pro-apoptotic
actions, have been recently correlated with their ability to modify the activity of topoisomerases [60].
These ubiquitous nuclear enzymes regulate the topological state of DNA by breaking and resealing
one or both strands of a DNA duplex. Whereas lower eukaryotes, such as yeast and Drosophila,
possess a single type II topoisomerase, eukaryotic cells have type II topoisomerase (Topo II) isoforms
α and β. These two isoforms act in the principal cellular processes, engaging DNA by generating
intermediate cleavable or covalent complexes with a short half-life [61]. Topo II plays a fundamental
role in the survival of all eukaryotic cells constituting both an enzyme and a structural component
of the nuclear matrix. It modulates the topological states of DNA by transient cleavage, strand
passing and re-ligation of double-stranded DNA resulting in catenation, decatenation, knotting or
unknotting of DNA molecules and relaxation of supercoiled DNA [62]. In addition, Topo II has a
critical function in DNA replication and is necessary for condensation and segregation of chromosomes.
Topo II expression depends on the cell cycle and its protein levels and catalytic activity reach a peak at
G2/M. Topo II phosphorylation/dephosphorylation was supposed to constitute one of the regulatory
checkpoints at the entry and progression of mitosis [61]. Topo II represents the molecular target of
resveratrol, as supported by a growing number of studies [63,64] and elucidated recently by Lee and
colleagues [60]. Recently, resveratrol was found to antagonize the expression of checkpoint genes and
proliferative genes induced by thyroxine in human oral cancer cells [65].

Furthermore, resveratrol coadministration with other chemotherapeutic drugs was deeply helpful
for cancer therapy in vitro and in vivo. Resveratrol and 5-fluorouracil coencapsulation in liposomal
nanocarriers showed a higher cytotoxicity compared to the free drug combination when tested in vitro
on head and neck cancer cell lines [66]. Doxorubicin (DOX) and resveratrol co-treatment overcame drug
resistance by promoting the deregulation of the cell cycle and apoptosis in a B16/DOX murine melanoma
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model, lengthening mice survival compared to the untreated counterparts [67]. In a glioma nude
mouse model, the combination of resveratrol with temozolomide (TMZ) potentiated the therapeutic
efficacy of the latter both in vitro and in vivo [68]. More specifically, the combined treatment promoted
apoptosis as well as cell differentiation and blocked the metastatic process by consistently inhibiting cell
migration. Yuan [68] observed in fact that the therapy was able to induce glial fibrillary acidic protein
(GFAP) expression, a marker characterizing differentiated astrocytes lost frequently with increasing
grade of malignancy. Furthermore, the expression of matrix metalloproteinase-9 (MMP-9), which is
an extracellular protease having a role in cell migration across basement membranes, was reduced.
The recent study conducted by Zeng [69] demonstrated that resveratrol tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL) combination treatment was able to sensitize renal cell carcinoma
(RCC) cells to TRAIL-induced death in vitro. When the co-treatment was administered in nude mice,
the RCC xenograft growth was considerably reduced. In adriamycin-resistant leukemia K562/RA cells,
when resveratrol was co-administered with arsenic trioxide (ATO), the apoptotic effect of the latter
was potentiated. In addition, resveratrol diminished the toxicity of ATO alone.

In breast cancer cells, pterostilbene induces apoptosis in a caspase-dependent manner. More
specifically, effector caspase-3 and -7 activation could be due to the loss of mitochondrial membrane
potential and to the generation of superoxide anions. In the same way, caspase-dependent apoptosis
upon treatment with pterostilbene is correlated with ROS generation, loss of mitochondrial membrane
potential, cytochrome c release, a shift in the balance of pro- and anti-apoptotic B-cell lymphoma-2
(Bcl-2) proteins, and activation of caspases in a human gastric carcinoma cell line [70]. Furthermore,
pterostilbene inhibits cell proliferation and cell cycle progression in a concentration- and time-dependent
manner. For this purpose, cell cycle progression is blocked by pterostilbene at the G1 phase, associated
by an increase in p53, p21, p27 and p16 proteins and a concomitant reduction in cyclin A, cyclin E and
cyclin-dependent kinase (Cdk)2, Cdk4 and Cdk6 [70].

