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Abstract: Two tomato pomace (TP) were studied as feedstocks to obtain extracts that are rich in
polyphenols. TPs prompt degradation impairs biomass safety, thus naturally present microflora
were tested to perform conservation, and own lactic bacteria became predominant after 60 days of
treatment. The extracts of TPs and TPs fermented (TPF) were chemically characterized and tested
for antioxidant and anti-inflammatory activities. Flavonoids and phenolic acids were classed as
aglycone-polyphenols (A-PP), the most bioactive polyphenol fraction. Fermentation led to a reduction
of the A-PP amount, but no significant change in composition. Antioxidant power increased, despite
the A-PP reduction, for the presence of fermentation metabolites having aromatic-substituent. TP and
TPF both have anti-inflammatory properties that were strictly dependent upon the A-PP content.
Fermentation preserved the anti-inflammatory activity and the Partial Least Square (PLS) identified
as the most active molecules naringenin chalcone, kaempferol, gallic acid, and cinnamic acid, together
with the definition of the active dose.

Keywords: lactic fermentation; tomato pomace; Partial Least Square; polyphenols; anti-inflammatory

1. Introduction

Polyphenols are widely known for their positive effects on health, including anti-oxidant activity,
anti-inflammatory, anti-diabetic, anti-obesity, anti-microbial, anti-proliferation, anti-allergic properties,
and the prevention of chronic disease [1]. Polyphenols are of interest for the nutraceutical, cosmetic,
and food sectors and they have a Global Market valued at $757 million in 2015 supported by a
Compound Annual Growth Rate (CAGR) of 8.26% during the forecast period 2014-2022, based on
the evidence of their activity [2]. The functional food and functional beverage segments will make
major contributions to the supply of polyphenols and the dietary supplement segment is also expected
to have stable growth during the forecast period, which is supported by increases in the geriatric
populations in different countries [2].

Apples, green tea, and grape seeds are actually the major polyphenol feedstocks; however,
different agro-food wastes have recently been tested with the aim of valorizing existing food waste
substances and developing a circular economy production system [3].

The tomato transformation industry is a relevant sector that transforms 40 million tons in California,
China and the European Union (EU) [4]. Tomatoes are mainly processed into juice, sauces, and pastes,
generating huge amounts of tomato peels and seeds, named tomato pomace (TP), which is the most
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abundant solid waste fraction, together with other wastes, such as discarded fruit, liquid waste, sludge,
etc. [5]. Being composed of skin and seeds, TP has an important content of bioactive molecules.
Until recently, attention mainly focused on the characterization and extraction of lycopene, a very
powerful antioxidant carotenoid that is present in the tomato pulp, but above all in the skin, which has
a protective role for human health [1]. Additional antioxidant molecules have been found in the TP: for
example, tocopherol and phytosterol, which are often extracted with lycopene and other hydrophilic
antioxidant molecules, such as flavonoids, phenolic acids, and vitamins, which are all hydrophilic.

The tomato skin concentrates approximately 98% of tomato polyphenols [6] that are usually not
degraded during industrial processes. Flavonoids and phenolic acids are the most abundant classes,
with concentrations that depend on the tomato typology and cultivation conditions [6].

TP is subject to fast biological attacks that affect the safety state of the biomass due to the high
moisture content and its easily biodegradable nature. To avoid damage, lactic fermentation was
tentatively applied as a storage system, taking advantage of the lactic bacteria (LAB) naturally present in
the tomato biomass [7]. LAB metabolism converted the available sugars into lactic acid and created very
acidic conditions that were not compatible with pathogen microorganisms’ survival. The fermentation
was recently tested alone or in combination with enzymes as a pretreatment to improve the extraction
and bioactivity of polyphenols and vitamins [8].

This positive effect on polyphenols” availability was linked to the LAB fiber consumption that
converts polyphenol-bound into free polyphenols (A-PP), dimers, sulfo-conjugates, glucuronides,
and other forms, thus increasing their extractability [9,10].

Antioxidant power is the best known polyphenol activity, assessed as being chemically reactive
against radical and oxidant agents [11]. The results of those tests were useful for obtaining bioactivity
screening data, although did not identify the specific physiological effects (i.e., anti-mutagenic,
antiplatelet, ACE inhibitory properties, anti-inflammatory, anti-allergic, etc.) on which polyphenols
act [3,12].

Several phenolic compounds, individually or in combination with other molecules, were tested
on Caco-2 cells and their anti-inflammatory properties were correlated to chemical structure and dose,
and molecules’ chemical interactions were determined (synergism, additive, or antagonistic) [13].
The same approach was considered to be unfeasible for the vegetal extracts complex from a composition
point of view [14].

However, the possibility to identify the importance of single or a few components is an interesting
topic in the perspective of imitating the molecules based on the qualitative and quantity profiles.
The Partial Least Square (PLS) method has been recently applied as a screening tool to link the chemical
composition of vegetal extracts to specific bioactivity [15].

