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Abstract: Recent studies demonstrate that 5-fluoro-2-oxindole inhibits neuropathic pain but the
antinociceptive actions of this drug and its effects on the plasticity, oxidative and inflammatory changes
induced by peripheral inflammation as well as on the effects and expression of µ-opioid receptors
(MOR) have not been evaluated. In C57BL/6 male mice with inflammatory pain provoked by the
subplantar administration of complete Freund’s adjuvant (CFA), we evaluated: (1) the antinociceptive
actions of 5-fluoro-2-oxindole and its reversion with the HO-1 inhibitor, tin protoporphyrin IX
(SnPP); (2) the effects of 5-fluoro-2-oxindole in the protein levels of mitogen-activated protein kinase
(MAPK), Nrf2, NADPH quinone oxidoreductase1 (NQO1), heme oxygenase 1 (HO-1), oxidative stress
marker (4-hydroxy-2-nonenal; 4-HNE), inducible nitric oxide synthase (NOS2), microglial markers
(CD11b/c and IBA-1), and MOR in the spinal cord and/or paw of animals with inflammatory pain;
(3) the antinociceptive effects of morphine in 5-fluoro-2-oxindole pre-treated animals. Treatment
with 5 and 10 mg/kg of 5-fluoro-2-oxindole inhibited the allodynia and hyperalgesia induced by
CFA in a different, time-dependent manner. These effects were reversed by SnPP. Treatment with
5-fluoro-2-oxindole increased the expression of NQO1, HO-1 and MOR and inhibited the CFA-induced
upregulation of phosphorylated MAPK, 4-HNE, NOS2, CD11b/c and IBA-1 in spinal cords and/or
paws. The local effects of morphine were improved with 5-fluoro-2-oxindole. This work reveals
that 5-fluoro-2-oxindole inhibits the plasticity, oxidative and inflammatory responses provoked by
peripheral inflammation and potentiates the antinociceptive effects of morphine. Thus, treatment
with 5-fluoro-2-oxindole alone and/or combined with morphine are two remarkable new procedures
for chronic inflammatory pain management.
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1. Introduction

Several studies showed the protective role played by numerous oxindole derivates such as
isorhynchophylline (IRN) and rhynchophylline (RIN), versus diabetes, thrombosis, bacterial infection,
asthma, cancer and inflammation [1–4]. The antinociceptive actions of different oxindole alkaloids
during acute inflammation or visceral pain have also been demonstrated [5–7]. A recent study
further revealed the antinociceptive effects of 5-fluoro-2-oxindole in animals with chronic neuropathic
pain [8]. Nonetheless, the potential pain-relieving action of 5-fluoro-2-oxindole in animals with chronic
inflammatory pain has not yet been evaluated.
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Microglial cells are decisive for the progress and preservation of inflammatory pain [9,10].
Microglial activation initiates the synthesis of inflammatory mediators, for instance tumor necrosis
factor α (TNFα), several interleukins and inducible nitric oxide synthase (NOS2), which promote
inflammatory pain. Peripheral inflammation also induced the activation of mitogen-activated protein
kinase (MAPK)/NF-κB signaling pathways in the spinal cord and paw [11], whose inhibition is a
mechanism of action of the oxindoles, RIN and IRN, for attenuating the inflammatory responses
induced by lipopolysaccharide (LPS) in cell cultures [12,13]. The administration of 5-fluoro-2-oxindole
also inhibits the spinal cord and hippocampal activation of microglia provoked by nerve injury [8].
Nonetheless, the regulatory effects of 5-fluoro-2-oxindole in MAPK phosphorylation, microglial
activation and NOS2 overexpression in the spinal cord and/or paw tissues of mice with inflammatory
pain have not been evaluated.

The antioxidant enzymes, NADPH quinone oxidoreductase1 (NQO1) and/or heme oxygenase 1
(HO-1), participate in the analgesic actions of several compounds such as sulforaphane, oltipraz and
carbon monoxide-releasing molecules (CORM’s) during inflammatory and neuropathic pain [11,14–17].
Other works also proved that the analgesic effects of 5-fluoro-2-oxindole in animals with sciatic nerve
injury-induced neuropathic pain are mediated via augmenting the Nrf2 transcription factor, NQO1
and HO-1 protein levels [8] and that the anti-inflammatory effects of IRN were produced via avoiding
the down-regulation of the antioxidant proteins superoxide dismutase, glutathione peroxidase 1
and catalase [3]. The probable contribution of the Nrf2 transcription factor, NQO1 and HO-1 in
the pain-relieving actions of 5-fluoro-2-oxindole, and the effects of this treatment in the levels of
4-hydroxy-2-nonenal (4-HNE)-positive proteins, an oxidative stress marker, during inflammatory pain
were not identified.

Several works demonstrated that different drugs are able to potentiate the analgesic effects ofµ-opioid
receptor (MOR) agonists in animals with neuropathic or inflammatory pain. Thus, the effectiveness of
morphine increased in animals with inflammatory or neuropathic pain pre-treated with activators of
Nrf2 (sulforaphane) or HO-1 (cobalt protoporphyrin IX (CoPP)) as well as with CORM’s [11,14,15,18,19].
5-fluoro-2-oxindole also enhanced the antiallodynic and antihyperalgesic effects of morphine in sciatic
nerve-injured animals [8], but its role in modulating the analgesic properties of morphine and MOR
expression during inflammatory pain remains untested.