The coadministration of resveratrol and pterostilbene was able to synergistically inhibit the growth
of triple-negative breast cancers (TNBC), representing about 10%–20% of total breast cancer. This
was associated with a reduction in silent information regulator 1 (Sirtuin 1, SIRT) expression, a type
III histone deacetylase (HDAC) involved in many molecular events, such as cancer and immune
tolerance including the maintenance of peripheral T cell tolerance, and DNA methyltransferases
(DNMTs) enzymes [71]. A subsequent study conducted by the same group [72] revealed that
resveratrol/pterostilbene co-treatment was able to restore Estrogen Receptor-α (ERα) expression in
ERα-negative breast cancer cells, characterized by a higher aggressivity and no response to conventional
hormone-directed therapies. The study confirmed the role played by nutritional factors as regulators
of gene expression. Furthermore, the use of these plant-based dietary compounds in combinatorial
treatment allows one to overcome the side effects caused by conventional therapies used to reestablish
ERα expression. The encapsulation of resveratrol into oxidized mesoporous carbon nanoparticles
(oMCNs) could increase the solubility of resveratrol and improve the in vitro release property, leading to
greater cytotoxic and pro-apoptotic effects [73]. The recent study conducted by Thipe [74] demonstrated
that the use of resveratrol-conjugated gold nanoparticles improved resveratrol bioavailability and was
effective against breast (MDAMB-231), pancreatic (PANC-1) and prostate (PC-3) tumor cell lines.

In several studies, the 3,4,5,4’-trans-tetramethoxystilbene (TMS) was reported as the most potent
pro-apoptotic analog of resveratrol (reviewed in [75]).

TMS was also able to promote both apoptosis and autophagy in gefitinib-resistant (G-R)
non-small-cell lung carcinoma (NSCLC) cells, whereas any inhibitory activity was exerted on
other NSCLC cells and normal lung epithelial cells [76]. The mechanisms in resveratrol and its
derivatives played their effects on NSCLC were elucidated by Lu and colleagues, who demonstrated
that trans-3,5,4’-trimethoxystilbene diminished gefitinib resistance in NSCLCs [77], revealing that
it occurred through the inhibition of the MAPK/Akt/Bcl-2 pathway by upregulating miR-345 and
498. A study conducted by Stivala et al. [78] described the stronger antioxidant effect of resveratrol
compared to 3,5,4’-trimethoxystilbene. In addition, 3,5,4’-trimethoxystilbene was proven considerably
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more potent in inhibiting angiogenesis than resveratrol. When 3,5,4’-trimethoxystilbene was used,
intersegmental vessel regression and downregulation of vascular endothelial growth factor receptor
2 (VEGFR2) mRNA expression were observed in zebrafish; in addition, 3,5,4’-trimethoxystilbene
caused G2/M cell-cycle blockade in endothelial cells of zebrafish embryos. In the regulation of
neovascularization in neoplasia two principal mechanisms were identified: first, anti-angiogenic
compounds block neovascularization, and second, vascular-targeting agents disrupt immature
vessels [79]. It has been hypothesized that 3,5,4’-trimethoxystilbene could act as an anti-angiogenic
and anti-vascular compound by reducing VEGFR2 expression and inducing cell-cycle arrest at G2/M
phase [79]. In regards to the antiangiogenic and vascular-targeting activity, Belleri et al. [80] reported
that 3,5,4’-trimethoxystilbene has up to 100 times higher potency compared to the parent compound
resveratrol; this was assessed through endothelial cell proliferation, sprouting, collagen gel invasion and
morphogenesis. The vascular-targeting of 3,5,4’-trimethoxystilbene was due to the destabilization of
microtubules, representing a target of numerous cancer chemotherapeutic agents, and depolymerization
of tubulin. In addition, 3,5,4’-trimethoxystilbene was able to interfere with the microtubule organization
center and with the migration of the endothelial cell [80]. Moreover, 3,5,4’-trimethoxystilbene
inhibited human lung adenocarcinoma cell invasion by suppressing phosphorylation of stress-activated
kinases (SAPK)/c-Jun N-terminal kinase (JNK) and p38 MAPK signaling pathways. This effect was
associated with a reduction in nuclear factor-kappa B (NF-kB) and activator protein-1 (AP-1) proteins
at nuclear level, representing two transcription factors implicated in invasion promotion. NF-kB
and AP-1, in turn, induced the downregulation of matrix metalloproteinase (MMP)-2 expression [80].
Both 3,5,4’-trimethoxystilbene and resveratrol halted the migratory and invasive properties of HepG2
and Hep3B hepatocellular carcinoma cells following exposure to phorbol 12-myristate 13-acetate
(PMA) and of PMA-untreated Hep3B cells. This anti-invasive effect was associated with a reduction in
MMP-9 and MMP-2 activity, while tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 protein
expressions increased [81].