This chemometric method was able to identify: (i) molecules with more activity in a
mixture, (ii) synergistic and antagonistic effects when testing vegetal extracts as fingerprints vs.
bioactivity [16,17].

To the best of our knowledge, no reports on the anti-inflammatory effects of TP phenolic
components are available. The aim of this study was to characterize the polyphenols’ profiles from
two tomato pomace (TP) sources that were sampled from the tomato canning industry, both raw
and fermented, and to evaluate anti-oxidants and assess in vitro anti-inflammatory capacities while
using chemical and biological tests. In addition, a first attempt was made to identify the most active
compounds among the A-PP molecules and their anti-inflammatory activity to attribute more precise
prominence to the different molecules and investigate the mixture effect by applying PLS.

2. Materials and Methods

2.1. Materials

Tomato pomace from two different tomato industry (TP1 and TP2) was collected during July
2018 to September 2018 in the north of Italy from a tomato processing industry (OPOE facility in
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Dodici Morelli Ferrara, Emilia Romagna Region, Italy). Each biomass (10 kg) was sampled to execute
the analytical characterization. TP1 and TP2 were successively dried in a vacuum oven (at 50 °C
for 300 min) to measure dry matter (d.m.) content [18]. Thus, the dried samples were ground in a
laboratory mill (Thomas Wiley, Thomas Scientific, Swedesboro, NJ, USA) until obtaining a very fine
powder. The samples were stored at 4 °C and in darkness until further analyses. Moreover fibre
analyses were performed with the aim of measuring the cell soluble (CS), cellulose, hemicellulose,
and acid detergent lignin (ADL) content [18].

2.2. Tests of Fermentation and Analytical Characterization

Approximately 300 g of TP1 and TP2 wet weight (w.w.) were packed into airtight glass containers
of 500 mL and pressed to favor the air exit, and then TP were fluxed with N, before being closed.
The containers were stored at 20 °C in dark conditions for 240 days; the samples were collected
after 20, 30, 60, 105, and 240 days. The pH was assessed on TP according to the analytical method
that was established for wastewater sludge and digested samples [19]. Organic acids concentration
and speciation were determined by using a Shimadzu high-pressure liquid chromatograph (HPLC),
(Shimadzu corporation, Tokyo, Japan), that was equipped with a Hi-Plex H Agilent column (300 x
7.7 mm, PL1170-6830) (Agilent technologies, Santa Clara, CA, USA), 20 uL of sample were injected
with an autosampler, and the column temperature was kept at 50 °C; the HySO, mobile phase flow was
isocratic at 0.4 mL/min and the duration of each run was 60 min Chromatograms were integrated with
a Labsolution 5.90 software Shimadzu Corporation, Tokyo, Japan). All of the analyses were performed
in triplicate. At the end of the fermentation, samples TP1F and TP2F i.e., TP1 and TP2 after 240 d of
fermentation, respectively, were prepared to be subsequently analyzed.

2.3. Total Phenolic Extraction and Quantification

Polyphenols of TP1, TP2, TP1F, and TP2F were extracted by applying the method that was
reported by Valdez-Morales et al. [12]. In brief, approximately 0.5 g of finely ground TP flour were
suspended in 5 mL of methanol and placed on a shaker during the extracting time. The samples
were sonicated for 1 h (with shaking every 10 min), and were then transferred to a 50 mL dark bottle,
adding methanol (Pro. N. 34860, Merck, Sigma Aldrich, Dermstadt, Germany) that was made up
to 20 mL, and then were left in incubate overnight (25 °C/darkness/220 rpm, 22 h). The sample was
subsequently centrifuged at 1500 g for 3 min to separate the polyphenol fraction solution from the TP
residue, which was then re-extracted while applying the procedure that was described one time more.
The supernatants from both steps were collected together and were concentrated to dryness at 37 °C in
a rotary evaporator (Yamato, Santa Clara, CA, USA) [12]. The extracted TP was then re-suspended
by adding 3 mL of methanol and then filtered through 0.22 um (Durapore syringe filters Millipore,
Carrigtwohill, Cork, Ireland) for the later analytical determinations.

The total phenolic content (TPC) was measured by applying the Folin-Ciocalteu reagent method
with some modification [12], by diluting the crude extracts in methanol (1:30 v/v). 1 mL of 0.5 N
Folin—Ciocalteu’s phenol reagent was added to 100 uL of the sample solution followed by the addition
of 2 mL of NayCOj3 20% (w/v) solution after 3 min; the mixture was left at room temperature for 15 min
in darkness, and the absorbance was measured at 734 nm in a spectrophotometer UV/VIS Cary 60
(Agilent Technologies, Santa Clara, CA, USA). A calibration curve was prepared with gallic acid (GA)
(G7384, Sigma Aldrich, Dermstadt, Germany) and the results were reported as milligrams of gallic
acid equivalents per gram of TP samples.