In mice with chronic inflammatory pain generated with the subplantar injection of complete
Freund’s adjuvant (CFA), we assessed the effects of 5-fluoro-2-oxindole in: (a) the mechanical allodynia
and thermal hyperalgesia provoked by peripheral inflammation and the reversion of its effects with
the administration of the HO-1 inhibitor, tin protoporphyrin IX (SnPP); (b) the protein levels of MAPK,
Nrf2, HO-1 and NQO1, the oxidative stress (4-HNE) and inflammatory (NOS2, CD11b/c and IBA-1)
markers as well as of MOR in the spinal cord and/or paw tissues; (c) the antinociceptive actions of
locally administered morphine.

2. Materials and Methods

2.1. Animals

Male C57BL/6 mice (21–25 g), acquired at Envigo Laboratories (Barcelona, Spain), were accommodated
under 12/12 h light/dark conditions in a room with controlled temperature of 22 ◦C and humidity of 66%
until use. These animals with free access to food and water were used after 7 days acclimatization to the
housing conditions. All the planned experiments were performed between 9:00 a.m. and 5:00 p.m. and
carried out in conformity with the guidelines of the European Commission’s directive (2010/63/EC), the
Spanish Law (RD 53/2013) regulating animal research and approved by the local Committee of Animal
Use and Care of the Autonomous University of Barcelona (the ethical code is 1325R5). Maximal exertions
to diminish animal suffering and the number of animals used were made.
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2.2. Induction of Inflammatory Pain

Chronic inflammatory pain was incited with the subplantar injection of CFA (30 µL; Sigma-Aldrich,
St. Louis, MO, USA) into the right hindpaw under brief anesthetic conditions with isoflurane in
accordance with our previous work [20].

2.3. Mechanical Allodynia

Mechanical allodynia was evaluated by measuring the hindpaw withdrawal response to von
Frey filament stimulation. Mice were sited in methacrylate cylinders (20 cm high × 9 cm in diameter;
Servei Estació, Barcelona, Spain) on a wire grid bottom, across which von Frey filaments (North Coast
Medical, Inc., San Jose, CA, USA) with bending force in the range 0.008–3.5 g were applied by using
the up/down paradigm [21]. The test was imitated with the 0.4 g filament, and the strength of the
following filament was increased or decreased according to the response. The threshold of response
was calculated from the sequence of filament strength used during the up/down procedure using an
Excel program (Microsoft Iberia SRL, Barcelona, Spain), which includes the adjustment to the data
curve. A clear paw withdrawal, licking the paw, or shaking the paw was considered a nociceptive
like response.

2.4. Thermal Hyperalgesia

Thermal hyperalgesia was evaluated by assessing the paw withdrawal latency in response to
radiant heat in the plantar test (Ugo Basile, Varese, Italy) [22]. Animals were positioned in Plexiglas tubes
(20 cm high × 9 cm diameter) placed on a glass surface. The heat source was situated under the plantar
surface of the hind paws and activated with a light beam intensity until paw withdrawal. The cut-off

time is 12 s. Paw withdrawal latencies were determined from the mean of three separate assays.
In both tests, animals were familiarized to the environment for 1 h before the test so that they

were quiet. Both ipsilateral and contralateral hind paws were tested.

2.5. Western Blot Analysis

Naïve and CFA-injected mice treated with 5 mg/kg 5-fluoro-2-oxindole or vehicle for 11 days
were euthanized by cervical dislocation at 0 and 14 days after CFA injection. The spinal cord of
the lumbar section and the subplantar tissue of the hind legs of the ipsilateral side were extracted,
frozen and kept at −80 ◦C until use. Protein levels of p-JNK/JNK, p-ERK 1/2/ERK 1/2, p-P38/P38,
Nrf2, HO-1, NQO1, 4-HNE, NOS2, CD11b/c, IBA-1 and MOR, were analyzed. The homogenization
of tissues was done in ice-cold lysis buffer (50 mM Tris·Base, 150 nM NaCl, 1% NP-40, 2 mM EDTA,
1 mM phenylmethylsulfonyl fluoride, 0.5 Triton X-100, 0.1% sodium dodecyl sulfate, 1 mM Na3VO4,
25 mM NaF, 0.5% protease inhibitor cocktail, and 1% phosphatase inhibitor cocktail). NP-40 was
purchased from Calbiochem (Darmstadt, Germany) and all other reagents were acquired from
Sigma-Aldrich. After solubilization of crude homogenate for 1 h at 4 ◦C, it was sonicated for 10 s
and centrifuged at 4 ◦C for 15 min at 700× g. Then, the supernatant (60 µg of total protein) was
mixed with 4× Laemmli loading buffer and loaded onto 4% stacking/10–12% separating sodium
dodecyl sulfate polyacrylamide gels. After that, proteins were electrophoretically transferred onto
a polyvinylidene fluoride membrane for 120 min and blocked with phosphate-buffered saline with
Tween 20 plus 5% nonfat dry milk or Tris-buffered saline with Tween 20 plus 5% nonfat dry milk
or 5% bovine serum albumin for 1 h and 15 min, and then incubated with specific rabbit primary
antibody anti-phospho-JNK, total JNK, phospho-ERK 1/2, total ERK 1/2, and total P38 (1:250; Cell
Signaling Technology, Danvers, MA, USA), and phospho-P38 (1:200; Cell Signaling Technology),
Nrf2 (1:160; Abcam, Cambridge, UK), HO-1 (1:200; Abcam), NQO1 (1:333; Sigma-Aldrich), 4-HNE
(1:150, Abcam), NOS2 (1:150; Abcam), CD11b/c (1:200; Novus Biologic, Littleton, CO, USA), IBA-1
(1:150; Thermo Fisher Scientific, Waltham, MA, USA) and (MOR (1:333; Merck, Billerica, MA, USA)
overnight at 4 ◦C. A horseradish peroxidase-conjugated anti-rabbit secondary antibody (GE Healthcare,