Another limit of resveratrol is its bioavailability, characterized also by an elevated range of
interindividual variation in a sex-independent manner [48]. The intake of low doses of resveratrol
generates a maximum peak plasma concentration in the first 30 min, whereas at high doses the
maximum peak plasma concentration is reached in 1.5–2h. Studies conducted in rodents demonstrated
that resveratrol was eliminated rapidly at all tested doses of 5, 10, and 25mg/kg and the half-life time
was only about 2h [82]. Such characteristics of resveratrol metabolism suggest that the proper way for
obtaining optimal anti-tumoral effects could be a continuous drip or multiple oral administrations.

Compared to resveratrol, 3,4,5,4’-tetramethoxystilbene (DMU-212) exhibited increased
pharmacological and pharmacokinetic properties with a higher metabolic stability and
bioavailability [83]. In addition, DMU-212 presented a stronger inhibitory activity on the proliferation
of melanoma cancer cells [84].

The putative anticancer effects of resveratrol have been also investigated in different leukemia
cell lines. Indeed leukemia represents a heterogeneous group of diseases, encompassing acute
myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia and chronic lymphoblastic
leukemia, which can be further classified into different subtypes.

Bernhard et al. [85] demonstrated that resveratrol at 20 µM and higher doses arrests, in a
concentration-dependent manner, the cell cycle in S-phase and apoptosis of T cell-derived T-ALL
lymphocytic leukemia cell line CEM-C7H2. In addition, whereas the blocking of Fas or Fas Ligand
(FasL) as well as the constitutive expression of cytokine response modifier A (CrmA) (an effective
inhibitor of the Caspase family other than Caspase-6) did not impact resveratrol-induced apoptosis
in CEM-C7H2, the treatment with z-IETD-fmk, an inhibitor of Caspase-6, almost totally halted the
pro-apoptotic effect of resveratrol [85]. Additionally, resveratrol considerably and irreversibly blocked
the growth of human chronic myeloid (K562) and acute lymphoblastic (HSB-2) leukemia cells; moreover,
this effect correlated with a marked apoptosis. The sensitivity to resveratrol-induced apoptosis of
the two cell lines investigated was associated with both Bax-increased expression and the release of
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cytochrome c [86]. Moreover, resveratrol inhibited growth and promoted both apoptosis and cell cycle
arrest at G1 phase in a mouse lymphocytic leukemia L1210 cell line. A dose-related regulatory activity
on both innate and specific immune functions to L1210 bearing mice, the increase of lymphocyte
proliferation and NK activity, the normalization of CD4/CD8 ratios, a reduction in Interleukin-6 (IL-6)
release and content have been observed. In particular, this last finding has been hypothesized to
represent, at least in part, the mechanism of the antitumor immune activity of resveratrol [68]. In fact,
this intracellular cytokine has been implicated in tumorigenesis constituting a paracrine growth factor
in several cancers [87].