2.4. Profiling Aglycone-Polyphenol Compounds (A-PP) by HPLC

Next, the TP extracts were characterized while using HPLC (Agilent Technologies 1260 Infinity
system, Santa Clara, CA, USA). Compounds separation was conducted using a Kinetex column (C18,
5 um, 120 A, 4.6 x 250 mm, Phenomenex Torrance, Santa Clara, CA, USA), at 25 °C with a UV detection
(Valdez-Morales et al., 2014), the flow rate was 0.5 mL min~!, and the injection volume was 20 pL.
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The compounds’ elution was done with a gradient of two solvents: acidified water with acetic acid
(Pro. N. 273783, Sigma Aldrich, Dermstadt, Germany) at pH: 2.8 (solvent A), and acetonitrile (solvent
B), (Pro. N. 34851, Sigma Aldrich, Dermstadt, Germany). The phenolic acids were detected at 260 nm
and the gradient was programmed from 0% B to 35% B in 24 min with a 10 min isocratic held at 100% B.
The flavonoids elution gradient was begun at 90% A and 10% B, and then ramped to 35% B in 27 min;
this was followed by 100% eluent B for next 10 min; the UV/Vis detector wavelength was fixed at
350 nm.

Standards of gallic acid (Pro. N. G7384), caffeic acid (Pro. N. C0625), ferulic acid (Pro. N. 90034),
p-coumaric acid (Pro. N. C9008), vanillic acid (Pro. N. 94770), sinapic acid (Pro. N. D7927), cinnamic
acid (Pro. N. C80857), quercetin (Pro. N. Q4951), naringenin (Pro. N. 52186), naringenin chalcone (Pro.
N. PHL83877), kaempferol (Pro. N. K0133), apigenin (Pro. N. 42251), and myricetin (Pro. N. 72576)
were purchased from Sigma Aldrich, Dermstadt, Germany. The standard solutions were prepared by
mixing phenolic acids (gallic, caffeic, ferulic, p-coumaric acid, vanillic, sinapic, and cinnamic acids)
and flavonoids (quercetin, naringenin, naringenin chalcone, kaempferol, apigenin, and myricetin)
to identify and quantify phenolic compounds in the TP extracts. For each sample, three injections
were performed.

2.5. Antioxidant Activity Assay

Antioxidant activity was assessed by using the DPPH radical scavenging method, with a slight
modification [20]. Briefly, 2 mL of DPPH (Prot. N. D9132, Sigma Aldrich, Dermstadt, Germany)
solution in methanol (125 uM) were added to 50 pL of sample solutions at different concentrations.
The decrease in absorbance at 517 nm was recorded by a spectrophotometer (Cary 60 UV-Vis, Agilent
Technologies, Santa Clara, CA, USA) for 90 min at 10 min intervals. The results were expressed as
ICsg i.e., the extract concentration that scavenges 50% of DPPH [21], which was compared with that of
Trolox (Prot. N. 238813, Sigma Aldrich, Dermstadt, Germany) and ascorbic acid (Prot. N. PHR1008,
Sigma Aldrich, Dermstadt, Germany) determined after 30 min of reaction at 517 nm.

2.6. Anti-Inflammatory Assay

2.6.1. Cultivation of Caco-2 Cells

The epithelial cells from human intestinal (Caco-2 cells) were purchased from Public Health
England (ECACC 86010202), Wiltshire, United Kingdom and they were cultivated in a 75 cm? flasks by
using 10% inactivated fetal bovine serum in Dulbecco’s Modified Eagle’s Medium (DMEM). Antibiotics
penicillin (100 U mL~!), streptomycin (0.1 mg mL~!) and amino acid L-glutamine (2 mM) were added
to the medium. The cells were grown in an incubator at 37 °C with a humidified atmosphere (95% air
and 5% CO,). After the cells were at confluence, their transfer into multi-wells was done.

Caco-2 cells were incubated for 2 h with IL-13 (20 ng mL™1) in the absence or presence of TP
extracts to assess the anti-inflammatory effects of TP extracts. The alcoholic part was dried in a rotatory
vapor until to obtain the residual powder that was successively dissolved in the DMEM prior to the
assay. Positive experimental controls were cells only incubated with IL-1f3, whereas the cell viability
was measured by considering blank (untreated cells) [22].

2.6.2. Cell Incubation

The experiments started on the 2nd day after the cell’s reached confluence. Before starting with
the incubation assay, cell viability was measured, as described previously [22]. Caco-2 cells were then
treated with different samples prepared in two different concentrations of total polyphenol content:
15 pg mL~! and 25 pg ML~! in the presence of IL-1p in the medium. Cells treated with IL-1p alone
were used as the positive control, which allowed for setting 100% of inflammation induction in the
experimental study. An untreated control sample is always needed to calculate the relative changes in
gene expression in the sample of interest. The effects of the different molecules on inflammation will
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be indicated as changes in the expression of target genes that are related to the untreated control [23].
The treatment was performed in triplicate for each sample.