Antioxidants 2020, 9, 1249 4 of 17

Little Chalfont, UK) was used to detect proteins, which were visualized with chemiluminescence
reagents (ECL kit; GE Healthcare, Little Chalfont, UK) and exposure to Kodak film. Blot intensity was
quantified by densitometry using Image-J program (National Institutes of Health, Bethesda, MD, USA).
A rabbit anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibody (1:5000; Merck, Billerica,
MA, USA) was used as a loading control.

2.6. Experimental Procedures

At first, we investigated the mechanical antiallodynic and thermal antihyperalgesic effects
of the daily intraperitoneal administration of 5 and 10 mg/kg of 5-fluoro-2-oxindole or vehicle
(dimethylsulfoxide 1% solution in saline) from day 4 to 14 after CFA injection (n = 6 animals per group).
We used contralateral paws as controls.

Therefore, we evaluated the reversion of the antiallodynic and antihyperalgesic effects generated
by 5 mg/kg 5-fluoro-2-oxindole intraperitoneally administered during 11 consecutive days with the
intraperitoneal administration of 5 mg/kg SnPP, a selective HO-1 inhibitor. SnPP was administered
30 min after 5-fluoro-2-oxindole injection and animals were tested 30 min after SnPP injection (n = 6
animals per group). The dose of SnPP was selected in accordance with other studies [18,23].

The protein levels of p-JNK/JNK, p-ERK 1/2/ERK 1/2, p-P38/P38, Nrf2, HO-1, NQO1, 4-HNE,
NOS2, CD11b/c, IBA-1 and MOR in the ipsilateral site of the spinal cords and paws from mice with
peripheral inflammation treated with 5 mg/kg 5-fluoro-2-oxindole or vehicle during 11 consecutive
days were evaluated by Western blot assay. We used naive mice treated with vehicle as controls
(n = 3–4 samples per group).

In other groups, we investigated the antiallodynic and antihyperalgesic actions induced by
co-administration of 5-fluoro-2-oxindole (5 mg/kg, intraperitoneal) or vehicle with morphine (50 µg,
subplantar) or saline during inflammatory pain. Mice were tested at 30 min after morphine administration
(n = 6 animals per group). The dose of morphine was selected in accord with previous studies [11,19].

The researcher who executed these tests was not aware of the treatments used.

2.7. Drugs

5-fluoro-2-oxindole (Figure 1) with a 97% of purity was purchased in Sigma-Aldrich (St. Louis,
MO, USA), dissolved in dimethylsulfoxide (1% in 0.9% of saline solution) and intraperitoneally
administered in a final volume of 10 mL/kg, 1 h before testing, in conformity with a preceding study [8].
Morphine hydrochloride acquired from Alcaiber S.A. (Madrid, Spain) was dissolved in 0.9% saline
solution and subplantarly administered, in a final volume of 30 µL, 30 min before doing the behavioral
tests [11,19]. All drugs were freshly prepared before use. For each group treated with a drug, the
respective control group received the same volume of corresponding vehicle.
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2.8. Statistical Analyses

All data are expressed as the mean values ± standard error of the mean (SEM). We used
the SPSS program (version 13 for Windows, IBM, Madrid, Spain) for the statistical analysis.
A three-way repeated-measures ANOVA with paw, treatment and time as the factors of variation with
the corresponding one-way ANOVA and Student Newman Keuls test was used to analyze the effects
of 5-fluoro-2-oxindole on nociception. A one-way ANOVA followed by the Student Newman Keuls
test was utilized for evaluating the effects of 5-fluoro-2-oxindole combined with SnPP or morphine.
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The effects of 5-fluoro-2-oxindole in the expression of several proteins were analyzed using a one-way
ANOVA and the Student Newman Keuls test. A value of p < 0.05 was considered significant.