Similar effects have been observed in vitro also in human leukemia cell types, although the
compound’s mechanism of action remains yet to be clarified. Resveratrol-induced cell death of human
promyelocytic leukemia (HL-60) cells was due to the proteolytic cleavage of caspase substrate poly
(ADP-ribose) polymerase (PARP) and depended on CD95-signaling [88]. HL60 leukemia cells were
induced to apoptosis by resveratrol in a dose-dependent manner at concentrations ranging from 8
to 32 µM, via promoting CD95−CD95L interaction on the cell surface [88], creating a death-inducing
signaling complex (DISC) at the cytoplasmic CD95 receptor, inducing the release of cytochrome C from
mitochondria, and activating Caspase-9 and downstream Caspase-3 in a mitochondrial-independent
manner [89]. In addition, resveratrol was demonstrated not only to diminish cell viability as well as
DNA synthesis, but the analysis of the cell cycle revealed that resveratrol enhanced the proportion of
the subdiploid cell population in HL60 cells. Furthermore, resveratrol decreased the expression of
Bcl-2, representing an anti-apoptotic protein whose role is the maintenance of mitochondrial membrane
integrity [90]. This effect correlated with increased expression of the pro-apoptotic Bax protein [91],
annexin A1, growth arrest-induced and DNA damage-induced gene 45α (GADD45α), and cleaved
Caspase-3 [92]. Resveratrol used at a 100 µM dose leads to growth inhibition and proliferation arrest
of HL60 cells by downregulating anti-apoptotic protein Bcl-2 expression and lowering the viability of
DNA synthesis [92]. Besides, resveratrol induced FasL-related apoptosis of HL-60 cells through Cdc42
activation of apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) dependent
signaling pathway [93]. Further investigations regarding the mechanisms underlying the pro-apoptotic
effect of the compound on HL60 cells reported de novo production and accumulation of ceramide
by raising the expression of ceramide-generating protein longevity assurance, and decreasing that of
anti-apoptotic sphingosine kinase-1 (SK-1) and glucosylceramide synthase [94]. These results regarding
the pro-apoptotic role played by resveratrol are in agreement with previous data obtained from acute
myeloid leukemia (AML) cells reporting the subsequent induction of DNA repair enzyme PARP
(poly adenosine diphosphate (ADP)-ribose polymerase) cleavage due to cysteine protease Caspase-3
activation occurring upon treatment with the compound [95].

In addition to proliferation blockage and cell apoptosis promotion, resveratrol was able to induce
differentiation of the human erythro-megakaryoblastic leukemia cell line K562 as demonstrated by
Yan et al. [96]. In more details, they reported that resveratrol induced cell differentiation by favoring
glycophorin A, HBA1, HBB and γ-globin expression, in particular when used at the concentration of
50 µM. Conversely, the expression of these four genes was lessened when resveratrol was administered
at 100 µM. Although in many types of cancer resveratrol supplementation has shown positive results,
in others effects have been ambiguous, as reported on androgen-responsive LNCaP human prostate
cancer cells in vitro and in vivo [97], and sometimes there are even detrimental effects [98,99]. This is
due to resveratrol’s mechanism of action, which depends on the intrinsic molecular properties of the
cancer model under investigation.

Even though resveratrol has shown a promising antitumor effect in different types of cancer,
reverting also the multidrug resistance in tumor cells, and increasing the therapeutic outcomes of
the standard chemotherapeutic agents, additional clinical studies are necessary before its application
in clinical treatment. So far the majority of the clinical trials have had the aim of investigating the
safety, bioavailability, pharmacokinetics and tolerability of resveratrol, whereas its potential anticancer
properties have been evaluated only in a limited number of studies. In addition, no clinical trial based
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on the co-administration of resveratrol with other antitumor drugs has been performed or is currently
in progress.