2.6.3. Expression of IL-8 Measurement by Real-Time PCR Analysis (qPCR)

PCR amplification was performed in a total volume of 20 uL using iQ™ SYBR® Green Supermix
(170-8882, Bio-Rad Laboratories Inc., Hercules, CA, USA) and the following primers:

IL-8 (version 1, IL8-1) forward: 5-CTG GCC GTG GCT CTC TTG GCA G-CCT TCC TG-3’; reverse:
5-GGC AAC CCT ACA ACA GAC CCA CAC AAT A-CA-3’ (395 bp) [24].

IL-8 (version 2, IL8-2) forward: 5-ATG ACT TCC AAG CTG GCC GTG GCT-3’; reverse: 5'-TCT
CAG CCCTCT TCA AAA ACT TCTC-3'.

The GAPDH reference gene was amplified with the following primers: forward (nt 38-57) 5’-GGA
AGG TGA AGG TCG GAG TC-3'; reverse (nt 218-237) 5’-CAC AAG CTT CCC GTT CTC AG-3’ which
yield a 200 bp product [25].

Quantitative analysis was performed while using a MyiQ thermal cycler to quantify the SYBR
Green with a dedicated proprietary software (Bio-Rad Laboratories, Inc., Hercules, CA, USA) and data
were collected using MyiQ Real-Time PCR Detection System Software (Bio-Rad Laboratories, Inc.,
Hercules, CA, USA). The following program was used: 10 min at 95 °C, then 40 cycles of denaturation
(20 s at 95 °C), annealing (30 s at 65 °C), and extension (30 s at 72 °C), at the end one last cycle at 65 °C.
Each experiment was calibrated with the cDNA obtained from unstimulated Caco-2 cells, and a sample
without cDNA was considered as negative control.

Relative amounts of target genes as compared to the GAPDH reference gene were calculated
according to Livak’s method [24].

2.7. Statistical Analyses

The average and standard deviation values were calculated according to standard procedures
and the results were analysed by the ANOVA bootstrap, Duncan test while using the SPSS 25 (IBM,
New York, NY, USA).

The Partial Least Square method (PLS) was applied to perform multiple linear regressions of IL-8
de-activation expression fold vs. A-PP concentration [26]. To do so, the variables were un-scaled and,
by using SCAN software (Minitab Inc., State College, PA, USA), the cross-validation leave-one-out
was chosen as methodology. An improvement of the goodness of fit coefficient—R? and goodness of
prediction coefficient—R?cv were considered as the criteria of the “removing variables” steps made
to recognize the lesser number of independent variables (i.e., A-PP molecules) that are linked to
anti-inflammatory effects (dependent variable).

3. Results and Discussion

3.1. TP Chemical Characterization and Fermentation

TPs had very high moisture content that affected their storability (Table 1). From a chemical point
of view, fibres (ADL + hemicellulose + cellulose) were the most abundant fractions; hemicellulose and
cellulose came from peel, while ADL (i.e., the more recalcitrant fraction) was attributable, above all,
to the lignin, cutin, and suberin of the seed coats [18,27]. The remaining fractions, which were described
as CS, were composed by oil, protein, sugar, and organic acids, which are the more biodegradable
compounds (Table 1) [27]. Short chain organic acids and ethanol were a relevant fraction of CS of
TP for the degradative and fermentation processes in action (Table 1). Ethanol, lactate, and acetate
were the products of the biological metabolism of lactic microorganisms (LAB) present in TP [14]
(Table 2); pH level (6.86) and remaining fatty acids were typical of aerobic degradative metabolisms [28].
When fermentation started, the pH dropped immediately to very low values (pH < 4) because of the
increase in lactic acid that reached the maximum concentration after 20 days of the process. In fact,
lactic acid (pK, of 3.86) contributed the most to the decline in pH during fermentation, because it is
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about 10 to 12 times stronger than the other major acids, such as acetic acid (pK, of 4.75) and propionic
acid (pK, of 4.87). Other LAB metabolites (ethanol and acetate) remained almost constant; on the
contrary, no-LAB acids were going to be consumed until only traces remained. A lactic acid/acetic acid
ratio was applied as an indicator of LAB fermentation stability [28]; values of 2-3 meant that stable
and optimal conditions were reached from the 20th day of the process; however, the prevalence of LAB
was considered as a precautionary measure after 60-100 days when no-LAB metabolites become traces.
LAB fermentation is extensively applied as a cheap method in the food preservation industries [29].
This effect comes about because of the very low pH and anti-microbial compounds production that
influences the activity of membrane-bound enzymes and exo-enzymes. In addition, lactic acid is able
to enter into the bacteria, lowering cellular pH and killing the microorganisms. Although the complete
microorganism elimination occurred for pHs that were lower than 2.5, pHs around 3.5 were effective in
eliminating several food-borne pathogens or enteric contaminants after some weeks of treatment [30].