In the von Frey filaments and plantar tests, antinociception is expressed as the percentage of
maximal possible effect, where the test latencies pre-drug (baseline) and post-drug administration are
compared and calculated in accordance with this equation

Maximal possible effect (%) = [(drug-baseline)/(cut-off-baseline)] × 100

3. Results

3.1. The Antinociceptive Effects of 5-Fluoro-2-Oxindole during Peripheral Inflammation

Data showed that the repetitive administration of 5-fluoro-2-oxindole reduced the allodynia
(Figure 2A). Significant effects of paw (p < 0.001), treatment (p < 0.001) and time (p < 0.001), and
interactions between paw × treatment (p < 0.001), paw × time (p < 0.011), treatment × time (p < 0.001) as
well as among paw × treatment × time (p < 0.001) were revealed by the three-way repeated-measures
ANOVA. A gradual enhancement of the ipsilateral hind paw withdrawal threshold in response to
von Frey filaments since days 1 to 11 of 5-fluoro-2-oxindole treatment was demonstrated (p < 0.001;
one-way ANOVA vs. The respective ipsilateral paws of mice treated with vehicle). Treatment with
5-fluoro-2-oxindole at 10 mg/kg completely inhibited the allodynia induced by peripheral inflammation
after 7 days of treatment, while 11 days of treatment are required to block the allodynia with the
administration of 5 mg/kg of this drug.

For thermal hyperalgesia, the three-way repeated measures ANOVA also revealed significant
effects of paw, treatment and time (p < 0.001), and interactions among paw × treatment, paw × time,
treatment × time and paw × treatment × time (p < 0.001). Treatment with 5-fluoro-2-oxindole also
exhibited a progressive enhance in the latency of paw withdrawal since day 1 to day 11 of treatment
(p < 0.001; one-way ANOVA and Student Newman Keuls test vs. The ipsilateral paws of mice treated
with vehicle, Figure 2B). The hyperalgesia caused by peripheral inflammation was totally blocked at
7 and 11 days of the repetitive administration with 10 and 5 mg/kg of 5-fluoro-2-oxindole, respectively.

In both tests, the intraperitoneal administration of 5 or 10 mg/kg of 5-fluoro-2-oxindole did not
have any action in the contralateral paws of animals with peripheral inflammation (Figure 2A,B).
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Figure 2. Treatment with 5-fluoro-2-oxindole decreases the mechanical allodynia and thermal
hyperalgesia induced by CFA. The development of (A) mechanical allodynia and (B) thermal
hyperalgesia in both hind paws of CFA-injected mice treated with 5-fluoro-2-oxindole (FLUO) or
vehicle for 11 consecutive days are shown. The effects of 5 and 10 mg/kg 5-fluoro-2-oxindole were
evaluated at days 4, 7, 10 and 14 after CFA injection. For each day and treatment evaluated, * indicates
significant differences vs. their respective contralateral paws, + indicates significant differences vs.
ipsilateral paws of animals treated with FLUO at 5 mg/kg, and # indicates significant differences vs.
ipsilateral paws of animals treated with FLUO at 10 mg/kg (p < 0.05, one-way ANOVA followed by
Student-Newman-Keuls test). Results are represented as mean ± S.E.M. values; n = 6 animals per
experimental group.

3.2. Reversion of the Antinocicetptive Effects of 5-Fluoro-2-Oxindole with SnPP

The antinociceptive effects generated by the intraperitoneal administration of 5 mg/kg
5-fluoro-2-oxindole during 11 consecutive days were inhibited with the intraperitoneal administration of
5 mg/kg SnPP. That is, the antiallodynic (p < 0.001, one-way ANOVA; Figure 3A) and antihyperalgesic
(p < 0.001, one-way ANOVA; Figure 3B) effects induced by 5-fluoro-2-oxindole were completely
inhibited with its co-administration with the HO-1 inhibitor. The administration of SnPP alone or
combined with 5-fluoro-2-oxindole did not have any effect on the contralateral paws of CFA-injected
animals (data not shown).
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Figure 3. Reversion of the antinociceptive effects of 5-fluoro-2-oxindole by SnPP treatment. Effects of
treatment with 5 mg/kg 5-fluoro-2-oxindole (FLUO) or vehicle during 11 consecutive days in the
ipsilateral paw of mice co-treated with 5 mg/kg of SnPP or vehicle at day 14 after CFA injection in the
inhibition of the mechanical allodynia (A) and thermal hyperalgesia (B). In both panels, * indicates
significant differences vs. vehicle plus vehicle-treated mice, # indicates significant differences vs. SnPP
plus vehicle-treated mice and $ indicates significant differences vs. SnPP plus FLUO treated mice
(p < 0.05, one-way ANOVA followed by Student-Newman-Keuls test). Data are expressed as mean
values of the maximal possible effect (%) ± S.E.M.; n = 6 animals per experimental group.
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3.3. Effect of 5-Fluoro-2-Oxindole in the Expression of MAPK in the Spinal Cords and Paws of Mice
Inflammatory Pain

