SUPPLEMENTARY DATA

Myeloperoxidase modulates hydrogen peroxide mediated cellular damage in murine macrophages.

Chaorui Guo, Inga Sileikaite, Michael J. Davies and Clare L. Hawkins*
Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark

Keywords: Hypochlorous acid; thiocyanate; glucose oxidase; inflammation; atherosclerosis; macrophage

[^0]Table S1. Mus primer sequences used for qPCR.

Gene	Forward sequence $\left(5^{\prime}-3^{\prime}\right)$	Reverse sequence $\left(5^{\prime}-3^{\prime}\right)$
TATA-box binding protein (TBP)	CACAGGAGCCAAGAGTGAAGA	CACAAGGCCTTCCAGCCTTA
18S ribosomal RNA (18S)	GTAACCCGTTGAACCCCATT	CCATCCAATCGGTAGTAGCG
Mus beta-2 microglobulin (B2M)	TGGTCTTTCTGGTGCTTGTC	GGATTTCAATGTGAGGCGGGT
Heme oxygenase 1 (HMOX1)	ACAGCCCCACCAAGTTCAAA	TCTGCAGGGGCAGTATCTTG
Superoxide dismutase 2, mitochondrial (SOD2)	ACAACTCAGGTCGCTCCTCAG	GATAGCCTCCAGCAACTCTCC
Glutathione Peroxidase 1 (GPx1)	CCACCGTGTATGCCTTCTCC	AGAGAGACGCGACATTCTCAAT
Glutathione S- Transferase Pi 1 (GSTP1)	ATGCCACCATACACCATTGTC	GGGAGCTGCCCATACAGAC
Glutamate-Cysteine Ligase Catalytic Subunit (GCLc)	GGACAAACCCCAACCATCC	GTTGAACTCAGACATCGTTCCT
Glutamate-Cysteine Ligase Modifier Subunit (GCLm)	CTTCGCCTCCGATTGAAGATG	AAAGGCAGTCAAATCTGGTGG
NAD(P)H Quinone Dehydrogenase 1 (NQO1)	AGGATGGGAGGTACTCGAATC	TGCTAGAGATGACTCGGAAGG
Glutathione synthetase (GS)	GGTATCTTCCCTCAGCAGCCTT	GCTTCCATTCCCACACTCCAAA

Figure S1: Effect of the glucose/GO/MPO enzymatic system on J774A. 1 metabolic activity.
J774A. 1 cells $\left(1 \times 10^{5}\right)$ were treated with $\mathrm{GO}\left(0-200 \mathrm{mU} \mathrm{mL}^{-1}\right)$ in HBSS with or without glucose (5.6 mM), in the absence and presence of MPO ($0-100 \mathrm{nM}$) for either (a) 1 h or (b) 4 h before reincubation in MTS containing cell media for 4 h . Data are expressed as the percentage of metabolic activity compared to the non-treated group and represent the mean \pm S.E.M from 3 independent experiments. * shows a significant difference ($p<0.05$) compared to the non-treated cells; \# shows a significant difference ($p<0.05$) compared to the glucose/GO group without MPO, by a 2-way ANOVA with a Tukey's multiple comparison test.

Figure S2: Effect of the glucose/GO/MPO enzymatic system on intracellular thiols in J774A. 1 cells.

J774A. 1 cells $\left(5 \times 10^{5}\right)$ were treated with $\mathrm{GO}\left(50 \mathrm{mU} \mathrm{mL}^{-1}\right)$ in the absence and presence of MPO (20 and 50 nM) in HBSS containing glucose (5.6 mM) for 1 h before re-incubation in cell media for 24 h. Intracellular thiols were quantified using ThioGlo 1 and normalised to the total protein concentration measured by BCA assay. Data are shown as the fold change of thiols compared to non-treated group and represent mean \pm S.E.M from three independent experiments. Analysis by 1-way ANOVA with Dunnett's multiple comparison test showed no significant changes compared to the non-treated control (HBSS).

Figure S3. Cytoplasmic Nrf2 and c-JUN are not altered in J774A. 1 cells on exposure to the glucose/GO/MPO enzymatic system.

J774A. 1 cells (2×10^{6}) were incubated in HBSS containing glucose (5.6 mM) (black bars), with GO ($50 \mathrm{mU} \mathrm{mL}^{-1}$), GO/MPO (50 nM) or GO/MPO/SCN $(200 \mu \mathrm{M})$ for 1 h at $37^{\circ} \mathrm{C}$ before re-incubation in cell media for 24 h . The cytoplasmic protein was extracted using a commercial kit and $10 \mu \mathrm{~g}$ protein was loaded. β-actin was used as a loading control. Images are representative of 3 independent experiments (A). Panels \mathbf{B} and \mathbf{C} show the densitometry analysis of $\mathrm{Nrf2}$ (\mathbf{B}) and c JUN (C) following normalization to β-actin. Data are expressed as the fold change compared to the respective non-treated group.

[^0]: * To whom correspondence should be addressed: Prof. Clare Hawkins, Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark. Email: clare.hawkins@sund.ku.dk