Table 1. Tomato pomace (TP) macromolecular composition and evolution during fermentation.

Ti d.m. VS (&) Hemicellulose Cellulose ADL
ime Day
% Wet Weight mgg~1dm.
0 22.75 + 0.01 b *** 9739 +6.4b 1559 +42a 137.8 +3.7b 250.1 +3.4a 456.2+38¢c
1 2272 +0.17b 9753 +5.8b 1615+72a 1293 +4.1ab 251.6+14a 4576+54c
20 22.83 +0.07b 9734 +27b 198.8 £+ 9.2 ab 110+ 5.8a 2508 +2.7a 4502+21c
30 22.97 £ 0.07b 969.8 +5.8b 2123 +29b 110.1 + 6.8 a 253.7+1.2a 4234+15b
60 21.7+0.35a 964.6 + 3.8 ab 222.1+3.2b 111.8+3.7a 2592 +43a 407 £2.8a
105 21.33+041a 962.8 £ 2.4 ab 221.7+£22b 1009 +12a 2734+27b 4041+17a
240 21.36 +£0.12 a 951.1+11a 221.6+41b 109 +£33a 270 +59b 3994 +1.8a

Legend: d.m. dry matter; VS volatile solid; CS cell soluble; ADL acid detergent fibre * data are expressed as average
data + standard deviation of the TP1 and TP2 samples. ** data followed by the same letter in the same column are
not statistically different (ANOVA Bootstrap, p < 0.05, post-test Duncan).

Table 2. pH, short chain fatty acids, and ethanol evolution during TP1 and TP2 fermentation.

Fermefntatlon pH Ethanol Formate Acetate Propionate Lactate
Time

Days mg g1 d.m.

0 6.59 + 0.07 b *** 8.04+322a 2.53 +0.63 a 1047 +6.64a 1.63+0.65a 28+2a

1 3.86+0.03a 12.84 +347ab  8.89+0.33ab 2021+9.08ab 4.29+247a 25+2a

20 3.84+001a 15.67 £ 0.68b 1248 +0.11c 3678 +1.18c 4.62+3.14a 86+1d

30 3.88+0.01a 1413 +143b 7.55+0.44b 3394+204c 515+521a 65+2c¢

60 376 +0.01a 1575+ 0.69b  451+023ab  36.87+0.86c 565+3.64a 65+2c¢

105 3.89+001a 14+0b 61+1.12ab 346+091c 489+1.18a 65+1c

240 3.79+0.02a 1451 +0.72b 3.75+022a 3626 £392c 537+444a 67+t4c

* Data are expressed as average data + standard deviation of the TP1 and TP2 samples. ** data followed by the same
letter in the same column are not statistically different (ANOVA Bootstrap, p < 0.05, post-test Duncan).

The fermentation moderately decreased the TP organic matter content while a great effect
occurred on macromolecular composition (Table 1); as expected, the relative content of CS, the easily
biodegradable fraction, increased, and at the same time all fibers decreased. However, quantitative
investigation confirmed the CS augmentation and hemicellulose and ADL consumption while no
change occurred for cellulose. Pentose sugars that composed hemicellulose were ideal feedstocks for
LAB metabolism; ADL had no defined chemical composition, but its LAB consumption was explainable
while supposing that microbial activity changed the cell wall structure to make carbohydrates fractions
available that were not usable before (e.g., pectin) [31].

3.2. TP Polyphenol Composition and Antioxidant Activity

TPC was applied to estimate the fraction of polyphenols in extracts (Table 3). Total polyphenols
belong to a very abundant fraction that is closely-related to the vegetal fiber and a minor one chemically
conjugated with small functional groups or free, i.e., the aglycone fraction A-PP [32]. Polyphenols
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and fiber had strong ester links that required hard acidic hydrolysis to be broken. On the other
hand, soft extraction with water or alcohols was applied to extract the free or weakly linked fractions.
The extraction conditions and solvents chosen were additional factors that affected the molecule
recovery. Based on previous TP polyphenol characterization, methanol was the best solvent, being
chosen to guarantee a very good extraction yield of the more concentrated molecules [33]. The TPC
of TP1 and TP2 were almost similar (Table 3), which is in agreement with the literature, obtained by
applying the same extraction conditions where the range of TPC was into the range 716-3516 mg gallic
acid g~! dry matter [12]. A more in-depth characterization of the aglycone-polyphenols (A-PP) fraction
was carried out in order to better understand which parts of the polyphenols had been extracted,
since they were very interesting for their high bioactivity (Table 3).

Table 3. Total phenolic content (TPC), aglycone-polyphenols (A-PP) polyphenols extracted content,
and antioxidant activity of TP and TPF.