Our findings demonstrated that CFA injection augmented the spinal cord expression of p-JNK
(p < 0.029; one-way ANOVA; Figure 4A) and p-P38 (p < 0.016, one-way ANOVA; Figure 4C), and
the paw levels of p-JNK (p < 0.018, one-way ANOVA; Figure 4E) and p-ERK 1/2 (p < 0.003, one-way
ANOVA; Figure 4F). Moreover, the enhanced expression of p-JNK, p-ERK 1/2 and p-P38 was normalized
by 5-fluoro-2-oxindole. Non-changes in the spinal cord levels of p-ERK 1/2 or in the paw levels of
p-P38 were observed (Figure 4B,G).
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Figure 4. Treatment with 5-fluoro-2-oxindole normalized the activation of JNK, ERK 1/2 and P38
induced by CFA in spinal cords and/or paws. The relative protein levels of p-JNK/JNK (A,E), p-ERK
1/2/ERK 1/2 (B,F) and p-P38/P38 (C,G) in the spinal cords and paws of CFA-injected mice treated with
5 mg/kg 5-fluoro-2-oxindole (FLUO) or vehicle during 11 consecutive days are represented. We used
naive vehicle treated animals as controls. Representative blots for p-JNK/JNK (46/54 kDa), p-ERK
1/2/ERK 1/2 (44/42 kDa) and p-P38/P38 (40 kDa) in the spinal cords (D) and paws (H) of animals with
peripheral inflammation are shown. In all figures, * symbolizes significant differences compared with
naïve vehicle treated mice and # vs. CFA-injected mice treated with 5-fluoro-2-oxindole (p < 0.05;
one-way ANOVA and Student–Newman–Keuls test). The results are represented as the mean ± SEM;
n = 3–4 samples per group.
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3.4. Effects of 5-Fluoro-2-Oxindole in the Expression of Antioxidant Proteins in the Spinal Cords and Paws of
Animals with Peripheral Inflammation

The injection of CFA decreased the spinal cord expression of Nrf2 (p < 0.016, one-way ANOVA;
Figure 5A), and increased the spinal cord protein levels of HO-1 (p < 0.031, one-way ANOVA; Figure 5B).
Non-changes caused by CFA were manifested in the Nrf2 (Figure 5E) and HO-1 (Figure 5F) levels in the
paw, nor in the NQO1 levels in the spinal cords (Figure 5C) or paws (Figure 5G). The administration of
5-fluoro-2-oxindole did not amend the decreased protein levels of Nrf2 but maintained or increased
the expression of HO-1 and NQO1 in the spinal cords and paws.
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Figure 5. Treatment with 5-fluoro-2-oxindole increases the expression of HO-1 and NQO1 in the
paws and/or spinal cords of mice with inflammatory pain. The relative protein levels of (A,E) Nrf2,
(B,F) HO-1 and (C,G) NQO1 in the spinal cords and paws of CFA-injected mice treated with 5 mg/kg
5-fluoro-2-oxindole (FLUO) or vehicle during 11 consecutive days are presented. Naive mice treated
with vehicle were used as controls. Representative blots for Nrf2 (75 kDa), HO-1 (32 kDa), NQO1
(28 kDa) and GAPDH (37 kDa) in the spinal cords (D) and paws (H) are shown. All proteins are
expressed relative to GAPDH levels. In all panels, * denotes significant differences vs. naïve mice
treated with vehicle and + vs. CFA-injected mice treated with vehicle (p < 0.05; one-way ANOVA
and Student-Newman-Keuls test). The results are presented as the mean ± SEM; n = 3–4 samples per
experimental group.
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3.5. Effect of 5-Fluoro-2-Oxindole in the Protien Levels of 4-HNE, NOS2, CD11b/c, IBA-1 and MOR in the
Spinal Cords and/or Paws of Animals with Peripheral Inflammation

4-HNE is an oxidative stress marker with several positive bands in the Western blot; we selected the
60 kDa band to quantify by densitometry as it showed reaction in all samples and can provide a better
parameter to compare changes in the levels of 4-HNE-positive proteins among all samples analyzed.
Our results showed that the administration of CFA did not alter the levels of 4-HNE-positive proteins
in the spinal cords (Figure 6A), but significantly increased its protein levels in the paws (p < 0.027,
one-way ANOVA; Figure 6C), which were completely normalized by 5-fluoro-2-oxindole treatment.
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Figure 6. Treatment with 5-fluoro-2-oxindole inhibited the increased levels of 4-HNE-positive proteins
in the paws of mice with inflammatory pain. The relative levels of 4-HNE-positive proteins in the
spinal cords (A) and paws (C) of CFA-injected mice treated with 5 mg/kg 5-fluoro-2-oxindole (FLUO)
or vehicle during 11 consecutive days are presented. Naive mice treated with vehicle were used as
controls. Representative blots for 4-HNE-positive proteins (60 kDa) and GAPDH (37 kDa) in the spinal
cords (B) and paws (D) are shown. In all panels, * denotes significant differences vs. naïve mice
treated with vehicle and # vs. CFA-injected mice treated with FLUO (p < 0.05; one-way ANOVA and
Student-Newman-Keuls test). The results are presented as the mean ± SEM; n = 3–4 samples per
experimental group.

