Supplementary Data

Phytochemical characterization of *Dillenia indica* L. bark by paper spray ionization mass spectrometry and evaluation of its antioxidant potential against t-BHP-induces oxidative stress in RAW264.7 cells

Md Badrul Alam^{a,b,1}, Arif Ahmed^{c,1}, Syful Islam^c, Hee-Jeong Choi^a, Md Abdul Motin^d, Sunghwan Kim^{c,e,*}, Sang Han Lee^{a,b,f**} ^aDepartment of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea ^bFood and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Korea ^cDepartment of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea. ^dDepartment of Chemistry, University of California, Riverside, CA 9252, USA. ^eMass Spectrometry Converging Research Center and Green-Nano Materials Research Center, Daegu, 41566, Republic of Korea.

^fknu BnC, Daegu 41566, Korea

¹These authors have equal contribution

*Corresponding authors:

** Correspondence to: Dr. Sang Han Lee: Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea, Phone: (82)053-950-7754 (Office); (82)010-2537-7659 (Mobile); Fax: 053-950-6772; Email: sang@knu.ac.kr; Dr. Sunghwan Kim, Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea, Phone: (82)053-950-7754 (Office); (82)010-2537-7659 (Mobile); Fax: 053-950-6772; Email: sunghwank@knu.ac.kr

Figure S1: Mass fragmentation of Nitrogen compounds in D. indica bark extracts. (continued)

Figure S1: Mass fragmentation of Nitrogen compounds in *D. indica* bark extracts.

Figure S2: Mass fragmentation of flavonoids in D. indica bark extracts (continued).

Figure S2: Mass fragmentation of flavonoids in *D. indica* bark extracts.

Figure S3: Mass fragmentation of phenolic acids in D. indica bark extracts.

Figure S4: Mass fragmentation of ethyl maltol, 11-dodecenoic acid and triterpenoid nutriacholic acid in *D. indica* bark extracts.

Figure S5: DPPH- and ABTS-radical scavenging activities of various organic and aqueous extracts of *D. indica* bark. DIBE: ethanol extract; DIBH: hexane extract; DIBC: chloroform extract; and DIBW: aqueous extract of *D. indica* bark. Values are expressed as the mean \pm SD (n = 3). *p < 0.05 **p < 0.01.

Figure S6: Superoxide- and hydroxyl-radical scavenging activities of various organic and aqueous extracts of *D. indica* bark. DIBE: ethanol extract; DIBH: hexane extract; DIBC: chloroform extract; and DIBW: aqueous extract of *D. indica* bark. Values are expressed as the mean \pm SD (n = 3). *p < 0.05 **p < 0.01

Figure S7: CUPRAC and FRAP activities of various organic and aqueous extracts of *D. indica* bark. DIBE: ethanol extract; DIBH: hexane extract; DIBC: chloroform extract; and DIBW: aqueous extract of *D. indica* bark. Values are expressed as the mean \pm SD (n = 3).

Figure S8: Total phenols (A) and flanovoids (B) content of various organic and aqueous extracts of *D. indica* bark. DIBE: ethanol extract; DIBH: hexane extract; DIBC: chloroform extract; DIBEt: ethylacetate extract and DIBW: aqueous extract of *D. indica* bark

Figure S9: Cell viability of the ethylacetate fraction of *D. indica* bark (DIBEt)

Table S1: List of the primer sets used in this study.

Gene name		Sequences			
Sod1	forward	AAGCGGTGAACCAGTTGTGT			
	reverse	GCCAATGATGGAATGCTCTC			
Gpx1	forward	ACACCGAGATGAACGATCTG			
	reverse	ATGTACTTGGGGTCGGTCAT			
Catalase	forward	CACCCACGATATCACCAGATAC			
	reverse	GAAGACTCCAGAAGTCCCAGAC			
Hmox-1	forward	ACGCATATACCCGCTACCTG			
	reverse	TCCTCTGTCAGCATCACCTG			
Gapdh	Forward	TTGTGATGGGTGTGAACCAC			
	reverse	ACACATTGGGGGGTAGGAACA			

Name	Catalog no.	Company	Antigen	Host	Dilutions	Membrane
Anti-SOD1	BS91268	Bioworld Technology, Inc.	SOD1	Rabbit	1:1000	Nitrocellulose membrane
Anti-catalase	BS90194	Bioworld Technology, Inc.	Catalase	Rabbit	1:1000	Nitrocellulose membrane
anti-GPx-1	MB9027	Bioworld Technology, Inc.	GPx-1	Mouse	1:1000	Nitrocellulose membrane
Anti-HO-1	sc-136256	Santa Cruz Biotechnology. Inc.	HO-1	Mouse	1:1000	Nitrocellulose membrane
Anti Nrf2	sc-81342	Santa Cruz Biotechnology. Inc.	Nrf2	Mouse	1:1000	Nitrocellulose membrane
Anti-Lamin B	B\$3547	Bioworld Technology Inc	Lamin B	Rabbit	1.1000	Nitrocellulose membrane
Anti-p-p38	sc-166182	Santa Cruz Biotechnology Inc.	n38	Mouse	1.1000	Nitrocellulose membrane
Anti n38	B\$3567	Bioworld Technology Inc.	p38	Rabbit	1.1000	Nitrocellulose membrane
Anti-p.58	DS5507	Sonto Cruz Piotochrology, Inc.		Mouse	1.1000	Nitrocellulose membrane
Anti-p-EKK1/2	SC-7585	Dia 11 Talana A		D	1.1000	
Anti-ERK1/2	BS 6472	Bioworld Technology, Inc.	ERK	Rabbit	1:1000	Nitrocellulose membrane
Anti-p-JNK	BS 4322	Bioworld Technology, Inc.	JNK	Rabbit	1:1000	Nitrocellulose membrane
Anti-JNK	sc-7345	Santa Cruz Biotechnology, Inc.	JNK	Mouse	1:1000	Nitrocellulose membrane
Anti- βactin	Sc-47778	Santa Cruz Biotechnology, Inc.	β-actin	Mouse	1:1000	Nitrocellulose membrane

Table S2: List of the primary antibodies used in the study.