3. Resveratrol and Autoimmune Diseases

A direct consequence of the lengthening of human life expectancy is the aging of most of
the population worldwide. Aging represents a risk factor for the onset of chronic diseases,
including autoimmune disorders [100]. An elevated amount of evidence has reported that
age-associated disturbances involving innate immunity (immune response of neutrophils and
macrophages) and adaptive immunity (B cell and T cell development) have a higher prevalence
in respect to young subjects [100], even though the onset of the latter can occur at different ages
depending on the autoimmune condition. Besides conventional treatments such as analgesics,
non-steroidal anti-inflammatory drugs and glucocorticoids, innovative therapies based on therapeutic
immunosuppression and biological agents, as well as molecules derived from natural products, have
been widely studied for their pharmacological effect on both organ-specific and systemic autoimmune
disorders [101].

3.1. Autoimmune Hepatitis

Autoimmune hepatitis (AIH) represents an idiopathic inflammatory pathology affecting the liver
which presents a loss of self-tolerance to hepatocyte-specific autoantigen, leading to the synthesis
of autoantibodies and the production of dense lymphoplasmacytic inflammatory infiltrates in the
portal tracts [102]. Activation and clone expansion of T cells lead to B cell release of autoantibodies,
pro-inflammatory cytokines and hepatocyte destruction finally responsible for liver failure [103].
Zhou et al. observed the protective role played by resveratrol against concanavalin-A- (ConA-) induced
liver injury in mice by significantly inhibiting IL-2, IL-6, tumor necrosis factor α (TNF-α), Sonic
hedgehog (Shh), Glioblastoma- (Gli-) 1, and Patched (Ptc) levels, probably through the modulation of
the hedgehog signal pathway [104].

3.2. Type 1 Diabetes Mellitus

Bertelli and colleagues [105] suggested the putative therapeutic application of resveratrol in
type 1 diabetes mellitus (T1D) induced cerebrovascular dysfunctions upon the observation that rats
affected by T1D had their vascular functions restored following long-term resveratrol treatment [105].
Yun and colleagues [106] explored the resveratrol mechanism of action by using human monocytes
obtained from T1D patients, revealing that it induced the overexpression of SIRT1 and blocked the
cellular oxidative stress. Resveratrol was demonstrated to have both preventive and therapeutic
effects by reverting the advanced stages of insulitis affecting the islets of Langerhans in a non-obese
diabetic (NOD) mice model [107]. This was due to a reduced expression of chemokine receptor 6
(CCR6) in T helper (Th17) cells and pathogenic CD11b+F4/80hi macrophages responsible for halting
cell migration from peripheral lymphoid organs to the pancreas. A following study by Kaur [108]
reported the amelioration of diabetic complications, as well as the loss of β-cells, pancreatic and
hepatic oxidative stress in streptozotocin-induced diabetic rats treated with 25 mg/kg of resveratrol.
When co-administered with insulin, resveratrol was able to improve glycemic control in diabetic rats,
lowering the blood glucose to the levels reported in non-diabetic rats and cutting down glycosuria [109].

3.3. Inflammatory Bowel Disease (IBD)

A multifactorial origin has been hypothesized for inflammatory bowel disease (IBD) onset,
encompassing Crohn’s disease (CD) and ulcerative colitis (UC). Among the factors implicated in its
pathogenesis, genetics, bacteria, and an altered immune system response have been identified to play a
promoting role for this autoimmune disorder [110]. More specifically, the impairment in the intestinal
mucosal barrier allows the translocation of commensal bacteria as well as bacterial products into the
intestinal wall, activating neutrophils and macrophages located in the epithelium. As a consequence
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of such activation, inflammatory mediators, including ROS and TNF-α, are released. The latter is
synthetized especially by T lymphocytes upon antigen recognition.

Resveratrol could diminish inflammatory cytokines and ROS in IBD animal models [111–115].
Furthermore, resveratrol pro-drugs, which have been developed to overcome the reduced bioavailability
of resveratrol due to its rapid metabolic modification, lowered colon inflammation in a murine
model [111]. This allowed the preservation of mucosal structure, promoted the presence of bifidobacteria
and lactobacilli implicated in the maintenance of intestinal homeostasis and was correlated with
an improvement in intestinal health [116]. Resveratrol also played a preventive role against the
development of acute experimental-induced colitis when this compound was administered 48, 24 and
1 h before trinitrobenzene sulfonic acid (TNBS) intracolonic instillation [117].