Parameter Measure TP1 TP1F TP2 TP2F
Unit
TPC WBGAET  ha00L100a%A% 2700+ 40b 3200 + 90 aB 3600 = 170 b
d.m. TP - a - =o0a -
1C5o-DPPH ug mL! 579 + 1.8 aA 757 +3.8b 92.7 + 0.6 cB 131.1+£0.7d
gallic acid 146.5 + 4.3 aA*** 2493 +04b 2227 +15.1 aB 185.7 £ 27 a
chlorogenic acid 89.2+6.2aA 994 +75a 271.7 + 8.5 aB 735+ 14a
vanillic acid 10.3 £ 0.6 bA 74+06a 1.1+0.2aA 26+0.7b
Phenolic
acids extracted  caffeic acid 944 +28bA 192+21a 61.6 = 2.1 bB 87+08a
ferulic acid 8 +1bA 45+0a 22.1+1.4aA 93+19a
P-coumaric acid 22.7 + 0.9 bA 11+12a 64.6 + 8.9bB 11.7+52a
sinapic acid 23.8 + 4.3 bA 33+09a 2.5+ 1.7bA 22+11a
cinnamic acid Hg g_l d.m 105.6 = 3.7 aA 1711+ 14b 88.9 + 22.7 aA 164 £5.3b
Sum 500 565 735 458
quercetin 373 +0.8aA 703 +£6.1b 52.7 +2.4aB 779 £ 0.6 a
naringenin 298 £ 9bA 49.6+19a 659 + 7bB 328+3a
Flavonoids . :
naringenin
extracted ol 10169 +59bA  8734+05a  12605+177bB  1081.6 +12.8a
apigenin 324 +42bA 10.6 £0.2a 66.4 + 0.7 bB 388+24a
myrecetin 2.3+ 0.6 bA Oa 25+ 0.2bA Oa
kaempferol 325+ 4.1bA 157+0.1a 0+0aB 235+15b
Sum 1419.4 1019.6 2341.1 1549.8
A-PP extracted henoli ids +
phenolic phenoic acles 1919.4 1584.6 3076.1 2007.8
flavonoids
content

* Data followed by the small letter in the same line are not statistically different (ANOVA Bootstrap, p < 0.05, post-test
Duncan) ** data followed by the same capital letter in the same line for the same TP are not statistically different
(ANOVA Bootstrap, p < 0.05, post-test Duncan) *** molecules identified and quantified corresponded to the most
part of the whole spectra (68.25%, 78.64%, 85.65%, and 77.52% of the TP1, TP1F, TP2, and TP2F spectra, respectively).

A-PP extracted belonging to the flavonoids and phenolic acids accounted for 70% and 30%,
respectively; gallic acid, chlorogenic acid, and cinnamic acid were the more concentrated phenolic
acids and naringenin chalcone and naringenin were the most abundant flavonoids (Table 3). The high
naringenin chalcone concentration is due to its accumulation during the naringenin metabolic
pathway [34].

Based on the HPLC fingerprint, the whole A-PP extracted content was calculated as the sum
of phenol acids and flavonoids and compared with the corresponding TPC data (Table 3). A-PP
for both TP1 and TP2 accounted for the greater part of TPC (83% TPC and 96% TPC, respectively,
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for the TP1 and TP2), thus suggesting that extraction conditions were able to obtain the more active
polyphenols fraction.

Bioactivity was firstly measured as antioxidant power (Table 3) by using ICs5y and compared with
ascorbic acid (ICsp = 153 ug mL™1) and Trolox (ICs = 100 ug mL™1) known to have high antioxidant
capability. The TP1 had the lowest IC5p, while TP2 was similar to Trolox, thus confirming that TP
hydrophilic components have good antiradical activity (Table 3).

Fermentation has been reported to be able to increase TPC and A-PP for the release from fiber
of polyphenol fractions, although the results were not well in agreement based on the biomass,
polyphenols typology, and fermentation method adopted [35,36].

In this work, TPC increased 17% and 12.5%, but A-PP significantly decreased during fermentation
down to 57 + 2% as an average of the starting value after 250 days (Table 3), in agreement with
literature [37].

No significant A-PP flavonoids qualitative changes occurred between TP and TPF, since all of the
molecules become less concentrated with the exception of the quercetin that increased [38]. Phenolic
acids however remained constant and decreased for TP1F and TP2F for the reduction/conservation
of most of the molecules with the exception of gallic and cinnamic acids, which increased. Similar
behaviors were already described during sourdough LAB fermentation when a global A-PP reduction
occurred, while fiber-ferulic acid bound hydrolysis improved the recovery of that phenolic acid [36].

TPF showed a significant difference between TPC and A-PP. The explanation is that, although TPC
was usually associated with the presence of polyphenols, the Folin-Ciocalteu reagent was not specific
for that class of molecules but rather for benzene derived substituents typical not only of polyphenols,
but of other several molecules, such as amino acids, sugars, acids, etc. [36,39]. The extraction conditions
and solvents chosen in addition affected the capability to extract some of the molecules. Since the TPC
vs. A-PP difference occurred after fermentation we could suppose that aglycone fractions in the TPC
were, in fact, LAB metabolism products. Aromatic organic acids, reducing sugars, and aromatic amino
acid are probable constituents with cutin and suberin monomers. The augmentation of the difference
after fermentation is, therefore, due to the production of non aglycone molecules. That fraction’s
origin was supposed to have originated from polyphenols that were previously fiber-linked and then
successively metabolized into de-glucosides, sulfoconjugates, glucoronides, and other forms [40].