Our results also showed that the injection of CFA increased the spinal cord expression of CD11b/c
(p < 0.047, one-way ANOVA; Figure 7B) and IBA-1 (p < 0.009, one-way ANOVA; Figure 7C) as well as
the paw levels of NOS2 (p < 0.041, one-way ANOVA; Figure 7E). Non-alterations in the spinal cord
NOS2 expression (Figure 7A) or in the protein levels of MOR in the spinal cords (Figure 7D) or paws
(Figure 7I) were provoked by CFA. Treatment with 5-fluoro-2-oxindole normalized the up-regulation
of NOS2 (Figure 7E) and those of CD11b/c (Figure 7B) and IBA-1 (Figure 7C). Our results further
demonstrated that 5-fluoro-2-oxindole increased the paw levels of MOR (p < 0.023, one-way ANOVA;
Figure 7I).
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Figure 7. Treatment with 5-fluoro-2-oxindole normalized the paw NOS2 up-regulation and the spinal
cord microglial activation and increased the paw expression of MOR in mice with inflammatory
pain. The relative protein levels of (A,E) NOS2, (B) CD11b/c, (C) IBA-1, and (D,I) MOR in the spinal
cords and/or paws of CFA-injected mice treated with 5 mg/kg 5-fluoro-2-oxindole (FLUO) or vehicle
during 11 consecutive days are presented. Naive mice treated with vehicle were used as controls.
(F) Representative blots for NOS2 (130 kDa), CD11b/c (160 kDa), MOR (50 kDa) and GAPDH (37 kDa)
in the spinal cords are shown. (G) Representative blots for IBA-1 (15 kDa) and GAPDH (37 kDa) in the
spinal cords are displayed. (H) Representative blots for NOS2 (130 kDa), MOR (50 kDa) and GAPDH
(37 kDa) in the paws are shown. All proteins are expressed relative to GAPDH levels. In all panels,
* denotes significant differences vs. naïve mice treated with vehicle and # vs. CFA-injected mice treated
with 5-fluoro-2-oxindole (p < 0.05; one-way ANOVA and Student–Newman–Keuls test). The results
are presented as the mean ± SEM; n = 3–4 samples per experimental group.
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3.6. Treatment with 5-Fluoro-2-Oxindole Potencites the Local Antinociceptive Effects of Morphine

The effects of the acute intraperitoneal administration of 5 mg/kg 5-fluoro-2-oxindole alone and
combined with 50 µg morphine subplantarly injected in the allodynia and hyperalgesia provoked by
peripheral inflammation were assessed. Data revealed that 5-fluoro-2-oxindole significantly enhanced
the antiallodynic (Figure 8A) and antihyperalgesic effects (Figure 8B) of morphine in animals with
inflammatory pain (p < 0.001, one-way ANOVA, vs. their respective vehicle groups treated with saline
or morphine and vs. groups treated with 5-fluoro-2-oxindole plus saline). Morphine administered
alone or combined with 5-fluoro-2-oxindole did not have any effect in the contralateral paws of
CFA-injected animals (data not shown).
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Figure 8. Treatment with 5-fluoro-2-oxindole enhanced the antiallodynic and antihyperalgesic effects
of morphine. Effects of the acute administration of 5 mg/kg 5-fluoro-2-oxindole (FLUO) or vehicle in
combination with 50 µg of morphine or saline in the inhibition of the mechanical allodynia (A) and
thermal hyperalgesia (B) induced by CFA in the ipsilateral paws. In all panels, * indicates significant
differences vs. vehicle plus saline-treated mice, + indicates significant differences vs. vehicle plus
morphine-treated mice, and # indicates significant differences vs. FLUO plus saline-treated mice
(p < 0.05, one-way ANOVA followed by Student–Newman–Keuls test). Data are expressed as mean
values of the maximal possible effect (%) ± S.E.M.; n = 6 animals per experimental group.

4. Discussion

This study reveals that the repeated administration of 5-fluoro-2-oxindole inhibited the mechanical
allodynia and thermal hyperalgesia induced by CFA, whose effects were reversed with the
administration of SnPP (a HO-1 inhibitor). Treatment with 5-fluoro-2-oxindole also inhibited MAPK
phosphorylation, potentiated the expression of the antioxidant enzymes HO-1 and NQO1, normalized
the CFA-induced oxidative stress, NOS2 overexpression and microglial activation. This drug also
enhanced the local expression and the antinociceptive effects of MOR.