Regarding the use of resveratrol in human clinical trials, to our knowledge, only the study
conducted by Samsamikor et al. [118] investigated its effect in UC patients observing a diminishment
of NF-kB activity in peripheral blood mononuclear cells (PBMCs), and of TNF-α and high sensitivity
C-reactive protein (hs-CRP) in plasma.

3.4. Rheumatoid Arthritis

In an adjuvant-induced arthritis rat model, when used in association with curcumin through
lipid-core nanocapsules, resveratrol showed a stronger effect in reducing paw oedema compared to
resveratrol alone [119]. This promising result was subsequently confirmed by Riveiro-Naveira et
al. [120] in an acute antigen-induced arthritis model wherein resveratrol was administered through
the diet [120]. Promising results were also observed when the molecule was tested in gouty arthritis
animal models. More specifically, sodium alginate and resveratrol co-treatment lowered IL-1β,
CC-chemokine receptor 5 (CCR5) and CXC-chemokine ligand 10 (CXCL10) levels in the synovial
tissue of a monosodium urate-induced mouse model of acute gouty arthritis. Further, at 6 hours
after treatment, a marked improvement was observed in mice co-treated with sodium alginate and
resveratrol compared to those receiving resveratrol alone [121]. A following study conducted by
Chen et al. [122] reported a reduction in serum uric acid levels after resveratrol consumption by
hyperuricaemic mice, allowing the hypothesis for its preventive use against recurrent attacks of
gout [122].

3.5. Systemic Lupus Erythematosus

Resveratrol showed protective activity in a pristane-induced lupus mouse model. More specifically,
it reduced proteinuria, IgM and IgG kidney deposition, and kidney histological lesions. In addition,
the activation of CD4+ T cells and B cells was inhibited in vitro, and antibody generation and B cell
proliferation halted [123]. Feng et al. [124] reported the vascular protective effect of resveratrol in
the ApoE−/− Fas−/−C57BL/6 mice resembling SLE. This compound had anti-atherogenic properties
inducing the increase of the cholesterol efflux pathway [125]. These data were also confirmed by
Voloshyna et al. [126] reporting that resveratrol countered SLE-associated atherogenicity through the
normalization of cholesterol efflux.

3.6. Multiple Sclerosis

Miyazaki et al. [127] proved that the induction of SIRT1 with resveratrol was able to normalize
the altered synthesis of pro-inflammatory cytokines by multiple sclerosis (MS) B cells through the
regulation of micro RNA (miR)-132 expression. In more detail, resveratrol not only considerably halted
the aberrant lymphotoxin (LT) production, but could also inhibit TNFα synthesis by MS B cells, even
in subjects characterized by the highest levels of B cell TNFα production. Conversely, no effect on
IL-10 levels was observed. Hence, resveratrol represents a promising treatment for the reduction of
inflammation in the central nervous system (CNS) as well as in the periphery and in the target organ
of patients presenting relapsing and progressive forms of the illness. These data are in accordance with
previous observations reporting the protective effect of resveratrol against experimental autoimmune
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encephalomyelitis (EAE) by activating multiple SIRT1 targets [128,129]. Contrasting results regarding
the neuroprotective effect of resveratrol on EAE models were reported by Sato et al. [130]. In more detail,
significant exacerbation of autoimmune and viral models of MS, without exerting any neuroprotective
activity in the CNS in both models following resveratrol treatment, was observed [130]. It is also
plausible that the contrasting effects reported for resveratrol on cytokine production in EAE may
depend on the stage and course of disease, dose administered or the use of different antigens used to
sensitize the animals in different mouse strains [130].

4. Conclusions

Due to its multiple beneficial properties, including not only cardio and neuroprotective properties
but also antioxidant, anti-inflammatory and anti-tumoral effects, the attention on the use of this
compound in different pathological conditions is increased. Efforts should be made to evaluate further
the compound during clinical trials and to translate the positive results obtained from in vitro and
in vivo experiments into the development of a therapeutic agent to be used also for prevention of the
onset of different diseases.
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