Bioactivity increased with fermentation for both TPs (+26% and +42% for TP1F and TP2F
respectively), nevertheless no significant correlation existed with TPC (r = 0.8, p < 0.2, n = 4). At the
same time, A-PP had an opposite trend with respect to ICs, which means that, for TPF, the most part
of the antioxidant activity was due to non A-PP.

The explanation becomes more difficult when we consider that polyphenols have different
antioxidant power for class, molecules, or derivate metabolites that affect the concentration vs. activity
relationship [40]. The flavonoids were more active in comparison with the phenolic acids and A-PP
were more bioactive than bound ones [40].

Thus the fraction of molecules defined as (TPC minus A-PP) were correlated with ICsp and a
better result was found (r = 0.9, p < 0.1, n = 4) in comparison to that found for TPC vs. ICs. This result
indicated that, effectively, TPC-A-PP contained an anti-oxidant fraction, but its presence was not
sufficient to totally explain the anti-oxidant activity.

TPC accounted for 10-15% of the methanol-TP extract; therefore, the presence of other antioxidant
molecules cannot to be excluded.

Vitamin C, for example, is present in tomato peel, bound to the cell-membrane structure that
negatively affected its extractability; recovery was improved by LAB’s capability to break the links,
so there was increased vitamin C release after fermentation.

The difficulty found in identifying the molecules that are responsible for the antioxidant effect
is typical of what occurs when complex extracts are considered. This is due to the presence of
several bioactive substances, since their co-existence generates numerous interactions. Potentiation,
antagonism addition, and synergy are known effects that result in the final antioxidant activity deriving
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from chemical reactions, such as regeneration, spatial distribution, metal chelation, and mutual
protection. The presence of pro-oxidant agents, the solubility of antioxidants in reaction media, and the
solvent effects might reduce the overall activity [41].

The antioxidant bioactivity of TPF does better than that of raw ones thank to the production of
fermentation metabolites that increase starting biomass nutritional value and potential health benefits.
In addition, LAB fermentation is cheap and guarantees the biomass safety, all positive effects that
renewed interest for its application.

3.3. Anti-Inflammatory Properties

Inflammation is a body stress status that is recognized to be the precursor of several diseases.
Intestinal cells are able to respond to inflammatory signals by triggering various intracellular signal
transduction cascades to control the expression of genes, including cytokines and chemokines, like IL-1,
IL-6, IL-8, and TNF-a, due to their high exposure to inflammatory events. The human colon epithelial
cell line Caco-2 secretes chemokine IL-8, which directs the migration of leukocytes, monocytes,
and macrophages. The ability of polyphenol to influence IL-8 production has been used to evaluate
the experimental anti-inflammatory properties.

TP and TPF were tested for their anti-inflammatory capability. The results indicated that all the
TP extracts had very high anti-inflammatory effects, being described by a dose-dependent first linear
phase followed by a plateau reached in correspondence with the complete inflammation elimination
(Figure 1).

TPC and A-PP doses were considered with the aim of identifying the TP extract fraction responsible
for the effect. Dosing TPC =15 pug mL~! TPs were more bioactive than TPF, while the same effect was
shown when considering TPC = 25 ug mL~!, since it corresponded to the plateau phase (Figure 1a,b).
Minimum effective concentration (MEC) i.e., lowest dose that eliminated inflammation completely is a
fundamental item of information for applicative purpose; by using the TPC = 15 pug mL™! dose, it was
found that TPF had anti-inflammatory activity of 78% in comparison with TP.

A-PP have been reported to be anti-inflammatory agents, being able to modify the expression
of more pro-inflammatory genes, such as multiple cytokines, lipoxygenase, nitric oxide synthases,
and cyclooxygenase, with particular reference to the regulation of the expression of NF-kB [42].

The doses were recalculated in order to correlate the anti-inflammatory effects of A-PP, resulting
in being similar for TP but very different for TPF (Table 4).

Table 4. Effect of TP extracts on IL-8 release from Caco-2 cells.

Samples Dose Inflammation

pg TPCmL-1  pug A-PP Extracted mL~1  IL-8 m-RNA Expression

P1 ” 2509 0131001
TP1F ;g 1%1.?607 17..311 iiOO .0086
P2 ” 203 045 £ 001
_— ;2 o 006 2 003

Control 0 0 26.84 +0.13
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Figure 1. Relationships among inflammation reduction and TP extract dose expressed as total
polyphenol content (a) and A-PP extracted (b).