The role of oxindoles in the modulation of chronic inflammatory pain has not been widely studied.
Previous studies demonstrated that the administration of several oxindoles such as convolutamydine
A (4,6-bromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole), 3-(2-oxopropyl)-3-hydroxy-2-oxindole and
5-bromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole inhibited visceral and acute inflammatory pain [5–7].
A recent work evidenced the antinociceptive effects of 5-fluoro-2-oxindole in animals with chronic
neuropathic pain [8]. Even so, the likely analgesic effects of this oxindole during chronic inflammatory
pain are unknown. Our results showed, for the first time, that the administration of 5 and 10 mg/kg
5-fluoro-2-oxindole inhibited the mechanical allodynia and thermal hyperalgesia induced by peripheral
inflammation in a different effectiveness. Indeed, whereas seven days of treatment with 10 mg/kg
5-fluoro-2-oxindole completely blocked the mechanical allodynia and thermal hyperalgesia generated
by CFA, eleven days of treatment with 5 mg/kg of this drug are required to completely reverse
the allodynia and hyperalgesia. These results agree with the dose-response inhibitory effects of
5-fluoro-2-oxindole in animals with neuropathic pain [8], as well as with the effects of other oxindoles
in different murine models of acute inflammatory pain [5,6].
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In this study, we further demonstrated that 5-fluoro-2-oxindole inhibited the activation of MAPK
induced by peripheral inflammation. The activation of JNK has an important role in the development
and maintenance of chronic pain [24,25]. In accordance with Gao et al. [26], our findings demonstrated
increased levels of phosphorylated JNK in the spinal cord and paw of mice with chronic inflammatory
pain and revealed that treatment with 5-fluoro-2-oxindole completely reduced the JNK activation in both
tissues. Since the administration of specific JNK inhibitors inhibited the mechanical allodynia caused
by inflammation [26], the decreased activation of JNK performed by 5-fluoro-2-oxindole suggested the
possible involvement of this MAPK in the mechanism of action of this oxindole under inflammatory
pain conditions. ERK 1/2 is another MAPK whose phosphorylated form also increased in response to
several stimuli, for example, inflammation, nerve injury or diabetes [27,28]. The increased expression
of p-ERK 1/2 detected in the paw of CFA-injected mice was also inhibited by 5-fluoro-2-oxindole.
Moreover, P38 activation also mediates the hyperalgesia-induced by peripheral inflammation [29]
and the overexpression of p-P38 detected in the spinal cord of CFA-injected mice was inhibited
by 5-fluoro-2-oxindole treatment, suggesting that the effectivity of this treatment during chronic
inflammatory pain also comprises the inhibition of ERK 1/2 and P38 phosphorylation in the paw and
spinal cord, respectively. These results are in agreement with the inhibition of MAPK phosphorylation
caused by IRN and RIN in LPS-stimulated microglial cells [12].

Several studies showed microglial activation in the spinal cord of animals with inflammatory
pain [30], and the increased expression of CD11b/c and IBA-1 observed in the spinal cord of our animals
supported these findings. Moreover, and in accordance with the inhibition of activated microglia made
by 5-fluoro-2-oxindole in sciatic nerve-injured mice [8], this treatment also blocked the spinal high
levels of CD11b/c and IBA-1 induced by CFA-injection, revealing that the antinociceptive activities
of this drug might also be produced via microglial inactivation. The activated microglia mediate
the release of several inflammatory proteins, for example, TNFα, and interleukins, and its inhibition
reduced the allodynia and hyperalgesia in animals with chronic pain [31]. Nitric oxide also contributes
to inflammatory pain induction [11,20] and the high paw levels of NOS2 induced by CFA were inhibited
by 5-fluoro-2-oxindole. These data agree with the suppression of NOS2 overexpression caused by IRN
and/or RIN in LPS-stimulated murine microglial cells [12] and alveolar macrophages [3] as well as with
those produced by Nrf2 inducers in the paw of CFA-injected mice [11], thus revealing the modulatory
role played by 5-fluoro-2-oxindole in the synthesis of nitric oxide mediated by NOS2. Considering the
potent analgesic actions of several specific NOS2 inhibitors during peripheral inflammation [32], the
analgesic effects of 5-fluoro-2-oxindole might also be mediated by inhibiting the NOS2 up-regulation.

Numerous works demonstrated the inhibitory effects induced by the Nrf2, HO-1 and NQO1
signaling pathway activation in inflammatory pain. Thus, different analgesics for example sulforaphane
and CORM’s mediated their antinociceptive effects by activating the expression of HO-1 and NQO1 in
animals with inflammatory [11,33] or neuropathic pain associated with type 1 and 2 diabetes [34–36] and
caused by nerve injury [14,18]. In this work, we demonstrated that treatment with 5-fluoro-2-oxindole
increased the expression of NOQ1 and maintained or enhanced the high protein levels of HO-1
induced by peripheral inflammation in the spinal cords and paws, but did not alter the decreased
spinal cord expression of Nrf2 provoked by peripheral inflammation, indicating that this treatment
acts directly on the downstream pathway activated by this transcription factor. In accordance with
our findings, 5-fluoro-2-oxindole also enhanced the expression of HO-1 and NQO1 in the spinal
cord and/or hippocampus of sciatic nerve-injured animals [8]. The augmented expression of HO-1
stimulated by peripheral inflammation in the spinal cord are in conformity with the overexpression
of this enzyme detected in the dorsal root ganglia of these animals [37], suggesting that the high
expression of this antioxidant protein might act as a defense mechanism against the oxidative stress
triggered by paw inflammation. Nevertheless, the maintenance of the high spinal cord levels of HO-1
and its increased expression in the paw of 5-fluoro-2-oxindole treated animals, together with the
reversion of the antinociceptive effects of 5-fluoro-2-oxindole by SnPP (a HO-1 inhibitor), sustain the
possibility that the antinociceptive effects induced by this oxindole during inflammation was produced
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by preserving and/or potentiating the activation of this antioxidant enzyme. Our data also showed that
the expression of NQO1 was significantly increased in the spinal cords and paws of 5-fluoro-2-oxindole
treated mice. This enzyme also contributes to the inhibition of diabetic neuropathy made by Nrf2
and HO-1 activators in animals with type 2 diabetes [35,36] and plays a relevant neuroprotective role
in several physical and mental disorders by neutralizing the reactive oxidative species (ROS) [38,39].
Several works demonstrated that ROS are generated at the site of inflammation and one major action of
ROS is the production of 4-HNE among to other reactive carbonyl species [40–42]. Our results support
these finding by demonstrating increased levels of 4-HNE-positive proteins in the paw of CFA-injected
animals showing the oxidative stress induced by peripheral inflammation. Considering that the paw
injection of 4-HNE induced mechanical hypersensitivity [40,41] and treatment with 5-fluoro-2-oxindole
inhibited the high levels of 4-HNE-positive proteins in the paw of CFA-injected mice, we propose
that 5-fluoro-2-oxindole inhibits inflammatory pain by attenuating oxidative stress. Moreover, and
taking into account that oxidative stress is directly linked to the HO-1/NQO1 signaling pathway, the
potentiation of these antioxidant enzymes and the inhibition of 4-HNE-positive proteins induced by
5-fluoro-2-oxindole further support that the antioxidant effects of this treatment are also involved in
their analgesic actions during inflammatory pain.

In summary, our data reveal that peripheral inflammation does not activate the same MAPK,
inflammatory or oxidative stress markers in all tissues. Thus, while JNK is activated in the spinal
cord and paw of CFA-injected animals, the other MAPK (ERK and p-38) were only activated in one of
these tissues, paw and spinal cord, respectively. Moreover, whereas the expression of Nrf2 or HO-1
were decreased or increased in the spinal cord, non-changes in their protein levels were detected in
the paws. In contrast, CFA-injection only upregulated the paw’s, but not the spinal cord’s, levels
of 4-HNE-positive proteins and NOS2, while both microglial markers (CD11b/c and IBA-1) were
up-regulated in the spinal cord of animal with peripheral inflammation. These results suggested
that the plasticity, inflammatory and oxidative stress changes induced by CFA take place in both
tissues, but they were differentially expressed according to the type of marker analyzed. Nonetheless,
5-fluoro-oxindole inhibited JNK and p-38 phosphorylation and microglial activation in the spinal
cord as well as the phosphorylation of JNK and ERK 1/2 and the increased levels of 4-HNE-positive
proteins and NOS2 in the paw. The protein levels of HO-1 and NQO1 were also maintained at high or
augmented levels after 5-fluoro-oxindole treatment in both tissues. These results show the effects of
5-fluoro-2-oxindole in the spinal cords and paws of animals with inflammatory pain and provide new
mechanisms of action of this oxindole under inflammatory pain conditions (Figure 9).

This work has some limitations: (1) the lack of histological studies evaluating the effects of
5-fluoro-2 oxindole on the morphological changes induced by CFA, (2) that we only determined total
Nrf2 expression instead of expression ratio of cytosolic and nuclear Nrf2, that would allow a more
accurate evaluation of the effects of inflammation and 5-fluoro-2 oxindole in the expression of Nrf2
and (3) we only quantified one 4-HNE-positive protein band among several.

Our results further reported that 5-fluoro-2-oxindole increased the protein levels of MOR in the
paws of CFA-injected mice. The fact that this treatment also activated the HO-1 synthesis and this
enzyme incited the upregulation of peripheral MOR in mice with inflammatory pain [19], allows us to
theorize that the HO-1 signaling pathway activation might be implicated in the MOR overexpression
induced by 5-fluoro-2-oxindole. Finally, and considering the enhanced paw expression of MOR induced
by this drug, we evaluated the effects of this treatment on the antinociceptive actions produced by
the local administration of morphine. Our data revealed that the antinociceptive effects of morphine
were significantly enhanced by 5-fluoro-2-oxindole co-treatment. Likewise, the antiallodynic and
antihyperalgesic effects of morphine in 5-fluoro-2-oxindole pre-treated animals were enhanced by
57.9% and 44.7% as compared with the effects of morphine administered alone. These results agree
with the potentiation of the antinociceptive effects of morphine induced by this treatment during
neuropathic pain [8], as well as with the improvement in the peripheral antinociceptive actions of
morphine generated by CoPP in animals with inflammatory and neuropathic pain [18,19,43], and
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further proposed a new approach to potentiate the local effects of opioids as an alternative for chronic
inflammatory pain treatment.
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Figure 9. Summarizing scheme of the effects of treatment with 5-fluoro-2-oxindole in the spinal cord and
paw of animals with CFA-induced inflammatory pain. ↑, indicates increase and→ indicates no changes.
Arrows in red and blue are related with pro-nociceptive and antinociceptive actions, respectively.

5. Conclusions

In summary, this study reports that 5-fluoro-2-oxindole alleviates inflammatory pain and improves
the analgesic effects of morphine. This treatment inhibits the plasticity changes, oxidative stress and
inflammatory responses caused by peripheral inflammation and increases the local expression of MOR.
This work reveals that the administration of 5-fluoro-2-oxindole alone and/or combined with morphine
are two remarkable new procedures for treating chronic inflammatory pain.
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