This dose expression positioned the most part of the samples into the dose-effect range and only
TP1_25 and TP2_25 were at plateaus (Figure 1b). TP and TPF were now aligned to define together
a linear straight phase (% reduction= (7.19 + 0.31) * A-PP, R? =0.99, p < 0.001, n = 7) (Figure 1b);
this result highlighted that LAB fermentation did not reduce anti-inflammatory capacity, but preserved
the starting one and a common MEC of 13.7 g mL~! was calculated.

Further investigation led us to conclude that A-PP was responsible for the anti-inflammatory
effect and LAB fermentation preserved that bioactivity. With reference to A-PP composition, it is
worth noting that TP’s more concentrated flavonoids (naringenin and naringenin chalcone) were more
effective than more concentrated phenolic acids (chlorogenic acid and cinnamic) for the capability to
interact with different biological targets due to their different structure [43].
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Naringenin inhibits TNF-a-induced TLR2 expression by inhibiting the nuclear factor-«xB (NF-«B)
and JNK pathways in adipocyte cells [44], whereas naringenin chalcone reduced the production of
TNF-o and MCP-1 through IkB-o degradation in the RAW 264 macrophages that were stimulated by
lipopolysaccharide [45].

Among phenolic acids, cinnamic acid and gallic acid inhibited NF-«B activation, in particular
phosphorylation of IkB and NF-«B-dependent p65 acetylation, respectively; nevertheless, gallic acid
inhibited the activation of COX-2 [43,46]. In particular, chlorogenic acid has shown inhibitory activity
on the cytokine IL-8 production in the Caco-2 inflamed cells either through directly suppressing the
NF-kB activation or indirectly via the inhibition of the upstream signaling pathways [47].

The combination of several bioactive substances has been described as enhancing the final
anti-inflammatory effect for the capability to act against greater numbers of inflammatory mechanisms
at the same time [35]. However, several chemical interactions affected the bioavailability of the
molecules. The flavonoids co-existence improved their chemical stability and solubility, thus positively
the bioavailability, but the same molecules competed with phenolic acid for cellular transportation,
causing adsorption interference [41].

In vegetal extracts, several bioactives co-existed with others, often unknown, thus making it
impossible to experimentally understand all of the chemical and biological interactions that contributed
to the final bioactivity.

PLS was more reliable than other techniques when identifying relevant variables and their
magnitudes of influence, especially in the cases of small sample size and low tolerance [48]. Coefficient
importance was considered a discriminant parameter to select the variables. In this work, PLS was
based on the identification of a dose of A-PP molecules vs. anti-inflammatory effect (expressed
as IL-8 de-activation) relationship. At the end of several PLS cycles, the best Goodness-of-Fit and
Goodness-of-Prediction of the regression model of R? = 0.95 and R?cv = 0.62 were reached.

Multiple PLS regression indicated that IL-8 inactivation was well explained by the naringenin
chalcone, gallic acid, kaempferol, and apigenin having important coefficient values of 31%, 25%,
24%, 20% respectively. All of the molecules selected represented were the greater part of the A-PP
(molecules selected 73 + 15% of A-PP), and naringenin chalcone and gallic acid together accounted
alone for 71 + 15% of A-PP, therefore contributing the greatest amounts of the molecules” dose to give
bioactivity. On the other hand, from a qualitative point of view, their contribution corresponded to 56%
of the importance, while kaempferol and apigenin had greater effects, taking their low concentration
into consideration.

PLS selection confirmed the higher bioactivity of flavonoids with respect to phenolic acids (75%
and 25% of the importance, respectively) [49].

The exclusion of other flavonoids more concentrated than naringenin that demonstrated higher
concentration and the selection of kaempferol and apigenin suggested that PLS choice was not based
only on the quantitative aspect, but also considered the action mechanism. Kaempferol for example
was noted to be very potent phenolic compound for its capacity to affect anti-inflammatory by affecting
two different inactivation pathways (inhibited STAT-1 and NF-kB) [50] on the contrary of the other
molecules selected by PLS, where action was addressed to a single biological receptor. Similarly,
apigenin has demonstrated strong anti-inflammatory properties via modulation of the gene expression
of inflammatory cytokines via acting on the NF-kB and MAPK signaling pathways and through the
pro-inflammatory mediators, such as cyclooxygenase, lipoxygenase, and nitric oxide synthases [51].

4. Conclusions

In conclusion, polyphenols from TPs in raw pomace or following fermentation can represent
inexpensive and economic raw materials, and their use can decrease the waste discarding issues from the
tomato processing industry. By exploiting the most favorable extraction methods, an improvement of
the anti-oxidant properties was found for the production of bioactive substances during fermentation.
Nevertheless, anti-inflammatory activity was preserved. That property, together with the good
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safety aspect of the fermented biomass, will suggest the employment of the extract for further
application as supplementary elements or additive ingredients in nutraceutical, cosmetic and bioactive
molecules industries.
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